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ON SUMS INVOLVING RECIPROCALS OF CERTAIN

LARGE ADDITIVE FUNCTIONS

Tizuo Xuan

Abstract. Let �(n) =
P

pjn

p;B(n) =
P

p�kn

�p;B1(n) =
P

p�kn

p�. Sums of reciprocal of these

functions are evaluated asymptotically. Asymptotic formulas for some related sums, involving the
function 
(n) and !(n) (the number of distinct and total number of prime factors of n) are also
derived.

1. Introduction. Let p(n) denote the largest prime factor of an integer
n � 2, and let p(1) = 1. Let �(n); B(n) and B1(n) denote the additive functions

�(n) =
X
pjn

p; B(n) =
X
p�kn

�p; B1(n) =
X
p�kn

p�;

where as usual p denotes primes and p�kn means that p� divides n but p�+1 does
not.

In 1981, Ivi�c [7] proved that

(1.1)
X
n�x

1=p(n) = x expf�(2 log x � log2 x)
1=2 +O((log x � log3 x)

1=2)g;

where log2 x = log log x; log3 x = log log log x. The formula above remains true if
p(n) is replaced by �(n) or B(n).

In 1984, Ivi�c and Pomerence [9] proved that
X
n�x

1=pr(n) = x expf�(2r log x log2 x)
1=2(1 + gr�1(x) +O(log33 x= log

3
2 x))g;

where r > 0 is �xed and

gr(x) =
log3 x+ log(1 + r)� 2� log 2

2 log2 x

�
1+

2

log2 x

�
�
(log3 x+ log(1 + r) � log 2)2

8 log22 x
:
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The proofs of results above depend on estimates for  (x; y). the number of positive
integers not exceeding x all of whose prime factors do not exceed y.

Recently Hildebrand [4] and Maier (unpublished) obtained independently
much better results concerning  (x; y) (see Lemma 2 below). With the help of
these results, Erd�os, Ivi�c and Pomerance [3] obtained a precise estimate for the
sum in (1.1), where it was shown that

(1.2)
X
n�x

1

p(n)
=

�
1 +O

��
log2 x

log x

�1=2��
Æ(x);

where

Æ(x) =

Z x

2

�

�
log x

log t

�
dt

t2
;

and the function �(u) is de�ned for u � 0 as the continuous solution of the equations

(1.3)
�(u) =1; (0 � u � 1);

u�0(u) =� �(u� 1); (u > 1):

It is well-known that (see [6] or [2])

(1.4) �(u) = exp

�
�u(log u+ log2 u� 1 +

log2 u

log u
+O

�
1

log u

���
:

In [3], it was shown that

Æ(x) = expf�(2 log x log2 x)
1=2(1 + g0(x) +O(log33 x= log

3
2 x))g

Very recently, Ivi�c [8] proved that

X
n�x

!(n)

p(n)
=

�
2 log x

log2 x

�1=2�
1 +O

�
log3 x

log2 x

��X
n�x

1

p(n)
;(1.5)

X
n�x


(n)� !(n)

p(n)
=

�X
p

1

p2 � p
+O

��
log2 x

log x

�1=2��X
n�x

1

p(n)
;(1.6)

and

(1.7)
X
n�x

�2(n)

p(n)
=

�
6

�2
+O

��
log2 x

log x

�1=2��X
n�x

1

p(n)

where !(n) and 
(n) denote the number of distinct prime factors of n and the total
number of prime factors of n, respectively, and �(n) is the Moebius function.

Moreover, it was shown in [10] that

(1.8)

�
1

2
+O

�
log3 x

log2 x

��X
n�x

1

p(n)
�

X
2�n�x

1

�(n)
�

�
log 2+O

�
log3 x

log2 x

��X
n�x

1

p(n)
:
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The following result occurs as a remark in [3]:

(1.9)
X

2�n�x

1=�(n) = (1 + expf�C(log x log2 x)
1=2g)

X
x�x

1=p(n);

From (1.8) we known that (1.9) is not true.

