PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 45 (59), 1989, pp. 73-76

ON *p*-GROUPS OF SMALL ORDER

Theodoros Exarchakos

Abstract. We prove that if G is a finite non-abelain p-group of order p^n (p a prime number), ≤ 6 , then the order of G devides the order of the group of automorphisms of G.

Introduction and notation

The conjecture "if G is a finite non-cyclic p-group of order p^n , n > 2, then the order of G divides the order of the group of automorphisms of G" has been an interesting subject of research for a long time. Although a great number of papers have appeared on this topic, the conjecture still remains open. However, it has been established for abelain p-groups [14], for p-groups of class two [8], for non-cyclic metacyclic p-groups, $p = \neq 2$ [3] and for some other classes of finite p-groups ([4, 5, 6, 7, 11]). In this paper we show that this conjecture is also true for all finite non-abelian p-groups of order p^n , $n \leq 6$ for every prime number p.

Throughout this paper, G stands for a finite non-abelain p-group, of order $p^n(p \text{ a prime number})$, with commutator subgroup G' and center Z. The order of a group X is denoted by |X|. We taje the lower and the upper central series of G to be:

 $G = L_0 \subset L_1 = G' \supset L_2 \subset \cdots \supset L_c = 0 \text{ and } 1 = Z_0 \subset Z_1 = Z \subset Z_2 \subset \cdots \subset Z_c = G,$

where c is the class of G. $P(G) = \{x^p \mid x \in G\}$ and $|X|_p$ is the greatest power of p which divides |X|.

The invariants of G/G' are taken to be:

$$m_1 \ge m_2 \ge \cdots \ge m_t \ge 1$$
 and $|G/G'| = p^m$.

The number t is the number of generators of G. We denote by A(G), I(G), $A_c(G)$, the group of automorphisms, inner automorphisms, central automorphisms of G respectively. Hom (G, Z) is the group of homomorphisms of G into Z. The group G has maximal class c, if $|G| = p^n$ and c = n - 1. G is called a PN-group,

AMS Subject Classification (1980): Primary 20 D 15, 20 D 45

if G has no non-trivial abelian direct factor. G is metacyclic if it has a normal subgroup H such that both H and G/H are cyclic.

First we give some results which we shall use very often throughout the proof of the theorem.

LEMMA 1. [6] (i) If $G = H \times K$, where H is abelian and K is a PN-group, then

$$|A_c(G)| = |A_c(K)| \cdot |A(H)| \cdot |\operatorname{Hom}(K,H)| \cdot |\operatorname{Hom}(H,Z(K))|.$$

(ii) If G is a PN-group of class c and s is the number of invariants of Z, then

 $|A(G)|_{p} \ge p^{2s+c-1}$ and $|A(G)|_{p} \ge |A_{c}(G)| \cdot p^{c-1}$.

(ii) If G is a PN-group and $\exp(G/G') \leq |Z|$, then $|A_c(G)| \geq |G/G'|$.

(iv) If the Frattini subgroup $\Phi(G)$ of G is cyclic, then $|A(G)|_p \ge |G|$.

LEMMA 2. [5] If $m_1 \ge m_2 \ge \cdots \ge m_t \ge 1$ are the invariants of G/G', then $\exp G \le p^{m_1+m_2(c-1)}$. For t=2, $\exp Z \le p^{m_1+m_2(c-1)-2}$ and $Z_{c-1} \le \Phi(G)$ where $\Phi(G)$ is the Frattini subgroup of G.

LEMMA 3. [2] If $m_1 \ge m_2 \ge \cdots \ge m'_t \ge 1$ are the invariants of G/G', then

 $p^{m_2} \ge \exp L_1/L_2 \ge \exp L_2/L_3 \ge \cdots \ge \exp L_{c-1}/L_c.$

For t = 2, L_1/L_2 is cyclic of order at most p^{m_2} .

Now we prove some usefull lemmas.

LEMMA 4. Let $G = H \times K$, where H is abelian and K is a PN-group. Let A, B, C, D be as in Lemma 1 with $A = A_c(K), B = \operatorname{Hom}(K, H), C = A(H)$ and $D = \operatorname{Hom}(H, Z(K))$. Then (i) $|A(G)| \geq |A(K))| \cdot |B| \cdot |C| \cdot |D|$ and (ii) $|A(G)| \geq p |I(G)| \cdot |B| \cdot |C| \cdot |D|$.

