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ON SOME GENERALIZED INVERSES OF MATRICES

AND SOME LINEAR MATRIX EQUATIONS

Jovan D. Ke�cki�c

Abstract. We point a generalized inverse AG of a singular square complex matrix A, with
the property that the general solution of the equation Anx = 0 (and many other equations) can be
expressed by means of AG for all positive integers n. This inverse is a solution of the system (5),
also satis�ed by the strong spectral inverse of Greville. Applications to various matrix equations
and to linear algebraic systems are given.

1. All matrices considered here will be square complex matrices. Although
the theory of generalized inverses is well developed and pretty well known, in order
to make this note self-contained, we begin by listing a few facts and de�nitions.

Suppose that A is a given matrix.

(i) Any matrix X satisfying the equality AXA = A is called a (1)-inverse of
A and is denoted by A(1). There is an in�nity of such inverses.

(ii) There is a unique matrix X satisfying the equalities

AXA = A; XAX = X; (AX)� = AX (XA)� = XA; (1)

where M� is the conjugate transpose of M . This unique solution of (1) is called
the Moore-Penrose inverse of A and is denoted by A+.

(iii) The smallest positive integer k such that rank Ak+1 =rank Ak is called
the index of A and is denoted by IndA.

(iv) If m(x) = xs + cs�1x
s�1 + � � � + ckx

k, with ck 6= 0, is the minimal
polynomial of A, then k =IndA. The converse is also true.

(v) There is a unique matrix satisfying the equalities

AX = XA; X2A = X; Ak+1X = Ak (k = IndA): (2)

This unique solution of (2) is called the Drazin inverse of A and is denoted by AD .
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The proofs of these and many other properties of various generalized inverses
can be found e. g. in monographs [1, 2, 3]. We might add that statements (i) and
(ii) remain valid even if A is a rectangular matrix.

2. \The basic application of inverses is for solving linear equations", says
Ben-Israel [4], and indeed the �rst application given by Penrose [5] is contained in
the following theorem.

Theorem P. A necessary and suÆcient condition for the consistency of the

equation AXB = C is that AA+CB+B = C, in which case the general solution is

X = A+ CB+ + T �A+ATBB+, where T is arbitrary.

Consider now the equation

AmXBn = C (m;n positive integers): (3)

Of course, Theorem P can be applied to this equation, and its solution can be
expressed in terms of (Am)+ and (Bn)+, but generally speaking not in terms of A+

and B+, since the equalities (A+)n = (An)+; (B+)m = (Bm)+ need not be true,
nor is there a generally valid formula connecting (An)+ and A+ for n = 1; 2; . . . .

On the other hand, Penrose also noted that Theorem P remains valid if
A+; B+ are replaced by any (1)-inverses A(1); B(1) of A and B. Therefore, if there
existed (1)-inverses A(1); B(1) of A and B such that

(A(1))n = (An)(1); (B(1))n = (Bn)(1) (n = 1; 2; . . . )

then it would be possible to express the general solution of (3) in terms of those
inverses only. In fact, such inverses do exist and they can be successfully applied
not only to (3), but also to other matrix equations.

We note that the equation (3) was solved by Cline [6], but only in m is a
multiple of p �Ind A, and if n is a multiple of q �Ind B. In order to do that
he introduced the so-called left and right power inverses for a matrix MK where
k �IndM . Clin's inverses are interesting and usuful, as shown e. g. in [7], but their
application to the equation (3) is not. Namely, if m �Ind A and n �Ind B, then
(AD)m and (AD)n are (1)-inverses of A and B, and hence the equation (3) can be
solved in terms of the Drazin inverses of A and B.

3. Let Ind A = k. Instead of looking for matrices X such that

AnXnAn = An (n = 1; 2; . . . ); (4)

we shall look for matrices X with the properties

AkX = XAk; AnXnAn = An (n = 1; 2; . . . ; k � 1): (5)

Of course, (4) is an easy consequence of (5); besides, inverses with the additional
property that they commute with Ap for p � k are particularly usuful in equation
solving, as will be seen later.
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Any matrix satisfying (5) will be denoted by AG. The existence of such
matrices follows from the existence of the strong spectral inverse, introduced by
Greville [8], which will be mentioned later. Nevertheless, we indicate a method for
obtaining some (but not all) generalized inverses AG.

Let J = P�1AP , where P is nonsingular, be the Jordan canonical form of A.
Then

J = J1 � J2 � � � � � Js �R; (6)

where the blocks J1; . . . ; Js are nilpotent (the only possible nonzero entries being
l's immediately above the diagonal) and R is nonsingular. In other words, each of
the nilpotent blocks is either a zero matrix or has the form

B =










Or�1;1 Ir�1
O1;1 O1;r�1










(1 � r � k);

where Op;q is the zero matrix with p rows and q columns, and Ip is the unit matrix
of order p. Any (1)-inverse od B has the form

B(1) =










C D

Ir�1 E









;

where C;D;E are arbitrary matrices of correct size, and it is easily veri�ed that
BkB(1) = B(1)Bk; Bn(B(1))nBn = Bn for n = 1; 2; . . . ; k � 1. Hence, if A =
PJP�1, and if J is given by (6), any matrix

AG = P (J
(1)
1 � J

(1)
2 � � � � � J (1)s �R�1)P�1 (7)

satis�es the conditions (5).

