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ORDER PRESERVING OR INCREASING MAPPINGS

FREEDOM OR INCOMPARABILITY PRESERVING MAPPINGS

-Duro R. Kurepa

Summary. One recalls the de�nitions of increasing, SI, (s. 2:0) ASI(s. 3:0) mappings of
ordered sets and introduces FP mappings (s. 4:0). Main theorems 2:2, 2:2:7, 3:1, 3:5:1, 4:8 are
established.

0. Introduction

0:0. In 1937:4 was introduced a very important notion of increasing (decreas-
ing) mappings between ordered sets accompanied by statements{solution of some
problems which were put earlier. At the same time were submitted the papers
1937:2, 1940:1, 1940:2, 1941:1, 1945:1, concerning ASI mapings (sf. no 3:0). It was
proved that every uncountable tree in which there exists a real strictly increasing
transformation is equinumerous to a free subset.

0:1. In the present paper analogous statements are proved for SI transformations
of trees into linearly ordered sets L. Almost SI transformations from T into L are
examined as well and in this area a very interesting theorem 3:5:1 is found showing
a great di�erence in the behavior of SI and ASI transformations of ordered sets.
In particular, the transfer of the main corolary 2:2:7 concerning SI transformations
to the statement 3:5. concerning ASI transformations T ! L has a postulational
character.

0:2. Terminology and notations are as in other author's papers. In particular, T
and L denote any tree and any chain (=linearly ordered set) respectively; unless
otherwise stated, T is assumed to be in�nite.

0:3. In particular the rank or the height 
T is de�ned as the �rst ordinal which
is not embeddable into T ; one has the fundamental partition T = [RiT; (i < 
T )
into rows or levels RiT of T ; one puts

0:4. mT : = sup pRiT; (i < 
T ); pX denotes the power (=cardinality) of X .
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0:5. (i)(E;�) is said to be degenerate or a d-set if for every x 2 E the coresponding
cone Ea : = E(�; a] [ E[a; �) is a chain; E[a; �) : = fx;x 2 E; a � xg; E(�; a] : =
(E;�)[a; �). The vacuous set is denoted by v or ?. If E is �nite or if (i) contains
a d-subset of power pE, we say that (i) is d-re
exive. A free subset of (i) is any
subantichain of (i). b(E;�) : = supfpD : D is degenerate in (E;�)g.

1. Generalities

1:0. Lemma. Every tree T satis�es pT � mT � p
T ; if T is in�nite, then pT =
mT � p
T and pT 2 fmT; p
Tg.

The proof is obvious.

1.1. Lemma. Let T be in�nite; If c is any cardinal number < pT , then T contains
a D-subset X such that pX = c.

Proof. By L. 1:0 one has pT = mT or pT = p
T . If pT = mT , then the
relations c < pT = mT and mT = sup pRiT (i < 
T ) imply that some i < 
T
satis�es pRiT � c. If c < pT = p
T , then for the �rst ordinal i < 
T such that
pi = c and for every x 2 RiT the left cone T (�; x) is a chain of power c.

1:1:1. Corollary. If T is in�nite, then bT = pT or pT = (bT )+; the former
holding for every limit pT .

1.2. Lemma. If (0) pT [x; �) < pT (x 2 T ), then is d-re
exive.

Proof . The disjoint partition (1) T = [T [x; �)(x 2 RT0) and (0) imply that
(2) pR0T = pT or at least (3) pR0 � cf pT : = n. If (2), everything is done; in
particular, if pT is regular, then necessarily (2) holds. Therefore, there remains
the case that pT is singular and that (2) does not hold; then n � pR0T < pT
and sup pT [x; �) = pT (x 2 R0T ); therefore, there exists a set A � R0T such
that pA = n and sup pT (a; �) = pT (a 2 A). Let (ai; i < n) be a well ordering
of A and (ki; i < n) an n-sequence of isolated stictly increasing cardinals such
that sup ki = pT thus also sup k�i = pT (i < n). Let b0 be the �rst ai such
that pT [ai; �) > k0; if for every 0 < j < n and every i < j a member bi of A
is determined such that pT [bi; �) > ki, let us de�ne also bj as the �rst member
in the well-ordering of A such that bj 6= bi(i < j) and (3) pT [bj; �) > kj . Of
course, bj exists; so by (trans�nite) induction we have an n-subsequence bj(j < n)
of the n-sequence ai(i < n) such that (3) holds. Now, in virtue of Lemma 1:1, the
relation (3) implies that (3)1 contains a d-subset Dj for every j < n; then the union
D : = [Dj ; (j < n), is a required d-subset of T such that pD = pT .