Proof. (i) Let $\tilde{A} = \{\bar{\theta} \mid \bar{\theta}(h,k) = (h,\theta(k)), h \in H, k \in K, \theta \in A(K)\}$. Then $\bar{\theta}$ is an automorphism of G for every $\theta \in A(K)$. So $\tilde{A} \leq A(G)$. Since $A_c(G) < A(G)$, we get that $\tilde{A} \cdot A_c(G) = \tilde{A}ABCD = \tilde{A}BCD \leq A(G)$. But $|\tilde{A} \cap A_c(G)| = A_c(K)| = |A|$ and so

$$|A(G)| \ge |\hat{A} \cdot A_{c}(G)| = |\hat{A}| \cdot |A_{c}(G)| / |A| = |\hat{A}| \cdot |B| \cdot |C| \cdot |D| = = |A(K)| \cdot |B| \cdot |C| \cdot |D|.$$

(ii) $I(G) = G/Z \simeq K/Z(K) \simeq I(K)$ and by [9] $|A(K)/I(K)| \ge p$. Hence the result follows from (i).

LEMMA 5. If G has order 2^n and class c = n - 2, then $|A(G)|_2 \ge |G|$.

Proof. Since G has class c = n - 2, $|G/G'| \le 2^3$. We may assume that |Z| > 2; otherwise, Lemma 4 (ii) gives $|A(G)|_2 \ge 2 \cdot |I(G)| = 2 |G/Z| =$

 $2 \cdot 2^{n-1} = 2^n$. If $|G/G'| = 2^2$, then G has a maximal subgroup M which is cyclic [2]. So $\Phi(G)$ is cyclic, as $\Phi(G) < M$. Then by Lemma 1 (iv) the result follows. If $|G/G'| = 2^3$, exp $G/G' \le 2^2 \le |Z|$, and by Lemma 1 (iii), $|A_c(G) \ge 2^3$. Then $|A(G)^2 \ge |A_c(G)| \cdot 2^{c-1} \ge 2^3 \cdot 2^{n-3} = 2^n$.

Now we prove our theorem.

THEOREM. If G is a finite non-abelian group of order p^n , p a prime number and $n \leq 6$, then $|A(G)|_p \geq |G|$.

Proof. By Lemma 4(i) we may assume that G is a PN-group. If $Z \models p$, Lemma 4 (ii) gives $|A(G)|_p \ge p | I(G)| = p | G/Z \models p^n$. By Theorem 1 in [5], if n = 5, then $|A(G)|_p \ge p^n$. So n = 6. If G has class 5, then $|G/G'| = p^2$, exp G/G = p and by Lemma 1 (ii) we get $|A(G)|_p \ge |A_c(G)| \cdot p^{c-1} \ge p^2 \cdot p^4 = p^6$. Therefore $c \le 4$. For c = 2, $|A(G)|_p \ge |G|$ by [8], and so, $3 \le c \le 4$. If Z is non-cyclic and s is the number of invariants of Z, then s > 1, and Lemma 1 (ii) gives $|A(G)|_p \ge p^{2s+c-1} \ge p^6$, as $c \ge 3$. Finally, if $Z \le \Phi(G)$, then there exists a maximal subgroup M of G such that $Z \le M$. Then G = MZ. But $|A(M)| \ge p^5$, since $|M| = p^5$, and so, $|A(G)|_p \ge p | A(<) | \ge p^6$ from [11]. Therefore we may assume that:

- G is PN-group of order p^6 ,
- -Z iz cyclic of order greater than p,
- $-Z \leq \Phi(G)$ and
- $-3 \le c \le 4.$

Consider the following cases:

(a) Take c = 4. Let $G = L_0 > L_1 > L_2 > L_3 > L_4 = 1$ be the lower central series of G. Since $|L_i/L_{i+1}| \ge p$ for all i = 1, 2, 3, we have $p^2 \le |G/L_1| \le p^3$.

