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ON CATEGORIES OF RELATIONS

Mara Alagi�c

Abstract. This paper is concerned with relations in categories with pullbacks, studied by
Kawahara in [3], and with a kind of congruences that may be considered in the corresponding
category of spans. Also, having mind G. Conte's results about symmetrizations of categories [2],
some categories of relations are compared.

0. Introduction. The classical example of a relation between two sets A
and B is de�ned as a monosubobject [7] of the cartesian product of A�B. In that
case, relations are composable by pulbacks, and they form an involutive category
in which the category S of sets and functions may be embedded. For a category
K with pullbacks, relations may be de�ned by pairs of K-morphisms A X ! B
under a suitable equivalence relation. When composition of equivalence classes
by pullbacks is de�ned, the corresponding category of relations form an involutive
category in which K is embeddable [3].

Since any pair of K-arrows A � ! B may be considered as a functor-object
of the functor-category K �!, it is natural and useful to de�ne an equivalence
relation by the suitable natural transformations. That kind of equivalence relation
and the corresponding Kawahara quotient category of relations are considered in
this paper. The graph functor G of the embedding of the category K into the
category of relations of K is universal among the relational functors from K to
some involutive cattegory V . That fact, using similar results by Kawahara [3] is
proved here in a strictly categorical manner.

1. Category of spans. Let K be a category with pullbacs, V an involutive
category and F : K ! V a functor.

1:1. F is a relational functor if and only if it satis�es the following conditions:

(RF1) For each K-morphism f; F (f$F (f) � 1, where 1 denotes the identity mor-
phism and $ denotes involution in V .
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(RF2) If (x; y; f; g) is a pullback square (fx = gy) in K;F (f)F (g)$ = F (x)$F (y).

A restractive subcategoryE is a subcategory of a categoryK satisfyng the following
three conditions:

(E1) Iso (K) � E �Epi(K);

(E2) if fg is an E- morphism, then g is an E-morphism;

(E3) if (x; y; f; g) is a pullback in K and f is an E-morphism, then y is an E-
morphism.

1:2. Let R(K) be a category (of spans over K) with the same objects as a functor
category K �! but with composition de�ned by pullbacks. Namely, (f; g) � (h; k) :
= (fp; kq), where (f; g) and (h; k) are objects of the category K �! (spans) and
(p; q; g; h) is a pullback square over the pair of morphisms g and h with the same
codomain. The set of all spans between two K- objects A and B is denoted by
R(A;B). Composition is well de�ned, associativity follows from the well-known
properties of pullbacks, and units are spans of the form (1, 1) where 1 is the
identity on X , for any object X of K.

1:3. Let I denote a diagram category of the form  � !. Since any span in
R(A;B) is de�ned to be an image of the diagram category I under some functor
(f; g) : I ! K given by (f; g) : ( � !) ! (A  X ! B), an order relation in
R(A;B) may be de�ned as follows:

(f; g) � (f 0; g0) if and only if there exists a functor (x; y) from R(A;B) and
a pair of natural transformations:

s : (x; y)
�

! (f 0; g0) and e : (x; y)
�

! (f; g)

where s-components are from the category K but e-components are from the re-
tractive subcategory E. Denote that by (s; e) : (f; g) � (f 0; g0).

1:4. Let (f; g); (f 0; g0) and (f 00; g00) be spans from R(A;B) and let (h; k) be a span
from R(B;C). Then:

(i) (f; g) � (f; g);

(ii) if (f; g) � (f 0; g0) and (f 0; g0) � (f 00; g00) then (f; g) � (f 00; g00);

(iii) if (f; g) � (f 0; g0), then

(a) if we let t be a K-morphism with cod(t) =dom(f) and de�ne (f; g)t

by (ft; gt), there exists an K-morphism t̂ such that (f; g)t � (h; k) =

((f; g) � (h; k))t̂,

(b) (f; g) � (h; k) � (f 0; g0) � (h; k).

Proof . (i) Take (x; y) = (f; g) and s = e = 1 (with all components identities)
and use the fact that identities are epimorphisms.

(ii) Let hs; ei : (f; g) � (f 0; g0) and hs0; e0i : (f 0; g0i � (f 00; g00). Constructing
pullbacks (u; v; s; e0) (on all components of the natural transformations s and e0)
one gets a new pair natural transformations hs0v; eui : (f; g) � (f 00; g00), where
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the natural transformation s0v has all components from the category K, but the
transformation eu has components from the retractive subcategory E (from the
properties of pullbacks of the subcategory E).