We list a few properties of AG which will be used later:

(i) AnAG = AGA
n for all n �Ind A;

(ii) AnAnGA
p �Ap if p � n;

(iii) An+pAnG = Ap for all n = 1; 2; . . . and all p �Ind A.

The �rst two are direct consequences of (5), and we only prove the third.

Let m be the smallest positive integer such that mp � n. Since p �Ind A, we
have

An+pAnG = AnAnGA
p = AnA

p
GA

pA
n�p
G = AnA

n�p
G =

= An�pA
n�p
G Ap = � � � = An�(m�1)pA

n�(m�1)p
G Ap = Ap;

by (ii), as p � n� (m� 1)p.

4. Using the inverses introduced in the previous section we can solve the
equation (3) by a direct application of Theorem P. Indeed, (3) is consistent if and
only if

AmAmGCB
n
GB

n = C; (8)

in which case its general solution is X = AmGCB
n
G+T�A

m
GA

mTBnBn
G; T arbitrary.
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A special case of (3) is interesting.

Theorem 1. If m;n; p are nonnegative integers, the equation

AmXAn = Ap (9)

is consistent if and only if p � max(m;n) or p �Ind A.

Proof . If p � max(m;n), the consistency criterion is ful�lled, since
AmAmGA

pAnGA
n = ApAnGA

n = Ap. Let max(m;n) > p �Ind A. Then

AmAmGA
pAnGA

n = Am+pAmGA
p
GA

n = ApAnGA
n = AnGA

n+p = Ap:

It remains to prove that

p < max(m;n) and p < IndA (10)

implies that (9) is inconsistent. Let k =Ind A. Then the minimal polynomial of A
has the form

(ts + cs�1t
s�1 + � � �+ c0)t

k with c0 6= 0; (11)

and hence
(As + cs�1A

s�1 + � � �+ c0I)A
k = 0 (c0 6= 0): (12)

Suppose that (10) is true and let max(m;n) = m. If k � m, the consistency
criterion (8), with C = Ap, cannot be ful�lled, since (12) after postmultiplication
by Am�kAmGA

pAnGA
n would imply that (As+ cs�1A

s�1+ � � �+ c0I)A
p = 0; c0 6= 0;

i. e. that (11) is not the minimal polynomial of A. On the other hand, if k >

m, then AmAmGA
pAnGA

n = Ap woul imply AkAmGA
pAnGA

n = Ak�m+p, and (12)
after postmultiplication by AmGA

pAnGA
n would become (As + cs�1A

s�1 + � � � +
c0I)A

k�m+p = 0. Since k �m+ p < k, this would again mean that (11) is not the
minimal polynomial of A.

If max(m;n) = n, similar contadictions are obtained if (12) is premultiplied
by AmAmGA

pAnGA
n�k (if k � n), or by AmAmGA

pAnG (if k > n).

The proof is complete.

The equation (9) can be generalized, since the following result is true.

Theorem 2. The equation AmXAn = a0I + a1A+ � � �+ apA
p is consistent

if and only if for every i = 1; 2; . . . ; p we have: ai 6= 0 implies that AmXAn = Ai

is consistent.

Remark . The above method can be extended to handle some (but not all)
equations of the form AmXAn = ApBq. Without ging into details, we give an
example: If Ind A � 3, the equation A5XB3 = A3B4 is consistent.

We shall now consider two systems of equations.

Theorem 3. Suppose that m and n are positive integers such that n � m.

The system

AXAm = Am; AnX = XAn (13)
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is consistent if and only if n �Ind A, in which case its general solution is

X=AG+T �AnGA
nT +AnGA

nTAmAmG �TAnAnG+AGATA
nAnG�AGATA

mAmG ;

(14)
where T is arbitrary.

Proof . If n �Ind A, the system (13) is consistent, since X = AG solves it.
Conversely, suppose that k =Ind A > n � m and that (13) is consistent. The
minimal polynomial of A has the form (11) and hence the equality (12) is true.
But from (13) follows AkX = Ak�1 and postmultiplying (12) by X we conclude
that (11) is not the minimal polynomial of A.