If $|G/L_1| = p^2$, then it has type (p, p) and by Lemma 2, exp $Z \leq p^2$. Also by Lemma 3, L_1/L_2 has order p and exp $L_i/L_{i+1} = p$ for all i = 1, 2, 3. For p = 2, the result follows from Lemma 5. Therefore we may assume that $p \neq 2$. If $|Z| > p^2, Z$ is not cyclic, as exp $Z \leq p^2$; a contradiction. Hence $|Z| = p^2$. Then $|G/Z_3| = p^2, |Z_3/Z_2| = p$, where $G = Z_4 > Z_3 > Z_3 > Z_1 = Z > Z_0 = 1$ is the upper central series of G. Since $L_1 \leq Z_3$ and $|L_3| = |Z_3| = p^4$ we get $L_1 = Z_3$. Also $|L_1/L_2| = p$ and $L_2 \leq Z_2$ gives $L_2 = Z_2$. Hence $Z < L_2$. Let H be a normal subgroup of G of order p^3 and exponent p. Then $H < Z_3 = L_1$ and $|L_1/H| = p$. So $L_1/H \leq Z(G/H)$, which gives $L_2 = [G, L_1] \leq H$. Since $|L_2| = p^3 = |H|$, we get $L_2 = H$, and so, $Z < L_2 = H$. Therefore, exp Z = p and Z is not cyclic; a contradiction. So G has no normal subgroup H of order p^3 and exponent p. Then G is matacyclic and the result follows by [4].

If $|G/L_1| = p^3$, then exp $G/L_1 \le p^2 \le |Z|$, and Lemma 1 (iii) gives $|A_c(G)| \ge p^3$. Then $|A(G)|_p \ge p^3 \cdot p^{c-1} = p^6$.

(b) Take c = 3. Let $G = L_0 > L_1 > L_2 > L_3 = 1$ be the lawer central series of G. Then $p^2 \leq |G/L'_1| \leq p^4$.

If $|G/L_1| = p^2$, exp $Z \leq p^{c-2} = p$ and Z is not cyclic; a contradiction. Hence $|G/L_1| \geq p^3$ and so, $|A_c(G)| \geq p^3$ in all cases as G/L_1 is not cyclic. Exarchakos

Then $|A(G)|_p \ge |A_c(G)| \cdot |G/Z_2| \ge p^3 |G/Z_2|$. Therefore we may assume that $|G/Z_2| = p^2$; otherwise the theorem holds.

Let $|G/L_1| = p^3$. Then G/L_1 has either type (p^2, p) or (p, p, p). In the first case, Lemma 3 gives $|L_1/L_2| = p$, $|L_2| = p^2$ and $\exp L_2 = p$. Since $L_2 \leq Z, Z$ is not cyclic; a contradition. If G/L_1 has type (p, p, p) then $\exp(L_1/L_2) = \exp L_2 = p$, so that $\exp L_1 \leq p^2$. Also $L_1 = \Phi(G)$ and $Z \leq \Phi(G) = L_1$. Therefore, $\exp Z \leq p^2$, and we may assume that Z is cyclic of order p^2 . Since $|G/L_1| = p^3$, $|L_1/L_2| \geq p$, we get that $|L_2| \leq p^2$. If $|L_2| = p$, then Z is not cyclic, as $L_2 \leq Z$ and $\exp L_2 = p$. Therefore we may assume that $|L_2| = p$ and L_2 is the only subgroup of Z of order p. Since G/L_1 has type (p, p, p), G can be generated by 3 elements α, b, c such that α^p, b^p, c^p are elements of L_1 . But $|G/Z_2| = p^2$. So we can chose α, b, c such that $G = \langle \alpha, b, c \rangle, c^p \in Z, c \in Z_2$. Then $[\alpha, c], [b, c]$ are elements of Z of order p, and so, $[\alpha, c], [b, c]$ are elements of L_2 . Since $x^p \in Z_2$, for every $x \in Z_1$, we have that $[\alpha, b]^p \in L_2$. If $[\alpha, b]^p = 1$, $\exp L_1 = p$, and so Z is not cyclic, as $Z \leq L_1$. Let $[\alpha, b]^p \neq 1$. Then $L_2 = \langle [\alpha, b] \rangle$. But $L_1 = \langle [\alpha, b], [\alpha, c], [b, c], L_2 \rangle$ [1, Lemma 1.1] and so $L_1 = \langle [\alpha, b] \rangle$. Then L_1 is cyclic; a contradiction, as $|L_1| = p^3$ and $\exp L_1 \leq p^2$.

