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LARGE SUBALGEBRAS OF A BOOLEAN ALGEBRA

Slobodan Vujo�sevi�c �

Abstract. A subalgebra A of a Boolean algebra B is large (in B) if there exists a b 2 B

such that the algebra generated by the set A [ fbg is the whole algebra B. In this paper we give
a complete description of large subalgebras of a Boolean algebra.

We shall assume for this paper a basic knowledge of the theory of Boolean
algebras and Stone spaces and we shall freely use the Stone duality theorem (M.
H. Stone [4]). For every Boolean algebra B we shall denote its Stone space by SB.
The space SB is a compact, Hausdor� space whose domain SB is the set of all
ultra�lters of the Boolean algebra B. The base of the topology of SB is the family
of clopen sets of the form S(b) = fF 2 SB j b 2 Fg, for all b 2 B.

A proper subalgebra A of a Boolean algebra B is large (in B) if there exist a
b 2 B such that the algebra generated by A [ fbg, which we shall denote by A(b),
is equal to B. All the elements of A(b) are of the form (u ^ b) _ (v ^ bC), for some
u; v 2 A.

The inclusion map i : A ! B is a monomorphism of Boolean algebras and
its Stone dual, denoted by k : SB ! SA, is an epimorphism; actually a continous
surjection of toplogical spaces. Sets of the form k�1(x), where x 2 SA, will be
callded �bries over points of the Stone space SA. We shall say that a �bre is
nontrivial if it contains at least two points, and that points of SA are obtained by
identi�cation of points of their �bres. However, if b 2 B � A, then S(b) is not a
union of �bres. It is a non�bered set.

To get some acquaintance with the theory that will be used in this paper, we
shall mention the following result (D. Makinson [2]):

Lemma 1. If A is a subalgebra of a Boolean algebra B and b 2 B is such that

b 2 B � A, then there are two ultra�lters F and G of B such that b 2 F , bC 2 G

and F \A = G \ A.
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Proof . In terms of Stone spaces this means that there exists a point x 2 SA

such that the �bre k�1(x) contains at least two elements and S(b) meets k�1(x),
i. e. they have a nonempty intersection and k�1(x) is not a subset of S(b). This
exactly means that S(b) is a �bered set.

Since we are working with Stone spaces, the set k[S(b)] is compact and hence
closed. However, S(b) � k�1[k[S(b)]] and if it happent that two sets are equal then,
since k is onto, we should have k[S(bC)] = k[S(b)]C . This means that k[S(b)] � SA

is clopen and hence for some a 2 A; k[S(b)] = S(a), which means that a = b, but
this is a contraction. So, the inclusion S(b) � k�1[k[S(b)]] is proper and there
exists an x 2 SA such that S(b) itersects k�1(x) and k�1(x) is not a proper subset
of S(b). #

The following lemma shows that, in case of large subalgebras, every �bre has
at most two points.

Lemma 2. If A is a large subalgebra of a Boolean algebra B, then every

ultra�lter of A has at most two di�erent extensions to an ultra�lter of B.

Proof . In terms of Stone spaces, every �bre of a point of SA has at most two
points of SB.

Let b 2 B be such that A(b) =B. According to Lemma 1, it is enough to
prove that there are no two di�erent ultra�lters of B extending the same ultra�lter
of A and containing b 2 B.

If we assume that there are two di�erent ultra�lters F and G of B such that
b 2 F; b 2 G and A \ F = A \ G then there would be an a 2 B such that
a 2 F and aC 2 G. In that case, since A(b) = B, there exist u; v 2 A such that
a = (u ^ b) _ (v ^ bC) and so aC = (uC ^ b) _ (vC ^ bC).

Since aC 2 G and since, beeing an ultra�lter, G is a prime �lter, at least one
of the two disjuncts must belong to G.

If it is (uC ^ b), then uC 2 G. But b; a 2 F and (b ^ a) = (u ^ b) so that
u 2 F . Since u 2 A and F \A = G\A, this means that u 2 G which is impossible.

If (vC ^ bC) 2 G, then bC 2 G, and this is impossible too. #

However, the converse of Lemma 2 is not allways true. To see this we can
take the co�nite algebra of natural numbers and its subalgebra whose Stone space
is obtained by the identi�cation of points 2n and 2n+1, for all n 2 !. Since there
is no �nite or co�nite subset of ! intersecting all sets of the form f2n; 2n+1g. The
subalgebra mentioned above is not large and each of its ultra�lters has at most two
extensions to an ultra�lter of the co�nite algebra (see Theorem 2).

