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ON p-GROUPS OF SMALL ORDER

Theodoros Exarchakos

Abstract. We prove that if G is a �nite non-abelain p-group of order pn (p a prime
number), � 6, then the order of G devides the order of the group of automorphisms of G.

Introduction and notation

The conjecture \if G is a �nite non-cyclic p-group of order pn; n > 2, then
the order of G divides the order of the group of automorphisms of G" has been an
interesting subject of research for a long time. Although a great number of papers
have appeared on this topic, the conjecture still remains open. However, it has been
established for abelain p-groups [14], for p-groups of class two [8], for non-cyclic
metacyclic p-groups, p =6= 2 [3] and for some other classses of �nite p-groups ([4,
5, 6, 7, 11]). In this paper we show that this conjecture is also true for all �nite
non-abelian p-groups of order pn; n � 6 for every prime number p.

Throughout this paper, G stands for a �nite non-abelain p-group, of order
pn(p a prime number), with commutator subgroup G0 and center Z. The order of
a group X is denoted by j X j. We taje the lower and the upper central series of G
to be:

G=L0 � L1 = G0 � L2 � � � � � Lc = 0 and 1=Z0 � Z1=Z � Z2 � � � � � Zc=G;

where c is the class of G. P (G) = fxp j x 2 Gg and j X jp is the greatest power of
p which divides j X j.

The invariants of G=G0 are taken to be:

m1 � m2 � � � � � mt � 1 and j G=G0 j= pm:

The number t is the number of generators of G. We denote by A(G); I(G),
Ac(G), the group of automorphisms, inner automorphisms, central automorphisms
of G respectively. Hom (G, Z) is the group of homomorphisms of G into Z. The
group G has maximal class c, if j G j= pn and c = n� 1. G is called a PN -group,
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if G has no non-trivial abelian direct factor. G is metacyclic if it has a normal
subgroup H such that both H and G=H are cyclic.

First we give some results which we shall use very often throughout the proof
of the theorem.

Lemma 1. [6] (i) If G = H �K, where H is abelian and K is a PN-group,
then

j Ac(G) j=j Ac(K) j � j A(H) j � j Hom(K;H) j � j Hom(H;Z(K)) j :

(ii) If G is a PN -group of class c and s is the number of invariants of Z,
then

j A(G) jp� p2s+c�1 and j A(G) jp�j Ac(G) j �p
c�1:

(ii) If G is a PN-group and exp(G=G0) �j Z j, then j Ac(G) j�j G=G
0 j.

(iv) If the Frattini subgroup �(G) of G is cyclic, then j A(G) jp�j G j.

Lemma 2. [5] If m1 � m2 � � � � � mt � 1 are the invariants of G=G0, then

exp G � pm1+m2(c�1). For t = 2; exp Z � pm1+m2(c�1)�2 and Zc�1 � �(G) where
�(G) is the Frattini subgroup of G.

Lemma 3. [2] If m1 � m2 � � � � � m0

t � 1 are the invariants of G=G0, then

pm2 � exp L1=L2 � exp L2=L3 � � � � � exp Lc�1=Lc:

For t = 2; L1=L2 is cyclic of order at most pm2 .

Now we prove some usefull lemmas.

Lemma 4. Let G = H �K, where H is abelian and K is a PN -group. Let
A;B;C;D be as in Lemma 1 with A = Ac(K); B =Hom(K;H); C = A(H) and
D =Hom(H;Z(K)). Then (i) j A(G) j�j A(K)) j � j B j � j C j � j D j and (ii)
j A(G) j� p j I(G) j � j B j � j C j � j D j.

Proof . (i) Let ~A = f�� j ��(h; k) = (h; �(k)); h 2 H; k 2 K; � 2 A(K)g.