(iii) (a) The functor (f; g)t : = (ft; gt) : I ! K is well de�ned and (f; g)t belongs
to R(A;B). Further, (f; g)t � (h; k) : = (ft; gt) � (h; k) : = (fta; kb) = f t̂x̂; kb) =
(fxt̂; kb) = (fxt̂; kyt̂)((f; g) � (h; k))t̂, where connecting pullbacks (x; y; g; h) and
(x̂; t̂; t; x), the pullback (x̂; yt; gt; h) is given and from their uniqueness the preceding
equalites are true.

(b) Since hs; ei : (f; g) � (f 0; g0), by (a) there are morphisms ŝX and êX such
that (f; g)eX � (h; k) = ((f; g) � (h; k))êX , and (f; g)sX � (h; k) = ((f; g) � (h; k))ŝX .
The arrow eX is an E-morphism; so by the properties of E and pullbacks, êX is
an E-morphism. By this, a new pair of natural transformations is de�ned ŝ =
(sA; ŝX ; 1C) and ê = (eA; êX ; 1C) such that

hs; ei : (f; g) � (h; k) � (f 0; g0) � (h; k):

1:5. Let (f; g)$ = (g; f). Then clearly, for (f; g) from R(A;B) and (f 0; g0) from
R(B;C), (i) ((f; g) � (f 0; g0))$ = (f 0; g0)$ � (f; g)$; (ii) (f; g)$$ = (f; g) and (iii) if
(f; g) � (f 0; g0) then (f; g)$ � (f 0; g0)$.

Therefore R(K) is an involutive category.

2. Category of relations. 2:1. Two spans (f; g) and (f 0; g0) from R(A;B),
are equivalent, i e. (f; g) � (f 0; g0), if and only if both (f; g) � (f 0; g0) and (f 0; g0) �
(f; g). Note that in the case eA = sA = 1A and eB = sB = 1B one gets Kawahara's
equivalence relation [3].

2:2. Lemma The relation � is an equivalence relation on R(A;B).

The equivalence class of a span (f; g) is called an I-relation between A and
B relative to E (abrev. \relation" from A to B) and denoted by [f; g]. The class
of relations from A to B in K is denoted by RelE(A;B).

2:3. Example. As it is well-known, a multivalued function between two sets X and
Y may be considered as a binary relation r : R ! X � Y , where r is monic and
rX = pX jR; rY = pY jR (pX and pY are projections). On the other hand, the only
retractive subcategory in Set is Epi(Set) and therefore the equivalence class of a
span (rX ; rY ) will be a relation R from X to Y .

2:4. For two relations [f; g] from RelE(A;B) and [h; k] from RelE(B;C) compo-
sition (join operation) is de�ned as the following equivalence class: [f; g] � [h; k] =
[fp; kq] where (p; q; g; h) is the pullback square de�ned over the pair of arrows (g; h).

2:5. Proposition. The composition of relations is well-de�ned; associativity holds
and [1,1] is the unit of this operation.

Proof . Let [f; g] be from Rel(A;B) and [h; k] from Rel(B;C), and let (f; g) �
(f 0; g0) and (h; k) � (h0; k0). The construction of the pullbacks over the pairs
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(g; h); (e; p) and (q; e0) may be followed in the diagram (2:6). Connecting these
pullbacks, as shown in (2:7), and using the properties of pullbacks, we get that elt

0 is
an E-morphism and there exists a pair of natural transformations d = (eA; elt

0; eC)
and r = (SA; sls

0; s0
C
) such that

hr; di : (f; g) � (h; k) �� (f 0; g0) � (h0; k);

and similary,

hr0; d0i : (f 0; g0) � (h; k) � (f; g) � (h; k):

Associativity follows from the associativity of the composition of the corresponding
spans. It is easy to see that [1A; 1A] � [f; g] = [f; g] and [f; g] � [1B ; 1B][f; g] for a
relation [f; g] from RelE(A;B).

2:8. The preceding proposition shows that objects of R(K)= �, with composition
de�ned form a category denoted by Rel(K;E), and called the category of relations
in K over a retractive subcategory E (Kawahara [3]).

2:9. Proposition (Kawahara [3]) There exists a contravariant rational embedding
functor G : K ! Rel(K;E) de�ned by G : (A! B)! [1A; f ].

2:10. Proposition. The following properties hold:

(i) G(1A) = [1A; 1A], (ii) [f; g] = G(f)$G(g),

(iii) G(f)$G(f) = [1B ; 1B ] if and anly if f is an E-morphism,

(iv) G is the relational functor,

(v) G(f) is a retract in Rel(K;E) if and only if f is an E-morphism,

(vi) for each i : A
�=
! A; j : B

�=
! B, we have G(jfi) = G(f).
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The proof is quite simple manipulation with given facts.

The idea for the following proposition is from Kawahara [3], but the statement
and the proof are appropriate to our approach.

2:11. Proposition. Let K be a category with pullbacks, E a retractive subcategory
of K and Inv the category of involutive categories and involutive functors.