In order to obtain the general solution of (13) we proceed as follows. The
general solution of the �rst equation of (13) is

X = AG + U �AGAUA
mAmG (U arbitrary) (15)

Substituting (15) into (13) we obtain

AnU �AnUAmAmG = UAn �AGAUA
n; (16)

which implies, after postmultiplication by AmAmG , that

(I �AGA)UA
n = 0 (17)

The general solution of (17) is given by

U + V � (I �AGA)V A
nAnG (V arbitrary) (18)

We now substitute (18) into (16) and we get

AnV (I �AmAmG ) = 0:

The general solution of the last equation is

V = T �AnGA
nT (I �AmAmG ) (T arbitrary): (19)

From (15), (18), (19) we conclude that (13) implies (14). Conversely, it is
easily veri�ed that (14) is a solution of (13) and the proof is complete.

Remark . For m = n = 1 we obtan the well-known result: There exists a
commuting (1)-inverse of A if and only if Ind A � 1. For m = 1 we obtain the
system considered and solved in [9] and [10].

The following result can also be proved by similar procedure.

Theorem 4. Suppose that m;n are positive integers and that n � m;n �Ind
A. The general solution of the system

AmXAm = AM ; AnX = XAn

is given by

X=AmG+T�AnGA
nT+AnGA

nTAmAmG�TA
nAnG+A

m
GA

mTAnAnG�A
m
GA

mTAmAmG :
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where T is arbitrary.

5. Regarding linear algebraic systems

Anx = b (20)

where n is a positive integer and x; b are column matrices, Cline [6] proved the
following result.

Theorem C If Ax = b is a consistent system of equations and if A and A2

have the same rank, then the general solution of Anx = b; n = 1; 2; � � � ; can be

written as

x = AnRb+ (I �ALA)y;

where y is arbitrary, and AR; AL are right and left power inverses of A.

Again we note that power inverses are not needed to solve the above system;
it is easily solved by an application of the Drazin inverse, which is in the case
Ind A = 1 (as implied by the conditions of Theorem C) called the group inverse
and is denoted by A#. Indeed, if Ind A = 1, and if Ax = b is consistent, the all the
system Anx = b (n = 1; 2; . . . ) are consistent, and for any n = 1; 2; . . . the general
solution of (20) is

x = A#b+ (I �A#A)y (y arbitrary):

It is not diÆcult to see that the group inverse A#, which is the unique solution
of the equations

AXA = A; AX = XA; XAX = X; (21)

can be replaced by any commuting (1)-inverse of A, i. e. by a matrix which satis�es
only the �rst two equations of (21).

The inverses AG enable us to solve (20) without the rather heavly restriction
Ind A = 1.

Theorem 5. The system (20) is consistent if and only if AnAnGb = b, and

its general solution is then

x = AnGb+ (I �AnGA
n)y (y arbitraty):

Let Ind A = k. Since AnAnG = AnGA
n = AkAkG for n � k, we conclude that:

(i) If Akx = b is consistent, then all systems Anx = b (n � k) are consistent;

(ii) If n � k, the general solution of the consistent system Anx = b is x =
AnGb+ (I �AkGA

l)y (y arbitrary);

(iii) If k = 1, Theorem 5 reduces to the result cited above, since AG reduces
to a commuting (1)-inverse of A.
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6. As we mentioned earlier, Greville [8] introduced strong spectal inverses
AS of A and showed that they can be de�ned as solutions of the system

AXA = A; AkX = XAk; XAn = An�1XnAn

XAX = X; Xk = AXk; XnA = XnAnXn�1
(k=IndA; n = 2; 3; . . . ; k) (22)

Since the equalities (5) are straight forward consequences of (22) we see that the
equations considered in previous section could have been solved in terms of AS .
However, the inverses AG suÆce for that purpose, and it is easier to compute an
AG (a solution of (5)) then an AS (a solution of (22)), just as it is easier to compute
an A(1) than A+. Notice that if J = P�1AP is the Jordan canonical form of A,

then AS = PJ+P�1. In fact, AS is a special case of AG, obtained when J
(1)
k are

replaced by J+k in the formula (7).

7. The class of strong spectral inverses can be de�ned as follows. For a
given matrix A, let P (A) be the set of all nonsingular matrices P such that J =
P�1AP = N � R is the Jordan canaonical form of A, where N is nilpotent and
R is nonsingular. Then S(A) = fP (N � R�1)P�1 j P 2 P (A)g is the class of all
strong spectral inverses of A.

De�nition. If the set P (A) contains a unitary matrix, we say that A 2 PP ,
or that A is a PP matrix.

The class of PP matrices is a generalization of the class of EP matrices; see,
for example, [3].

It is easily veri�ed that if A is a PP matrix, then A+ is a strong spectral
inverse of A, and hence

(A+)n = (An)+ for all n = 1; 2; . . . (23)

It was known that (23) holds for EP matrices, and also that there are matri-
ces, not EP , such that (23) id true. It would be interesting to �nd whether there
is a matrix A, not PP , such that (23) remains true.

Finally, note that if A is a PP matrix, then the equations considered in
Sections 4 and 5 can be solved in terms of A+, i e. if AG is replaced by A+.

8. The author to express his appreciation to M. S. Stankovi�c for many helpful
discussions on generalized inverses and their applications.
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