Then �� is an automorphism of G for every � 2 A(K). So ~A � A(G). Since

Ac(G) < A(G), we get that ~A � Ac(G) = ~AABCD = ~ABCD � A(G). But

j ~A \ Ac(G) j= Ac(K) j=j A j and so

j A(G) j�j ~A � Ac(G) j=j ~A j � j Ac(G) j = j A j=j ~A j � j B j � j C j � j D j=

=j A(K) j � j B j � j C j � j D j :

(ii) I(G) = G=Z ' K=Z(K) ' I(K) and by [9] j A(K)=I(K) j� p.

Hence the result follows from (i).

Lemma 5. If G has order 2n and class c = n� 2, then j A(G) j2�j G j.

Proof . Since G has class c = n � 2; j G=G0 j� 23. We may assume that
j Z j> 2; otherwise, Lemma 4 (ii) gives j A(G) j2� 2� j I(G) j= 2 j G=Z j=
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2 � 2n�1 = 2n. If j G=G0 j= 22, then G has a maximal subgroup M which is cyclic
[2]. So �(G) is cyclic, as �(G) < M . Then by Lemma 1 (iv) the result follows. If
j G=G0 j= 23; exp G=G0 � 22 �j Z j, and by Lemma 1 (iii), j Ac(G) � 23. Then
j A(G)2 �j Ac(G) j �2

c�1 � 23 � 2n�3 = 2n.

Now we prove our theorem.

Theorem. If G is a �nite non-abelian group of order pn; p a prime number
and n � 6, then j A(G) jp�j G j.

Proof . By Lemma 4(i) we may assume that G is a PN -group. If Z j= p,
Lemma 4 (ii) gives j A(G) jp� p j I(G) j= p j G=Z j= pn. By Theorem 1 in
[5], if n = 5, then j A(G) jp� pn. So n = 6. If G has class 5, then j G=G0 j=
p2; exp G=G = p and by Lemma 1 (ii) we get j A(G) jp�j Ac(G) j �p

c�1 � p2 � p4 =
p6. Therefore c � 4. For c = 2; j A(G) jp�j G j by [8], and so, 3 � c � 4. If Z is
non-cyclic and s is the number of invariants of Z, then s > 1, and Lemma 1 (ii)
gives j A(G) jp� p2s+c�1 � p6, as c � 3. Finally, if Z � �(G), then there exists a
maximal subgroup M of G such that Z �M . Then G = MZ. But j A(M) j� p5,
since j M j= p5, and so, j A(G) jp� p j A(<) j� p6 from [11]. Therefore we may
assume that:

| G is PN -group of order p6,

| Z iz cyclic of order greater than p,

| Z � �(G) and

| 3 � c � 4.

Consider the following cases:

(a) Take c = 4. Let G = L0 > L1 > L2 > L3 > L4 = 1 be the lower central
series of G. Since j Li=Li+1 j� p for all i = 1; 2; 3, we have p2 �j G=L1 j� p3.

If j G=L1 j= p2, then it has type (p; p) and by Lemma 2, exp Z � p2. Also
by Lemma 3, L1=L2 has order p and exp Li=Li+1 = p for all i = 1; 2; 3. For
p = 2, the result follows from Lemma 5. Therefore we may assume that p 6= 2. If
j Z j> p2; Z is not cyclic, as exp Z � p2; a contradiction. Hence j Z j= p2. Then
j G=Z3 j= p2; j Z3=Z2 j= p, where G = Z4 > Z3 > Z3 > Z1 = Z > Z0 = 1 is the
upper central series of G. Since L1 � Z3 and j L3 j=j Z3 j= p4 we get L1 = Z3.
Also j L1=L2 j= p and L2 � Z2 gives L2 = Z2. Hence Z < L2. Let H be a normal
subgroup of G of order p3 and exponent p. Then H < Z3 = L1 and j L1=H j= p.
So L1=H � Z(G=H), which gives L2 = [G;L1] � H . Since j L2 j= p3 =j H j, we
get L2 = H , and so, Z < L2 = H . Therefore, exp Z = p and Z is not cyclic; a
contradiction. So G has no normal subgroup H of order p3 and exponent p. Then
G is matacyclic and the result follows by [4].