The purpose of this paper is to give estimates for the analogous sums in (1.2),
(1.5), (1.6) and (1.7) with p(n) replaced by �(n).

2. Statement of results.

Theorem 1.
P

2�n�x

1
�(n) =

�
D +O

�
log23 x
log2 x

��P
n�x

1
p(n) ,

where 1=2 < D < 1 denotes an absolute constant which will be described precisely

in section 4.

Theorem 2.

X
2�n�x

!(n)

�(n)
= D

�
2 log x

log2 x

�1=2�
1 +O

�
log23 x

log2 x

��X
n�x

1

p(n)
;

where D is as in Theorem 1.

The last formula remains true if !(n) is replaced by 
(n).

Theorem 3.

X
2�n�x


(n)� !(n)

�(n)
=

�
D

�X
p

1

p2 � p

�
+O

�
log23 x

log2 x

��X
n�x

1

p(n)
:

Theorem 4.

X
2�n�x

�2(n)

�(n)
=

�
6

�2
D +O

�
log23 x

log2 x

��X
n�x

1

p(n)
:

Moreover, it was shown in [11, 12] that

X
2�n�x

�
1

�r(n)
�

1

Br(n)

�
= x exp

�
�
�
2(r + 1) log x log2 x

�1=2
�

�

�
r + 1

2

log x

log2 x

�1=2
log3 x+O

��
log x

log2 x

�1=2��
;

and

X
2�n�x

�
1

�r(n)
�

1

Br
1(n)

�
= x exp

�
�
�
2(r + 1) log x log2 x

�1=2
�

�

�
2r + 1

4

log x

log2 x

�1=2
log3 x+O

��
log x

log2 x

�1=2��
;
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respectively, where r is any �xed positive number. From the two results above, we
known that Theorems 1, 2, 3, and 4 remain true if �(n) is replaced by B(n) or
B1(n).

3. Several Lemmas.

Lemma 1. Let L1 = exp

��
1
2 log x log2 x

�1=2�
1� 2 log3 xlog2 x

��
,

L2 = exp

��
1
2 log x log2 x

�1=2�
1� 2 log3 xlog2 x

��
,

Then we have

X
n�x

1

p(n)
=

�
1 +O

�
1

logA x

�� X
L1�p�L2

1

p
 

�
x

p
; p

�
;

for any �xed A > 0.

Proof . See [8, formula (4.3)].

Lemma 2. [4]. For any �xed " > 0 and x � 3; expf(log2 x)
5=3+�g � y � x,

we have uniformly

 (x; y) = x�(u)

�
1 +O

�
log(u+ 1)

log y

��
; u =

log x

log y
:

Lemma 3.[1, 5]. Uniformly for u � 1 and 0 � t � 1 we have

(3.1) �(u� t) = �(u)et�(u)
�
1 +O(1=u)

�
;

where � = �(u) denotes the positive solution of the equation

(3.2) e� = u� + 1;

and satis�es

(3.3) �(u) = log u+O
�
log2(u+ 2)

�
; u � 2:

Lemma 4. [5]. Uniformly for u � 1 and 0 � t � u we have

�(u� t)� �(u)et�(u):

Lemma 5. For any �xed " > 0 and 1 � d � y; expf(log2 x)
5=3+"g � y �

x1=2, we have uniformly

 

�
x

d
; y

�
=  (x; y)d��

�
1 +O

�
1

u

�
+O

�
log(u+ 1)

log y

��
;

where

(3.4) � = �(x; y) = 1� �
�
(log x)=(log y)

�
=(log y);
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and �(u) is de�ned as in Lemma 3.

Proof . Let t = log d= log y. In view of Lemmas 2 and 3 we have

 

�
x

d
; y

�
=
x

d
�

�
log(x=d)

log y

��
1 +O

�
log(u+ 1)

log y

��

=
x

d
�(u)et�(u)

�
1 +O

�
1

u

�
+O

�
log(u+ 1)

log y

��

=  (x; y)d��
�
1 +O

�
1

u

�
+O

�
log(u+ 1)

log y

��
:

The Lemma is proved.