(a) The relational functor G : K !Rel(K;E) is the universal functor between all
relational functors F from the comma category (K # Inv) with the property

(P ) if f is an E-morphism, then F (f)$F (f) �= 1.

(b) The free Inv-object over K, with respect to the forgetful functor U :In!Kat is
a pair (Rel(K;E); G).

Proof . The functorG : K ! Rel(K;E) is universal between relational functor
from (K # Inv) with the property (P ) is for any relational functor F : K ! V; V
being an involutive category, there exists a relational functor F 0 :Rel(K;E) ! V
such that the diagram (2:12) commutes.

The functor F 0 de�ned by F 0[f; g] = F (f)$F (g) is well de�ned. For, if hs; ei :
(f; g) � (f 0; g0), then in the category A,

F 0[f; g] = F (f)$F (g) = F (f)$(eR)
$F (eR)F (g) = F (feR)

$F (geR) �=

�= F (f 0)$F (s)$F (s)F (g0) � F (f 0)$F (g0) = F 0[f 0; g0]:

Similarly, the converse relational is true, and, obviously, the de�nition doesn't
depend of the choice of representative. Since F 0[1; 1] = 1; F 0[g; f ] and F 0(G(f)) =
F (f), the diagram (2:12) commutes. It remains to prove that F 0 is an involutive
functor, namely,

F 0([f; g] � [h; k]) �= F 0(G(fp)$(kq)) �= F (fp)$F (kq)

�= F (f)$F (p)$F (q)F (k) �= F (f)$F (g)F (h)$F (k)

�= F 0[f; g] � F 0[fp; kq]

where (p; q; g; h) is the pullback square.

In terms of universal arrows, G : K ! V may be universal among relational
functors with a speci�c property in the comma category (K # Ivn). In that case,
it is possible to de�ne the retractive subcategory E of the category K, so that the
given involutive category V is isomorphic to the category of relations Rel (K;E).

2:13. Corollary. Let K be a category with pullbacks and F : K ! A the
relational functor which is universal among the functors in the comma category
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(K # Inv) with the property: If F (f)$F (f) �= 1 then H(f)$H(f) �= 1. Then,
there exists a retractive subcategory E of the category K and a unique isomorphism
A �=Rel (K;E) such that the diagram (2:14) it commutative if and only if the
following holds:

(PP ) If 1 < eF (f) for some E-morphism e, then F (f)$F (f) �= 1.

The proof is a routine matter if a retractive subcategory E of the category K iz
de�ned by E = ff 2 K : F (f)$F (f) �= 1g as in [3].

2:15. Examples . (a) In the abelian categoryM (e. g. the category of all R-modules)
one may de�ne the additive relations f : A! B to be the submodules of the direct
sum A+B (MacLane [6]). Taking inM a retractive subcategory Epi(M), the cate-
gory Rel(M , Epi(M)) is equal to the category of additive relation. Each f : A! B
inM determines the idempotens f$f and ff$ (where f$ is the converse of f) which
in MacLane's model [6] represent the subquotients Domf=Kerf and Imf=Kerf , so
that f may be called a graph if f$f � 1ff$ � 1. Clearly, for the relational embed-
ding functor G : M !Rel(M , Epi(M)); G(f) = [1A; f ]; G(f)

$G(f) �= 1 if and only
if f 2Epi(M), but for every f in M;G(f)$G(f) � 1 and G(f)G(f)$ � 1.

(b) It is clear that the category of topological spaces and continuous maps,
denoted by Top, has pullbacks and the subcategory of epimorphisms is a retractive
subcategory of Top. So, it is possible to construct the category of relations, Rel(Top,
Epi(Top)).

In the category of Hausdor�'s spaces and continuous maps, denoted by H ,
the subcategory Epi(H) doesn't satisfy the axiom (E3) for a retractive subcategory,

but, the class of all epimorphisms f such that any pullback (x̂; f̂ ; f; x) implies that
f is an epimorphism, is the largest retractive subcategory contained in Epi(H).
Denote that subcategory by E(H). The category Rel(H;E(H)) is well de�ned. In
both categories Top and H , the class of all regular epimorphisms is not a retractive
subcategory. Since the regular epimorphisms are coequalizers for some pairs of
morphisms, they are just the class of identi�cation maps and therefore they satisfy
axioms (E1) and (E2), but not (E3). The largest retractive subcategory Er con-
tained in the class of regular epimorphisms may be constructed and therefore the
categories Rel(Top, Er(TOP)) and Rel(H;Er(H)) of relations relative to Er are
well-de�ned. In both of them every relation [f; g] with the properties [f; g]�[g; f ] � 1
and [g; f ] � [f; g] � 1 is a morphism t in Top(i.e. in H) such that [f; g] = G(t), where
G is the corresponding graph-relational functor, G :Top!Rel(Toop, Er(Top)), i. e.
G : H !Rel(H;Er(H)). If such a relation [f; g] is called proper note that a proper
relation is not always a continuous map (since not every epimorphism is a regular
epimorphism), (see[3]).
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3. Relations by symmetrizations of categories. In the approach by
Conte [2] a category of relations for the given category K is viewed as the quo-
tient, by means of a suitable equivalence relation of a bigger involution category
containing K. This involution category, denoted by KM is called the maximum
symmetrization of K (it is a kind of quotient (\free") category (Brinkmann [1])
and any equivalence relation in KM compatible with composition and involution is
called a congruence.