If j G=L1 j= p3, then exp G=L1 � p2 �j Z j, and Lemma 1 (iii) gives j
Ac(G) j� p3. Then j A(G) jp� p3 � pc�1 = p6.

(b) Take c = 3. Let G = L0 > L1 > L2 > L3 = 1 be the lawer central series
of G. Then p2 �j G=L01 j� p4.

If j G=L1 j= p2; exp Z � pc�2 = p and Z is not cyclic; a contradiction.
Hence j G=L1 j� p3 and so, j Ac(G) j� p3 in all cases as G=L1 is not cyclic.
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Then j A(G) jp�j Ac(G) j � j G=Z2 j� p3 j G=Z2 j. Therefore we may assume
that j G=Z2 j= p2; otherwise the theorem holds.

Let j G=L1 j= p3. Then G=L1 has either type (p2; p) or (p; p; p). In the �rst
case, Lemma 3 gives j L1=L2 j= p; j L2 j= p2 and exp L2 = p. Since L2 � Z;Z is
not cyclic; a contradition. If G=L1 has type (p; p; p) then exp(L1=L2) = exp L2 = p,
so that exp L1 � p2. Also L1 = �(G) and Z � �(G) = L1. Therefore, exp Z � p2,
and we may assume that Z is cyclic of order p2. Since j G=L1 j= p3; j L1=L2 j� p,
we get that j L2 j� p2. If j L2 j= p, then Z is not cyclic, as L2 � Z and exp L2 = p.
Therefore we may assume that j L2 j= p and L2 is the only subgroup of Z of order
p. Since G=L1 has type (p; p; p); G can be generated by 3 elements �; b; c such
that �p; bp; cp are elements of L1. But j G=Z2 j= p2. So we can chose �; b; c such
that G = h�; b; ci; cp 2 Z; c 2 Z2. Then [�; c]; [b; c] are elements of Z of order p,
and so, [�; c]; [b; c] are elements of L2. Since xp 2 Z2, for every x 2 Z1, we have
that [�; b]p 2 L2. If [�; b]p = 1; exp L1 = p, and so Z is not cyclic, as Z � L1.
Let [�; b]p 6= 1. Then L2 = h[�; b]i. But L1 = h[�; b]; [�; c]; [b; c]; L2i [1, Lemma
1.1] and so L1 = h[�; b]i. Then L1 is cyclic; a contradiction, as j L1 j= p3 and
exp L1 � p2.

Let j G=L1 j= p4. If exp(G=L1) � p2 �j Z j, then j Ac(G) � p4 (Lemma 1
(iii)), and so, j A(G) jp� p4 � pc�1 = P 6. Therefore, we may assume that G=L1
has type (p3; p) and j Z j= p2. Then j L1=L2 j= p and G can be generated by two

elements �; b such that �p
3

2 L1; b
p 2 L1 and �

p2 62 L1; b 62 L1. Also L2 � Z and
L2 is the only subgroup of G of order p. Since G=Z2 is elementary abelain of order
p2;�(G) � Z2, and so, �(G) = Z2. But L1Z � Z(Z2) and j Z2=L1Z j= p gives that
Z2 is abelain. As G = h�; bi and �p 2 Z2; b

p 2 Z2, we get Z2 = h[�; b]; bp; �p; Zi.

If �p 2 Z, then �p
2

2 L2 � L1; contradiction. Since Z2 has order p
4 and [�; b] = bp

if and only if bp 2 Z, we have to assume that bp 2 Z. On the other hand, if

�p
3

= 1, then h�p
2

i is the only subgroup of Z of order p, and so, L2 = h�p
2

i. Then

�p
2

2 L1 a contradiction. So �p
3

6= 1 and since Z is cyclic of order p2 we get that

Z = h�p
2

i; L2 = h�p
3

i and � has order p4. Since G has order p6; bp 62 h�p
2

i. This
contradiction proves the theorem.
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