It is not immediately clear whether every Boolean algebra does have a large
subalgebra. This question was raised in [1]. That the answer is positive we shall
show in the next theorem. Before the theorem, let us observe that given a Boolean
algebra B and b 2 B, di�erent from zero or one, there allways exists a maximal
subalgebra of B not containing b 2 B. This it an immediate consequence of the
fact Boolean algebras are closed for the unions of chains.
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Theorem 1. Let B be a Boolean algebra, b 2 B, and A a maximal subalgebra

of B such that b 2 B �A; then A(b) =B.

Proof . Assume that A(b) 6=B and let a 2 B �A(b). According to Lemma 1,
there are ultra�lters F andG ofB such that a 2 F; aC 2 G and A(b)\F = A(b)\G.

We can suppose that b 2 F and b 2 G, for otherwise, we can work with bC ,
which doesn't change anything since A(b) =A(bC).

Let us observe that both (b^ a) and (b^ aC) are not elements of A. Since, if
it they were, then from (b^a) 2 A we should have (b^a) 2 G and so a 2 G, which
is impossible. From (b ^ aC) 2 A we should have aC 2 F which is impossible too.

Since A is a maximal subalgebra of B not containing b 2 B, we have that,
b 2 A(b ^ a) and b 2 A(b ^ aC). This means that there exist u1; v1; u2; v2 2 A such
that;

b = (u1 ^ (b ^ a)) _ (v2 ^ (b ^ a)C); b = (u2 ^ (b ^ aC)) _ (v2 ^ (b ^ aC)C)

or equivalenty

b = (u1 ^ b^ a) _ (v1 ^ a
C) _ (v1 ^ b

C); b = (u2 ^ b^ a
C) _ (v2 ^ a)_ (v2 ^ b

C):

Since b cannot contain anything from bC (recall the Stone representation
theorem) we have that (v1 ^ b

C) = 0 and (v2 ^ b
C) = 0 so that v1 � b and v2 � b.

From this we have

b = (u1 ^ b ^ a) _ (v1 ^ a
C); b = (u2 ^ b ^ a

C) _ (v2 ^ a):

The last equations give

(b ^ aC) = (v1 ^ a
C) � v1 � b; (b ^ a) = (v2 ^ a) � v2 � b

which �nally gives that b = v1 _ v2. But this is not possible since b 2 AC and
v1; v2 2 A. #

The maximality condition, of the type of Theorem 1, is not necessary for
the largeness of a subalgebra of a Boolean algebra. To see this is enough to take
the free Boolean algebra F (X) over the set X of at least two free generators.
Omitting one generator x 2 X and taking the free algebra over X �fxg we obtain
a subalgebra which is large in F (X) but is still far from beeing a maximal subalgebra
not containing x 2 X .

Theorem 2. A subalgebra A of a Boolean algebra B is large i� there exists

b 2 B such that every ultra�lter of A has at most two extension to an ultra�lter of

B and if such two extensions exist, then exactly one of them contains b 2B.

Proof . In terms of Stone spaces, A is large in B i� there exists s b 2 B such
that every �bre of SA is a two element set and S(b) meets every non-trivial �bre
in exactly one point.

If A is large in B, then there exists a b 2 B such that A(b) =B. Again,
we shall neglect the trivial cases. According to Lemma 2, every �bre of SA has
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shall neglect the trivial cases. According to Lemma 2, every �bre of SA has at
most two points. If there is a nontrivial �bre which is not intersected by S(b) in
exactly one point, we can assume that both points of that �bre belong to S(b). For
otherwise, they belong to S(bC) which is the same thing. This means that there
are two ultra�lters F and G of B such that b 2 F; b 2 G and A\F = A\G. Since
F and G are di�erent ultra�lters, there exists a c 2 B such that c 2 F and cC 2 G.
However, c 2 B does not belong to A. Since A(b) =B, there exist u; v 2 A such
that

c = (u ^ b) _ (v ^ bC):

But then we should have b^ c = u^ b so that u 2 F . Since F and G agree on A, we
have u 2 G. This means that (b ^ c) 2 G and so c 2 G, which is a contradiction.

To prove the converse, suppose A(b) 6=B. In that case, there would exist an
a 2 B which does not belong to A(b). This implies that there is an ultra�lter F of
A(b) which has two exstensions, say F1 and F2, to ultra�lter of B such that a 2 F1
and aC 2 F2.

If b 2 F , then we have two di�erent extensions F1 and F2 of the ultra�lter
A \ F of A both containing b 2 B, which is not possible.