Lemma 6. For any �xed " > 0, and 1 � d � x=y; expf(log2 x)
5=3+"g � y �

x, we have uniformly  (x=d; y)�  (x; y)d�� . where � = �(x; y) is given by (3.4).

Proof . Using Lemma 4 instead of Lemma 3, the proof of this result is analo-
gous to the proof of Lemma 5.

4. Proof of Theorem 1. By Lemma 1 we have

(4.1) G(x) : =
X

2�n�x

1

�(n)
=

X
2�n�x;L1<p(n)�L2

1

�(n)
+O(R);

where R = 1
logA x

P
n�x

1
p(n) , for any �xed A > 0. Writing

X
2�n�x;L1<p(n)�L2

1

�(n)
=

X
p(n)kn

+
X

p2(n)jn

;

we then obtain

G(x) =
X

L1<p1�L2

X
m1�x=p1;p(m1)<p1

1

p1 + �(m1)
+

+O

� X
L1<p1�L2

1

p1
 

�
x

p21
; p1

��
+O(R):

Again, writingX
m1�x=p1p(m1)<p1

1

p1 + �(m1)
=

X
L1<p(m1)<p1;p(m1)km1

+
X

L1<p(m1)<p1;p2(m1)jm1

+
X

p(m1)�L1

;

we have

G(x) =
X

L1<p1�L2

X
L1<p2<p1

X
m2�x=p1p2;p(m2)<p2

1

p1 + p2 + �(m2)

+O

� X
L1<p1�L2

1

p1

X
L1<p2<p1

 

�
x

p21
; p1

��
+O

� X
L1<p1<L2

1

p1
 

�
x

p21
; p1

��

+O

� X
L1<p1�L2

1

p1

X
p2�L1

 

�
x

p1p2
; p2

��
+O(R):
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Proceeding as before, �nally we have
(4.2)

G(x)=
X

L1<p1�L2

X
L1<p2<p1

� � �
X

L1<ps<ps�1

X
ms�x=p1���ps;p(ms)<ps

1

p1 + � � �+ ps + �(ms)

+O

� sX
j=1

G1j

�
+O

� sX
j=2

G2j

�
+O(R);

where 2 � s � log3 x is a large number which will be chosen latter, and

G1j =
X

L1<p1�L2

X
L1<p2<p1

� � �
X

L1<pj<pj�1

1

p1
 

�
x

p1 � � � pj�1p2j
; pj

�
;(4.3)

G2j =
X

L1<p1�L2

X
L1<p2<p1

� � �
X

L1<pj�1<pj�2

X
pj�L1

1

p1
 

�
x

p1 � � � pj
; pj

�
:(4.4)

Further, from (4.2) we have

(4.5)

G(x) =
X

L1<p1�L2

X
L1<p2<p1

� � �
X

L1<ps<ps�1

1

p1 + � � �+ ps
 

�
x

p1 � � � ps
; ps

�

+O

� X
L1<p1�L2

X
L1<p2<p1

� � �
X

L1<ps<ps�1

X
m�x=p1���ps;p(ms)<ps

�(ms)

p21

�

+O

� sX
j=1

G1;j

�
+O

� sX
j=2

G2j

�
+O(R)

= G3 + (G4) +O

� sX
j=1

G1;j

�
+O

� sX
j=2

G2j

�
+O(R); say:

Now we come to the estimation of G3. Changing the order of summation
gives

(4.6) G3 =
X

L1<ps�L2

X
ps<ps�1�L2

� � �
X

p2<p1�L2

1

p1 + � � �+ ps
 

�
x

p1 � � � ps
; ps

�
:

Nothing that p1 > p2 > � � � > ps, we get

1

p1 + � � �+ ps
=

1X
k1=0

(p1 + � � �+ ps�1 � ps)
k1

2k1+1(p1 + � � �+ ps�1)k1+1
=

=

1X
k1=0

1

2k1+1

k1X
r1=0

(�1)r1Cr1
k1

pr1s
(p1 + � � �+ ps�1)r1+1

;

and

1

(p1 + � � �+ ps�1)r1+1
=

1X
k2=r1

Cr1
k2
�

1

2k2+1

k2�r1X
r2=0

(�1)r2Cr2
k2�r1

pr2s�1
(p1 + � � �+ ps�2)r1+r2+1

;
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where we used the following two formulas:

1

1� x
=

1X
k=0

xk; (�1 < x < 1);(4.7)

1

(1� x)r+1
=

1X
k=r

Cr
kx

k�r ; (�1 < x < 1):(4.8)

Proceeding as before, �nally we have

1

p1 + � � �+ ps
=

1X
k1=0

1

2k1+1

k1X
r1=0

(�1)r1Cr1
k1

1X
k2=r1

Cr1
k2
�

1

2k2+1

k2�r1X
2=0

(�1)r2Cr2
k2�1

� � �

1X
ks�1=r1+���+rs�2

C
r1+���+rs�2
ks�1

1

2ks�1+1
(4.9)

ks�1�r1�����rs�2X
rs�1=0

(�1)rs�1C
rs�1
ks�1�r1�����rs�2

�
pr1s � � � p

rs�1
2

p
r1+���+rs�1+1
1

=

X
k;r

F (k1; . . . ; ks�1; r1; . . . ; rs�1)p
r1
s � � � p

rs�1
2 p

�(r1+���+rs�1+1)
1 ; say:

From (4.6) and (4.9) we get

G3 =
X
k;r

F (k1; . . . ; ks�1; r1; . . . ; rs�1)
X

L1<ps�L2

pr1s
X

ps<ps�1�L2

pr2s�1 � � �

�
X

p3<p2�L2

p
rs�1
2

X
p2<p1�L2

1

p
r1+���+rs�1+1
1

 

�
x

p1 � � � ps
; ps

�
:(4.10)

Let

ui =
log(x=pi+1 � � � ps)

log ps
; Æi =

�(ui)

log ps
; i = 1; 2; . . . ; s� 1;

Note that s � log3 x and L1 < pi � L2. We then get

(4.11) ui =

�
2 log x

log2 x

�1=2�
1 +O

�
log3 x

log2 x

��
; log ui =

1

2
log2 x+O(log3 x):

Thus from this and (3.3) we obtain

(4.12) �(u1) = (1=2) log2 x+O(log3 x); i = 1; 2; . . . ; s� 1

From (3.2), (4.11) and (4.12) we have exp(�(ui)� �(us�1)) = 1+O(log3 x= log2 x).
So �(ui) = �(us�1) + O(log3 x=log2x), and therefore Æi = Æ + O(log3 x=(log ps �
log2 x)), where Æ = Æs�1. Hence for L1 < p � L2 we have

(4.13) pÆi = pÆ(1 +O(log3 x= log2 x))
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By Lemma 5 and (4.13) we have
X

p2<p1�L2

1

p
r1+���+rs�1+1
1

 

�
x

p1 � � � ps
; ps

�

= 

�
x

p2 � � � ps
; ps

� X
p2<p1�L2

1

p
r1+���+rs�1+1
1

�
1

p1�Æ11

�
1 +O

��
log2 x

log x

�1=2��

= 

�
x

p2 � � � ps
; ps

�Z L2

p2

1

�r1+���+rs�1+2�Æ
d(�(�))

�
1 +O

��
log2 x

log x

�1=2��

= 

�
x

p1 � � � ps
; ps

�
1

r1 + � � �+ rs�1 + 1
�

1

p
r1+���+rs�1+1�Æ
2 M

�

�

�
1 +O

�
log3 x

log2 x

�
+O

��
p2
L2

�r1+���+rs�1+1�Æ��
;

where M = ((1=2) log x � log2 x)
1=2, So (4.10) becomes

G3 =
X
k;r

F (k1; . . . ; ks�1; r1; . . . ; rs�1)

r1 + � � �+ rs�1 + 1

X
L1<ps�L2

pr1s
X

ps<ps�1�L2

pr2s�1 � � �
X

p4<p3�L2

p
rs�2
3

X
p3<p2�L2

1

p
r1+���+rs�2+1�Æ
2 M

 