1:3. Lemma. If T is in�nite and mT > p
T , then T is equinumerous to a free
subset A.

Proof . Let U : = fx : x 2 T; pT [x; �) < pTg. If pU = pT , then (v. L. 1:2) T
is equinumerous to a free subset D. The equality pT = pD, the disjoint partition of
D into chains D[x; �)(x 2 R0D) and the relation pT = mT < p
T imply pR0D =
pD = pT . If pU < pT , then V : = TnU satis�es (0) pV (x; �) = mV = pV = pT
for every x 2 V . The case when mT (= mV ) is regular is settled like in the proof
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in no 1:2. If mV is singular, then some i < 
V satis�es pRiV � n; let then
A = (ai; i < n) be a subset of RiV of power n. Since mV (x; �) = pV = pT =
mT = mV = m(x 2 V ), for any �xed cardinal c < m there is a free subset A(x) in
V (x; �) such that pA(x) � c. By arguments like those in no. 1:2 one constructs the
free sets Di in V (ai; �) of power � ci, and the free subset D = [Ai � V such that
pD = mV = pT .

1:3:1. Corollary. If T is in�nite and pT > p
T , then T is equinumerous to a
free subset .

1:4. Lemma. If cf 
T 2 f1;@0g. then T is d-re
exive (cf. 1935:2,3 no. 11:2a)).

Proof . In virtue of 1:3 Lemma, it is suÆcient to settle the case when pT =
p
T and pRiT < pT (i < 
T ). In addition we can suppose, like in the proof of 1:3
Lemma, that the corresponding set U satis�es pU < pT . Thus V : = TnU satis�es
1:3:(0). Let �i(i < !) be a strictly increasing sequence of ordinals ! 
T . Let
xi 2 RiT; (i < !) be a strictly increasing sequence in T ; the existence of such a
sequence is obvious (by induction argument); then L : = [T (�; xi](i < !) is a chain
in T of power p
T (= pT ).

1:5. Remark . Unless stated otherwise, we shall assume in the sequel that pT =
p
T � @0 and that every subchain of T is < pT .

2. Increasing and strictly increasing mappings.

2:0. De�nition. Let ((E;�); (F;�F )) be a 2-un of ordered sets; every mapping
f : E ! F such that x � y[x < y] in (E;�) implies fx �F fy[fx <F fy] in
(F;�F ) is called increasing or orderpreserving [strictly increasing, SI, or strictly
orderpreserving mapping] from (E;�) into (F;�F ) (cf. Kurepa 1937:4, 1940:1,2,
1941:1, 1945:1). E. g. each constant automapping of (E;�) is increasing. For every
T the mapping x 2 T ! 
(x; T ) where x 2 R
(x;T )T is SI, from T onto the section
O[0; 
T ) of all ordinals < 
T ) It is interesting to notice the following.

2:1. Theorem. If there is a SI selfmapping f of an in�nite T into a subchain
L � T , then T is not only d-re
exive, but in addion T is equinumerous: to a free
subset A (case mT > p
T ) or to L (case mT � p
T ). Let Fi : = fFiT; ci =
inf Fi(i < 
T ); then ci < cj for i < j < 
T ; the set L0 = [T (�; oi]; (i < 
T ) is
a branch of T such that L0 \ RiT 6= v (i < 
T ). Although L is a universal chain
in T|for every chain K in T; f=K is an isomorphism of K onto the part fK of
L|L need not be a branch in T . The sets L;L0 and C : = foi : i < 
Tg are
co�nal.