If bC 2 F , then its extension to an ultra�lter of B can be none of F1 or F2. So,
the ultra�lter A \ F of A has three di�erent extensions and this is a contradiction
too. #

From Theorem 2, it is evident that large subalgebras arise from the iden-
ti�cation of points of Stone spaces, Namely, for given Boolean algebra B we can
construct a large subalgebra of B as follows:

Take a homeomorphism h : C ! D, where C;D � SB are closed sets sepa-
rated by a clopen subset of the Stone space SB. De�ne A such that A is the set of
all a 2 B for which the restriction of h to the set C\S(a) is still a homeomorphism
of sets C \ S(a) and D \ S(a). Actually, we have identi�ed closed sets C;D of SB
which gave us the Stone space of a large subalgebra of B.

In the example following Lemma 2, we have seen that the existence cf at most
two extensions of every ultra�lter of A is not suÆcient for the largeness of A in
B. It seems that for suÆciency, some kind of completeness condition is required.
The condition of relative completeness was already used by �Zarko Mijajlovi�c in the
discussion of �nite extensions of Boolean algebras (�Zarko Mijajlovi�c [3]). We recall
that a subalgebra A of a Boolean algebra B is relatively complete if for every set
S � A, the supremum of S exists in A i� the supremim of S exists in B and they
are equal. It is easy to see that A is relativelly complete in A(b).

Theorem 3. Let A be a complete subalgebra of a complete Booloean algebra

B. Then A is a large subalgebra of B i� every ultra�lter of A has at most two

extensions to an ultra�lter of B.

Proof. To prove the theorem it is enough to construct b 2 B such that S(b)
meets all nontrivial �bres over the points of the Stone space SA.
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First we claim that there exists a closed C � SB such that the restriction,
say h, of the projection k to C is a continuous surjection and:

(1) C is minimal in the sence that there is no D, closed proper subset of C,
such that the restriction of k to D is still surjective and

(2) h : C ! SA is a homeomorphism.

To prove (1) we consider the set P of all closed C � SB such that the
restriction of k to C is a surjection, ordered by inclusion. If L is a chain in P , the
intersection of every �nite subset of L (beeing totally ordered by inclusion) meets
every �bre of SA. Since �bres are compact sets, the intersection of the chain L

meets every �bre . Applying Zorn's Lemma downwards to the ordered set P we
obtain a minimal closed C such that the restriction of k to C is continuous and
surjective.

To prove (2) it is enough to show that h is one-one and this is the point where
the completeness of A comes in. We recall that beeing a complete Boolean algebra
means that the corresponding Stone space is extremally disconnected, that is, the
topological space in which the closure of every open set is clopen.

Suppose that x; y 2 C are distinct points such that h(x) = h(y) = z, for some
z 2 SA. Since C is a Hausdor� space, there exists a clopen U such that x 2 U and
y 2 UC . The set C is compact and h is a continuous surjection, so that the sets
h[U ]C and h[UV ]C are disjoint open sets in the extremally disconnected space SA.
This means that their closuers are clopen and disjoint. The complements of this
closures are clopen and their union is SA.

In particular, z 2 SA belongs to at least one of the last two sets, say z 2 V

and V = cl(h[UC ]C)C . The set W = U \ h�1[V ] is open and nonempty, since
x 2 W . From this we have that C �W is closed and the restriction of h to C �W

is still a surjection on a closed proper subset of C, contradicting the minimallity of
C.

Since h is a homeomorphism, C meets every nontrivial �bre of SA in exactly
one point and so does its complement B�C. It is clear that there exists a minimal
projection, say g : D ! SA, where D is a closed subset of SB, containg B�C and
intersecting all nontrivial �bres. The algebra B is complete, so that the closure of
B �C is a clopen subset of the Stone space SB and there exists a b 2 B such that
S(b) = cl(B � C). However, it is clear that S(b) meets every nontrivial �bre since
B � C � S(b) � D.#

The close the paper let us remark that we can easily generalise our result
of Lemma 2, to show that for all n 2 ! and all b1; . . . ; bn 2 B, A(b1; . . . ; bn) =
S implies that every ultra�lter of A has at most 2n di�erent extensions to the
ultra�lter of B. This can be the basis of an analysis of subalgebras that have a
�nite extension to the whole algebra (see [3]).

We have shown that in the case of Boolean algebras one can say quite a lot
about large subalgebras. However, large subalgebras can be de�ned for any kind
of algebras. In the case of distributive lattices, can we use prime �lters to say
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something about large sublattices? In the case of groups, even the maximality
condition, like that of Theorem 1, does not seem to be of any help.
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