�
x

p2 � � � ps
; ps

�
�

�

�
1 +O

�
log3 x

log2 x

�
+O

��
p2
L2

�r1+���+rs�1+1�Æ��
:

Proceeding analogously, �nally we have

G3 =
X
k;r

F (k1; . . . ; ks�1; r1; . . . ; rs�1)

(r1 + � � �+ rs�1 + 1) � � � (r1 + 1)

X
L1<ps�L2

1

ps
 

�
x

ps
; ps

�
�

�
p
(r�1)Æ
s

Ms�1

�
1 +O

�
s
log3 x

log2 x

��
+O

�s�1X
j=1

G3j

�
;

where

G3j =
X
k;

F (k1; . . . ; ks�1; r1; . . . ; rs�1)

(r1 + � � �+ rs�1 + 1) � � � (r1 + � � �+ rs�j + 1)M j
(4.14)

�
X

L1<ps�L2

pr1s
X

ps<ps�1�L2

pr2s�1 � � �
X

pj+3<pj+2�L2

p
rs�j+1
j+2

X
pj+2<pj+1�L2

1

p
r1+���+rs�j�1+1�jÆ
j+1

 

�
x

p1+1 � � � ps
; ps

�
� (rj+1=L2)

r1+���+rs�j+1�jÆ :

From (3.2) and (3.3) we have p
(s�1)Æ
s �M�(s�1) = 1 +O(s log3 x= log2 x), so that

(4.15) G3 = Ds

X
L1<ps�L2

1

ps
 

�
x

ps
; ps

��
1 +O

�
s
log3 x

log2 x

��
+O

�s�1X
j=1

G3j

�
;
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where

Ds =

1X
k1=0

1

2k1+1

k1X
r1=0

(�1)r1Cr1
k1

r1 + 1

1X
k2=r1

Cr1
k2

2k2+1

k2�r1X
r2=0

(�1)r2Cr2
k2�r1

r1 + r2 + 1
� � �(4.16)

�

1X
ks�1=r1+���+rs�2

C
r1+���+rs�2
ks�1

2ks�1+1

ks�1�r1�����rs�2X
rs�1=0

(�1)rs�1C
rs�1
ks�1�r1�����rs�2

r1 + � � �+ rs�1 + 1
:

Next we show

(4.17) G3j � R; (j = 1; 2; . . . ; s� 1)

Let L02 = exp

��
1
2 log x log2 x

�1=2�
1 + 1:9 log3 xlog2 x

��
,

D = f(ps; . . . ; pj+1) j L1 < ps < � � � < Pj+1 � L2g,

D1 = f(ps; . . . ; pj+1) j L1 < ps < � � � < pj+1 � L02g,

D2t = f(ps; . . . ; pj+1) j L1 < ps < � � � < ps�t+1 � L02; L
0
2 < ps�t < � � �

< Pj+1 � L2g,

D3 = f(ps; . . . ; pj+1) j L
0
2 < ps < � � � < pj+1 � L2g.

So we may put

G3j : =
X
(D)

=
X
(D1)

+

s�j�1X
t=1

X
(D2t)

+
X
(D3)

:

Now we come to the estimation of
P

D2t
. Since pj+1=L2 � 1, by using Lemma 6

we obtain

X
(D2t)

�
X
k;r

F (k1; . . . ; ks�1; r1; . . . ; rs�1)

(r1 + � � �+ rs�1 + 1) � � � (r1 + � � �+ rt + 1)Ms�t

X
L1<ps�L02

pr1s � � �

X
ps�t+2<ps�t+1�L02

1

p
r1+���+rt�1+1�(s�t)Æ
s�t+1

 

�
x

ps�t+1 � � � ps
; ps

�

�(ps�t+1=L
0
2)
r1+���rt+1�(s�t)Æ :

From this we know that

X
(D21)

�
X
k;r

F (k1; . . . ; ks�1; r1; . . . ; rs�1)

(r1 + � � �+ rs�1 + 1) � � � (r1 + 1)Ns�1
�

�
X

L1<ps�L02

1

p
1�(s�1)Æ
s

 

�
x

ps
; ps

��
ps
L02

�r1+1�(s�1)Æ

�Ds

X
L1<ps�L

00

2

1

ps
 

�
x

ps
; ps

��
L
00

2

L02

�r1+1�(s�1)Æ
+Ds

X
L
00

2
<ps�L02

1

ps
 

�
x

ps
; ps

�
� R;
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where L
00

2 = exp

��
1
2 log x log2 x

�1=2�
1 + 1:89 log3 xlog2 x

��
.