Proof . First of all, if i < 
T; Fi is a nonempty part of the given wellordered
subset L of T ; therefore, ci is the minimal point of Fi. Let us prove that ci < cj for
i < j < 
T . As a matter of fact, let y 2 RjT such that fy = cj ; since i < j there is
a unique x 2 RiT such that x <T y and x 2 RiT ; thus ci �T fx <T fy = cj , and
ci <T cj ; C : = fci : i < 
Tg is a chain in T and its order type is 
T ; therefore,
in particular, (0) pT � pC = p
T and the well-ordered sets C;L; L0; O[0; 
T ) are
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pairwise order-isomorphic; therefore C;L; L0 are co�nal, i. e. if X;Y 2 fC;L; L0g
then X = [X(�; y]; (y 2 Y ).

What about pT ? Since T is in�nite, pT = mT or pT = p
T . If mT > p
T ,
then pT = mT and, in virtue of L. 1:3, T contains a free set A of power pT . If
mT � p
T , then (1) pT = p
T ; therefore (0) yields pT = pC = pL. This completes
the proof of 2:1 Theorem.

2:1:1. Corollary. An SI mapping f : T ! L � T exists if and only if T is
attained in the sense that T contains a chain intersecting every level of T.

2:2. Main Theorem. Let @� be any aleph and (L;�L) any ordered chain such that
the density (=separability) number dL equals @�. Every tree T of power pT > @�
such that there exists an SI mapping f of E into L contains a free subset mA of
power pT (for the case � = 0 see Kurepa 1937:4 Th. I, 1941:1 Th. 6).

The proof of 2:2, is implied by the following facts 2:2:0|2:2:6.

2:2:0. Lemma. If D is a d-subset of T of power pT, then A : R0D is a required
free subset A of T og power pT .

As a matter of fact, every summand a0 : = D[a; �) in D = [D[x; �); (x 2
R0D), is order-similar to the well-ordered subset fa0 of L; therefore pa0 � dL and
consequently (0) pt = pD � pR0D � dL.

Now, pR0D = pT . In the opposite case one would have pR0T < pT and
therefore pD < pT because both factors in the last term of the relation (0) are
< pT .

2:2:1. In virtue of Lemma 1:3 we may suppose that mT � p
T and sonsequently
(T being in�nite) pT = p
T . Now, T contains no chain C of cardinality p
T ,
because otherwise fC would be a well-ordered subset of L of power p
T = pT ; this
is impossible because every well-ordered subset of L is � dL < pT .

2:2:2. Let U : = fx : x 2 T; pT [x; �) < pTg. If pU = pT , then, by L. 1:2, U (and
a fortiori T ) is d-re
exive. If pU < pT , the tree V : = TnU is of power pT and
satis�es pV (a; �) = pV = pT; (a 2 V ). Therefore, there is no restriction to assume
that U =empty (it is suÆcient to change the notation to write T instead of TnU).
In order words, we have just proved the following.

2:2:3. Lemma. In order to prove the Main Theorem 2:2 it is suÆcient to prove
the statement 2:2 under the following conditions (0)|(4):

(0) pT = @� ; 
T = !�

(1) pRiT < pT (i < 
T )

(2) Every chain in T is < @� ;

(3) pT [x; �) = pT (x 2 T );

(4) There is an SI mapping f of T into a chain L such that dL = @� < pT
= @� .

2:2:4. Lemma. A consequnce of (0)|(3) is the following.
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(5) mT : = sup pRiT; (i < 
T ), is � n� : = (cf p
T )�.

As a matter of fact, if mT < n�, then, by Theor. 5 bis in 1935:2,3 p. 80, T
would contain a chain of power p
T , contrary to (2).

2:2:5. Lemma. T which satis�es (0)|(5) contains a free subset A0 of power
n : = cf p
T .

Proof . Let rj(j < !�) be a normal one-to-one well-order of a density base
S of L. Thus S is a subset of L of minimal power dS such that every non-empty
open interval of L contains a point of S. Let g be a mapping of T such that
gt 2 R1T (t; �)(t 2 T ); then obviously ft <L fgt (t 2 T ). For every j < !� let

(6) T j = ft : t 2 T; ft �L rj <L fg2tg.

Then T j 6= v 6= L(ft; fg2t)(t 2 T ) and

(7) T = [T j(j < !�).