3:1. A symmetrisation of a category K is de�ned as a pair (S; $) such that the
following conditions are satis�ed:

(S1) S : K ! A is a functor injective on the objects,

(S2) $ : A ! A is a contravariant endofunctor identical on the objects and such
that $$ �= 1A,

(S3) A is the last involutive subcategory containing S(K),

(S4) $S(u) �= S(u�1 for any K-morphism u.

The categories of relations constructed in Kawahara [3] and Klein [4] and also in
our approach may all be de�ned by congruences of the same kind, depending on
the choice of a subcategory of the considered category K. One of the conditions
is similar to the (RF1) (1:1) condition for the relational functor, and the other
one connects the arrows of two spans with the same end, whenever the natural
transformation with E-arrows is given between them. This last one is the Ore-like
condition (A) of Klein.

3:2. Let E be any subcategory of a category K. E de�nes the congruence =E of
KM spanned by the following two conditions:

(CE1) if (a0; b0; b; a) is a pullback in K, then S(b0)S(a0)$ =E S(a)$S(b);

(CE2) if there exists a natural transformation (1; f; 1) : (a; b)
�

! (a0; b0), with f an
E-morphism, then S(b)S(a)$ +E S(b0)S(a0)$.

3:3. For any category K, the symmetrization S(=E) : K ! KM= =E obviously
depends on the choice of a subcategory E.

3:4. Proposition. (a) if E =Iso(K), then the symmetrization induces by E is a
relational embedding functor G : K !Rel(K;E).

(b) Let E be a retractive subcategory of K. Then the equivalence relation �
de�ned in R(A;B) by (a; b) � (a0; b0) if and only if there exist E-morphisms e and
e0 such that (a; b)e = (a0; b0)e0, is compatible with composition and involution and
it is spanned by (CE2).

(c) For any retractive subcategory E of a category K, G > SE, where > is
preorder relation between symmetrizations of K (induced by congruences of KM).

Proof . (a) Since E =Iso(K), any morphism in Rel(K;E) is an equivalence
class [f; g] of spans modulo izomorphism. In both cases, composition is given by
pullback.
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(b) � is an equivalence relation compatible with composition and involution
by (E3). Let =E denote the relation spanned in KI by (CE2). It is implied by
� and so coincides with it. The second part is easy to prove by the fact that a
retractive subcategory contains all isomorphisms.

(c) For any retractive subcategory E from a category K the corresponding
symmetrization S : K ! KM= =E may be de�ned. If the congruences of KM are
considered as \parts" of KM � KM , a preorder relation, denoted by >, between
symmetrizations of K is induced. Obviously, E0 � E implies SE < SE0 , and, since
for any retractive subcategory E;E �Iso(K), SE < SIso(K) = G.

3:5. Examples . (a) (Conte [2], Kawahara [3]). The natural numbers N consid-
ered as a category with composition | ordinary multiplication of natural num-
bers, has pullbacks. For any, natural numbers m and n let j be the least com-
mon multiple of m and n. The square (j=m; j=n;m:n) is a pullback. Obviously,
N =Epi(N)=Mono(N) and so N is a retractive subcategory of N . The cate-
gory of relations for N is of the form Rel(N;N) with arrows|rational numbers
and composition|ordinary multiplicaton of rational numbers, as can easily be
proved expressing the equivalence relation =N in the following form: m = m0p
and n = n0p implies m=n =N m0=n0. This shows that any map of this category
NM= =N can be represented uniqely as a span (m;n) and a natural transformation

e : (m;n)
�

! (m0; n0) has components 1; p; 1 respectively.

(b) Let K has �nite products, E =Epi(K), and let F be a subcategory of KI

such that any functor (f; g) from KI has a factorization (f; g) = (f 0e; g0e) unique
up to isomorphism, where the functor (f 0; g0) is from the subcategory F and e
is from the category E. Then any map of Rel(K;E) has a uniquely determined
representation given by a functor from F . Clearly, the morphisms of this category
are the subobjects of the products.
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