Let $|G/L_1| = p^4$. If $\exp(G/L_1) \leq p^2 \leq |Z|$, then $|A_c(G) \geq p^4$ (Lemma 1 (iii)), and so, $|A(G)|_p \geq p^4 \cdot p^{c-1} = P^6$. Therefore, we may assume that G/L_1 has type (p^3, p) and $|Z| = p^2$. Then $|L_1/L_2| = p$ and G can be generated by two elements α, b such that $\alpha^{p^3} \in L_1$, $b^p \in L_1$ and $\alpha^{p^2} \notin L_1$, $b \notin L_1$. Also $L_2 \leq Z$ and L_2 is the only subgroup of G of order p. Since G/Z_2 is elementary abelain of order $p^2, \Phi(G) \leq Z_2$, and so, $\Phi(G) = Z_2$. But $L_1Z \leq Z(Z_2)$ and $|Z_2/L_1Z| = p$ gives that Z_2 is abelain. As $G = \langle \alpha, b \rangle$ and $\alpha^p \in Z_2$, $b^p \in Z_2$, we get $Z_2 = \langle [\alpha, b], b^p, \alpha^p, Z \rangle$. If $\alpha^p \in Z$, then $\alpha^{p^2} \in L_2 \leq L_1$; contradiction. Since Z_2 has order p^4 and $[\alpha, b] = b^p$ if and only if $b^p \in Z$, we have to assume that $b^p \in Z$. On the other hand, if $\alpha^{p^3} = 1$, then $\langle \alpha^{p^2} \rangle$ is the only subgroup of Z of order p, and so, $L_2 = \langle \alpha^{p^2} \rangle$. Then $\alpha^{p^2} \in L_1$ a contradiction. So $\alpha^{p^3} \neq 1$ and since Z is cyclic of order p^2 we get that $Z = \langle \alpha^{p^2} \rangle, L_2 = \langle \alpha^{p^3} \rangle$ and α has order p^4 . Since G has order $p^6, b^p \notin \langle \alpha^{p^2} \rangle$. This contradiction proves the theorem.

REFERENCES

- N. Blackburn, On Prime-power groups with two generators, Proc. Cambridge. Phil. Soc. 54 (1958), 327–337.
- [2] N. Blackburn, On special class of p-groups, Acta Math. 100 (1958), 45-92.
- [3] R. M. Davitt, The automorphisms group of a finite metacyclic p-group, Proc. Amer. Math. Soc. 25 (1970), 876-878.
- [4] R. M. Davitt and A. D. Otto On the automorphism group of a finite p-group with the central quotient metacyclic, Proc. Amer. Math. Soc. 30 (1971), 467-472.
- [5] Th. Exarchakos, On the number automorphisms of a finite p-group, Cnad. J. Math. 32 (1980), 1448-1458.
- [6] Th. Exarchakos, LA-groups, Math. Soc. Japan 33 (1981), 185-190.
- Th. Exarchakos, A generalization of a theorem of A. D. Otto, Publ. Inst. Math. (Beograd) 33 (47) (1983), 69-71.

76

- [8] R. Faudree, A note on he automorphism group of a p-group, Proc. Amer. Math. Soc. 19 (1968), 1379-1382.
- W. Gaschütz Nichtabelsche p-Groppen besitzen aussere p-Automographismen J. Algebra 4 (1966), 1-2.
- [10] P. Hall, The classification of prime-power groups, J. Reine Angew Math. 182 (1940), 130– 141.
- K. G. Hummel, The order of the automorphism group of a central product, Proc. Amer. Math. Soc. 47 (1975), 37-40.
- [12] I. D. MacDonald, Generalizations of a classical theorem about nilpotent groups, Illinois J. Math. 8 (1964), 556–570.
- [13] I. D. MacDonald, The Hughers problem and others, J. Austral. Math. Soc. 10 (1969), 475-479.
- [14] A. D. Otto, Central automorphism of a finite p-group, Trans. Amer. Math. Soc. 125 (1966), 240-287.

Universite of Athens 33, Ippocratus Street Athens, Greece (Received 04 10 1988)