I. First case: 
T is regular: n = @� . Since, by assumption (4), � > 0, the
partition (7) implies the existence of a j < !� such that

(8) pT j = pT .

Therefore it suÆcies to prove that T j contains a free set A0 of power n. If
some row R of T j has n points, it is suÆcient to put A0 : = R. Therefore, let us
suppose that pRiT

j < n(i < 
T j) and consequently

(9) 
T j = 
T = !� .

By induction procedure, we are going to de�ne a 1{1 sequence

(10) (ai; i < !� ) of incomparable points of T j such that 
ai(i < !� ), where
ai 2 R
aiT , is SI and ! !� and

(11) 
ai < 
gai < 
ai+1(i < !� ).

To start with, let a0 be a point in R0T
j . Let � be any ordinal such that

0 < � < !� and that the �-initial segment of (10) is de�ned in such a way that
the conditions (11) for i < � are satis�ed. Then we consider the ordinal � : =
sup 
ai(i < �); since � < n and since n is regular, one has � < n; therefore, the
level R�+2T

j is 6= � (cf. (9)). We denote by a� any point of this level. Consequently,
the induction procedure of the construction of (10) is going on for every i < !�
and the conditions (11) are satis�ed. Let us prove that the points g2ai(i < !� )
are incomparable. First, the !� -sequence 
g

2ai(i < !� ) is SI: if x < y < !� , then

g2ax < 
g2ay. Therefore, one does not have g

2ay � g2ax. One has

(12) g2ax � g2ay neither. In the opposite case, the relation (12) would be
possible and the point g2ay would be preceded by ay as well as by g

2ax. Therefore,
the points g2ax; ay would be comparable; now, for their ranks 
g2ax; 
ay, in virtue
of (12), one has (because x < y) 
g2ax < 
ay; therefore, the relation ay � g2ax is
excluded; one would have g2ax <T ay and fg2ax <L fay; the last inequality with
fay �L ry <L fg2y (cf(6)) would imply fg2ax �L ry, contrary to the de�ning
relation (6) for every element ax 2 T j .

II Second case: 
T = !� is singular: n < @� . Since by condition (4), dL =
@� < @� there is a regular @� < @� which is > n; dL; in particular, the tree
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X : = T j(�; !�) : = [RiT
j(i < !�) is a tree satisfying (0)|(4) with � instead of

� ; 
 is regualar; and the above �rst case of L. 2:2:5. applied to this set X yields an
antichain A0 in X � T j � T of power n. This proves L. 2:2:5 completely.

2:2:6. Final step in the proof of the Main Theorem 2:2. From the free subset
A0 � T of cardinality n : =cf pT it is easy to deduce a free subset A � T of
cardinality pT . If pT is regular, it suÆcies to put A : = A0. If pT is singular, let
A0 = (ai; i < !(n)) be a 1{1 well-ordering of the free subset A0 � T of cardinality n
(s. L. 2:2:5). Let (ci; i < !(n)) be an SI !(n)-sequence of cardinals < pT such that
sup ci = pT ; let bi 2 R!(ci)T (ai; �); then D : = [T (ai; bi)(i < !(n)) is degenerate
of power pT ; by L. 2:2:0 the �rst level R0D is a free subset of T of power pT as
was required in the Main Theorem 2:2. Q. E. D.

2:2:7. Main Corollary= Wording obtained from 2:2 on replacing \free subset A"
by\degenerate subset D".

3. Almost Strictly Increasing (ASI) Mappings.

3:0. De�nition. An increasing mapping f : (E;�E) ! (F;�F ) such that x 2
E; pE[x; �) > 1 implies pfE[x; �) > 1 is said to be ASI (Almost Strictly Increasing);
in other words, unless x is a terminal point of E there is some x <E y 2 E such
that fx <F fy. The notion was introduced at the same time when was introduced
the notion of increasing and strictly increasing [SI] mappings (s. De�nition 2:0).

Here is a theorem concerning a connection between ASI and SI mappings of
trees T on chains L.

3:1. Theorem. Let f : (T;�)! (L;�L) be ASI and

(0) Tf : = R0(T;�) [ R0(T;�) [ [
c
R0fy : C <T y 2 T&fC <L fyg, C

running through the class IT of all subchains of T .