By the same argument as before, we obtain that
P

(D2t)
� R. Also, it is evident

that

X
(D1)

� Ds

X
L1<ps�L02

1

ps
 

�
x

ps
; ps

��
L02
L2

�r1+���+rs�j+1�j�Æ
� R;

X
(D3)

� Ds

X
L0
2
<ps�L2

1

ps
 

�
x

ps
; ps

�
� R:

Thus it follows that (4.17) is true. So (4.15) becomes

(4.18) G3 = Ds

X
L1<ps�L2

1

ps
 

�
x

ps
; ps

��
1 +O

�
s
log3 x

log2 x

��
:

Next we come to the estimation of G4 in (4.5). By the de�nition of �(m), we have

G4 =
X

L1<ps�L2

X
p<ps

p
X

ps<ps�1�L2

� � �
X

p3<p2�L2

X
p2<p1�L2

1

p21
 

�
x

p1 � � � ps; p
; ps

�
:

Let

u0i =
log(x=pi+1 � � � psp)

log ps
; Æ0i =

�(u0i)

log ps
; Æ0 = Æ0s�1:

As for pÆi of (4.13) we similarly obtain pÆ
0

i = pÆ
0

(1 + O(log3 x= log2 x)), for L1 <
p � L2. By this and Lemma 5 we have

X
p2<p1�L2

1

p21
 

�
x

p1 � � � psp
; ps

�
=  

�
x

p2 � � � psp
; ps

� X
p2<p1�L2

1

p
3�Æ0

1

1

(1 + o(1))

=  

�
x

p2 � � � psp
; ps

�
�

1

2p2�Æ
0

2 M
(1 + o(1)):

Proceeding as before, we have �nally

G4 =
1

2s�1

X
L1<ps�L2

1

p
2�(s�1)Æ
s Ms�1

X
p<ps

p 

�
x

psp
; ps

�
(1 + o(1))(4.19)

=
1

2s�1

X
L1<ps�L2

1

p2s
 

�
x

ps
; ps

� X
p<ps

pÆ
0

(1 + o(1))

�
1

2s�1

X
L1<ps�L2

1

ps
 

�
x

ps
; ps

�
(1 + o(1)):

Now we show

(4.20) G2j � R; (j = 2; 3; . . . ; s):
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We have

G22 =
X

L
1=10
1

<p2�L1

X
L1<p1�L2

1

p1
 

�
x

p1p2
; p2

�

+
X

p2�L
1=10
1

X
L1<p1�L2

1

p1
 

�
x

p1p2
; p2

�
=
X
1

+
X
2

By Lemma 6 we get

X
1

�
X

L
1=10
1

<p2�L1

 

�
x

p2
; p2

� X
L1<p1�L2

1

p2��1

1

�
X

L
1=10
1

<p2�L1

 

�
x

p2
; ps

�
L�1

2

L1 log L1
;

where �1 =
1

log p2
�

�
log(x=p2)
log p2

�
. From (3.2) and (3.3) we have

L�1

2

log L1
�

1

log L1

�
log x

log p2
�
1

2
log2 x

�(log L2)=(log p2)

� (log2 x)
C1 :

By Lemma 1 we have

X
1

� (log2 x)
C1

X
L
1=10
1

<p2�L1

1

p2
 

�
x

p2
; p2

�
� R:

Using Lemma 2 and (1.7) we obtain

X
2

�
X

p2<L
1=10
1

X
L1<p1�L2

1

p1
 

�
x

p1p2
; L

1=10
1

�

� x expf�4(log x log2 x)
1=2g

X
p2�L

1=10
1

1

p2

X
L1<p1�L2

1

p21
� R:

Hence, we have

(4.21) G22 � R:

Let �j =
1

log pj
�

�
log(x=p2���pj)

log pj

�
. By Lemma 6 we have

(4.22)

G2j =
X

pj�L1

X
pj<pj�1�L2

� � �
X

p2<p1�L2

1

p1
 

�
x

p1 � � � pj
; pj

�

�
X
pj�L1

X
pj<pj�1�L2

� � �
X

p3<p2�L2

 

�
x

p2 � � � pj
; pj

� X
p2<p1�L2

1

p
2��j

1

�
X
pj�L1

X
pj<pj�1�L2

� � �
X

p3<p2�L2

1

p2
 

�
x

p2 � � � pj
; pj

�
(log2 x)

C1

� (log2 x)
C1G2;j�1:
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From (4.21) and (4.22). we can derive (4.20).

Next we come the estimation of G1j . Changing the order of summation gives

G1j =
X

L1<pj�L2

X
pj<pj�1�L2

� � �
X

p2<p1�L2

1

p1
 

�
x

p1 � � � pj�1p2j
; pj

�
:

Using Lemma 6 repeatedly, we get

(4.23)

G1j � (log2 x)
C1S

X
L1<pj�L2

1

pj
 

�
x

p2j
; pj

�

� (log2 x)
C1S

X
L1<pj�L2

1

pj
 

�
x

pj
; pj

�
�

1

p
1=2
j

� R:

From (4.5), (4.18), (4.20) and (4.23), and noting that 1=2 < Ds < 1 (see (4.30)
below), we obtain

G(x) = Ds

X
L1<ps�L2

1

ps
 

�
x

ps
; ps

��
1 +O

�
log3 x

log2 x

�
+O

�
1

2s

��
:

Now if we put s = s0 = [log3 x= log 2], we have

(4.24) G(x) = Ds0

X
L1<p�L2

1

p
 

�
x

p
; p

��
1 +O

�
log23 x

log2 x

��
;

where Ds is de�ned as in (4.16).

To �nish the proof of the theorem is remains to simplify the expression for
Ds0 . We shall use the following three formulas:

k�hX
r=0

(�1)rCr
k�h

�h+r+1

h+ r + 1
=

Z �

0

(1� x)k�hxhdx;(4.25)

k�hX
r=0

(�1)rCr
k�h

1

h+ r + 1
= (k + 1)�1(Ch

k )
�1;(4.26)

1X
k=r

1

2k+1(k + 1)
=

Z 1
2

0

xr

1� x
dx:(4.27)

By (4.26) and (4.27), we have

1X
ks�1=r1+���+rs�2

C
r1+���+rs�2
ks�2

2ks�1+1

ks�1�r1�����rs�2X
rs�1=0

(�1)rs�1C
rs�1
ks�1�r1�����rs�2

r1 + � � �+ rs�1 + 1

=

1X
ks�1=r1+���+rs�2

1

2ks�1+1(ks�1 + 1)
=

Z 1
2

0

x
r1+���+rs�2
1

1� x1
dx1:
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By (4.25) and (4.8) we further have

1X
ks�2=r1+���+rs�3

C
r1+���+rs�3
ks�2

2ks�2+1

ks�2�r1�����rs�3X
rs�2=0

(�1)rs�2C
rs�2
ks�2�r1�����rs�3

r1 + � � �+ rs�2 + 1

Z 1
2

0

x
r1+���+rs�2
1

1� x1
dx1

1X
ks�2=r1+���+rs�3

C
r1+���+rs�3
ks�2

2ks�2+1

Z 1
2

0

dx1
x1(1� x1)Z x1

0

(1� x2)
ks�2�r1�����rs�3x

r1+���+rs�3
2 dx2

=

Z 1
2

0

dx1
x1(1� x1)

Z x1

0

x
r1+���+rs�3
2

(1 + x2)r1+���+rs�3+1
dx2:

Proceeding as before, �nally we have

Ds=

Z 1
2

0

dx1
x1(1� x1)