(1) The set Tf is the most extensive subset X of T such that f j X is SI;

(2) Tf is co�nal with T , i. e. T = [T (�; x] (x 2 Tf).

Proof of (1). First, f is SI in Tf : if x < y in Tf , then fx <L fy in L. As a
matter of fact, fx �L fy. Now, since x; y 2 Tf and x < y, the set [T (�; t](t < y
such that ft <L fy) is a chain C; one has x 2 C < y and fC <L fy, thus fx <L fy.

Secondly, assume that there exists a subset X � T such that Bf �6= Tf
and that f j X is SI ; thus there would exist a point (3) x 2 XnTf . The point
x is neither initial nor �nal in T ; thus the chain T (f)(�; x) is 6= ?; the more is
T (�; x) 6= v; let C : = C(x) denote the most exstensive initial section of T (�; x) such
that C <L fx. The set Y of all points t 2 T such that C < t is well determined: so
is R0T as well. By de�nition of Tf this set is a part of Tf ; therefore, the unique
point x0 in R0Y which is < x is a well determined point in Tf , thus also in X .
Consequently, x0; x would be two points in X such that x0 < x. Since f is SI in
X; fx0 <L fx; therefore, by de�nition of C(x); x0 2 C, contrary to the fact C < Y
and in particular to the fact that C < x0 2 R0Y . This contradiction eliminates the
assumption (3) as false.
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Proof of (2): if t 2 T then some x 2 Tf satis�es t � x. First, if t is a
terminating point in T i. e. if t 2 R0(T;�). then by de�nition of Tf one has
t 2 Tf . If t 62 R0(T;�), then by de�nition of the ASI f there exists a y 2 T such
that t < y 2 T; fT <L fy; the �rst point x of the well ordered set T (t; y] for which
ft <L fx is a required member of Tf such that t � x. This �nishes the proof.

3:2. Theorem. Let f : T ! L be ASI; whenever pTf > dL, the set Tf is not only
d-re
exive but also equinumerous to a free subset of T (cf. 3:1(0)).

Proof . The d-re
exivity of Tf is implied by the Main Corollary 2:2:7 and
the Theorem 3:1. Thus there is a d-set D in Tf such that pTf = pD. We claim
that pD = pR0D. This is implied by the decomposition D = [D[a; �)(a 2 R0D)
of D into disjoint chains and the fact that each summand is � dL, whence one
has pD � pR0D � dL; therefore if pR0D < pD, the number pTf(= pD) would be
� the product of numbers pR0D; dL each � pTf , contrary to the hypothesis that
pTf > dL.

3:3. Theorem. Let f: T ! L be ASI and pT > dL; if pT is regular, then T is
equinumerous to a free subset.

Proof . Due to the decomposition 3:1:(2) one has cf pT � pTf (reall that by
remark 1:5 we assume that every chain in T is < pT ) i. e. pT = pTf and pTf > dL;
therefore, one can apply the Main Theorem 2:2 for the tree Tf and get a free subset
F of Tf � T such that pF = pTf = pT .

3:4. Theorem. Let T be a sequence-tree (i. e. 
T = 
T (t), where T (t) = T (�; t] [
T [t; �) for every t 2 T ); if f: T ! L is ASI and pTf > dL, then T is d-re
exive.

Proof . Since f is SI in Tf and since pT > dL, the Main Theorem 2:2
yields a free subset D of Tf such that pD = pTf . As above in 2:2:0 one proves
that pR0D = pD. On the other hand, the decomposition 3:1 (2) implies that
n : cf pT � pTf ; thus n < pR0D. Let A be any subset of R0D such that pA = n;
let �i : = !(cj)(i < n) be an n-sequence of ordinals ! 
T ; for every a 2 A let
b(a) 2 R�iT (a; �); then [b(a) (a 2 A) is a requered d-subset of T of power pT .

3:5. Proposition P49 is the statement obtained from the statement of the Main
Theorem 2:2 writing ASI instead of SI and a degenerate subset D instead of a free
subset A; thus

3:5:0. De�nition of P49. Let @� be any aleph and (L;�L) any linearly ordered set
such that the density number dL equals @�. Every tree T of power pT > @� such
that there exists an ASI mapping f : E ! L contains a degenerate subset D of
power pT .