Z x1

0

dx2
x2

Z x2
1+x2

0

dx3
x3

� � �

Z xs�3
1+xs�3

0

dxs�2
xs�2

Z xs�2
1+xs�2

0

dxs�1
1 + xs�1

; s �3:

If we put

x1 = x01; x2 = x01x
0
2; x3 =

x01x
0
2x

0
3

1 + x01x
0
2

; � � � ; xs�1 =
x01 � � �x

0
s�1

1 + x01x
0
2 + � � �+ x01 � � �x

0
s�2

;

we then have
(4.28)

Ds =

Z 1
2

0

dx1
1� x1

Z 1

0

dx2 � � �

Z 1

0

dxs�2

Z 1

0

dxs�1
1 + x1x2 + � � �+ x1 � � �xs�1

; s � 3:

From this, it is easy to see that

0 < Ds+1 < Ds < D2 =

Z 1
2

0

dx

1� x
= log 2; (s = 3; 4; � � � ; ):

Hence

(4.29) D = lim
s!1

Ds

exists. Obviously, we have

Ds�Ds+1 �

Z 1
2

0

dx1
1� x1

Z 1

0

dx2 � � �

Z 1

0

dxs�2

Z 1

0

x1 � � �xs�1dxs�1=

�
log 2�

1

2

�
2�(s�1)

Hence

Ds > D3 � (log 2� (1=2)) � 2�1:
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Since

D3=

Z 1
2

0

log(1 + x1)

x1(1� x1)
dx1 �

Z 1
2

0

1

x1(1� x1)

�
x1�

x21
2
+
x31
3
�
x41
4
+
x51
5
�
x61
6

�
dx = 0:6140;

so that

(4.30) 0:5174 < D < Ds < log 2; (s � 3):

Also, it is evident that

0 < Ds0 �D =

1X
s=s0

(Ds �Ds+1) �

1X
s=s0

�
log 2�

1

2

�
�

�
1

2

�s�1

= (4 log 2� 2) � 2�s0 :

Recalling that S0 = [log3 x= log 2] we obtain

(4.31) Ds0 = D +O(1= log2 x):

From this and (4.24), the theorem follows.

5. Proofs of Theorems 2, 3 and 4. Proof of Theorem2. We shall only
sketch the proof of Theorem 2. As for G(x) in (4.5) we obtain similarly

W (x) : =
X

2<n�x

!(n)

�(n)
=

X
L<p1�L2

X
L1<p2<p1

� � �
X

L1<ps<ps�1

1

p1 + � � �+ ps
�

�
X

m�x=p1���ps;p(m)<ps

!(m) +O

� X
L1<p1�L2

X
L1<p2<p1

� � �
X

L1<ps<ps�1

1

p21
�

�
X

m�x=p1���ps;p(m)<ps

!(m)�(m)

�
+O(SR =W1 +O(W2) +O(SR); say;

where R is de�ned in Section 4. By[8], Lemma 6, we have

W1 =
X

L<p1�L2

X
L1<p2<p1

� � �
X

L1<ps<ps�1

1

p1 + � � �+ ps
�

� 

�
x

p1 � � � ps
; ps

��
2 log x

log2 x

�1=2�
1+O

�
log3 x

log2x

��
=G3

�
2 log x

log2 x

�1=2�
1+O

�
log3 x

log2x

��
:

By the de�nition of �(m) and by Lemma 6 of [8], we have

W2 �
X

L1<p1�L2

X
L1<p2<p1

� � �
X

L1<ps<ps�1

1

p21

X
p<ps

p�(5.3)

�
X

m0�x=p1���psp;p(m0)<ps

!(m0)� G4

�
log x

log2 x

�1=2
:
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From (5.1), (5.2) and (5.3) the theorem follows.

Proofs of Theorems 3 and 4 are similar to the proof of Theorem 2, but they
use Theorem 1 of [8] and Lemma 5 of [8] instead of Lemma 6 of [8], recpectively.

I express my thanks to Professor A. Ivi�c for his valuable help.
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