3:5:1. Theorem. P49 and the RH (Rami�cation Hypothesis) are equivalent .

The implication RH ) P49 being obvious, let us prove the converse implica-
tion P49 ) RH .

1. If this implication were false, there would exist an in�nite tree S in which
evert d-subset is < pS; in particular every subchain and every free set of S would
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be < pS and necessarilly cf 
S > @0 (cf. no 11:3 pp. 108{109 Kurepa 1935:2,3; s.
also the above 1:4. Lemma).

2. Let S0 : = [Ri+1S(i < 
T ). Let La(a 2 S0) be an S0| un of disjoint
well ordered sets of order type � each, where � : = !(2pS) : = the �rst ordinal
of cardinality 2pS . Let Z : = S [ La(a 2 S0); we order Z in such a way that
Z(a�; a) : = La(a 2 S0) and that for incomparable points a; b in S one has 
(a; S) =

(b; S) ) LakLb in Z. Then one checks readily that Z is a tree such that 
Z =
�; mZ = mS = (p
S)�; in addition, S is co�nal to Z.

3. Z is not d-re
exive.

In the opposite case there would exist a d-subset D of Z such that pD = pZ
and pR0D � cf p
Z = cf p
S : = n. If then for every x 2 R0D one denotes by
gx a point of S such that x � gx, then the set A : = fgx; x 2 R0Dg would be an
antichain in S such thau (0) pA � n.

The last relation does not hold if 
S is regular because by de�nition of S
every antichain in S is of a power < p
S. The relation (0) holds neither if 
S is
singular because in this case one would establish (by usual procedure) a d-subset
A0 of [S[a; �)(a 2 A) such that pA0 = pS, i. e. S would be d-re
exive, contary to
the initial assumption.

4. On the other hand, let us de�ne a mapping f : Z ! L : = O[0; 
S) by
fx = 
(x; S)(x 2 S); fx = 
(a; S)(x 2 La; a 2 S0). One checks readily that f is
ASI in Z. In addition pZ = 2pS > pS = pL. Thus we should be allowed to apply
the statement P49 and conclude that Z would be d-re
exive, contrary to the fact
3. This contradiction proves the requered implication P49 ) RH .

4. Freedom (Incomparability or Antijoin) Preserving [FP] mappings
between ordered sets.

4:0. De�nition. A mapping f : (E;�E)! (F;�F ) is said to be FP provided xky
in (E;�E) implies fxkfy in (E;�F ).

Consequently, in every free subset A � E the FP mapping f is bijective; on
any chain L � E, f could be even constant.

4:1. Lemma. Let a(E;�) denote the system of all antichains of (E;�);
a(E;�) is monotone additive in the sense that for any linearly ordered subsystem
(M;�) of a(E;�) the union [M is an antichain.

The proof is straighforward because it a; b are 2 distinct points of [M let
A;B;2 M be such that a 2 A; b 2 B; then A � B thus fa; bg � B or B � A
thus fa; bg � A; consequently in either case, a; b belong to a member of M , and
therefore akb.

4:2. Lemma. The system a(E;�) contains various disjoint subsystems D such
that [D = [a(E;�) = E.

Proof . Such a system is the system of all singletons fxg(x 2 E). One can
proceed also in the following typical way. Let D0 be a maximal antichain in (E;�);
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let D1 be a maximal antichain in (EnD0;�); if disjoint antichains (1) Di(i < j)
are formed; let us consider the set (2) En [ Di(i < j); if (2) is v, then (1) is
a required disjoint system of antichains exhausting E; if (2) 6= v, let Dj be a
maximal antichains of (2). By induction procedure one gets in this way a maximal
sequence of disjoint nonempty antichains.

Similary one proves the following.

4:3.Lemma. The system l(E;�) of all chains of (E;�) contains various subsystems
of pairwise disjoint chians exhausting E; in particular, there is a disjoint system F
of chains exhausting F and such that pT = st(E;�) : = the least cardinal c such
that there exists a system F of subchains such that pF = n and [F = E.

Proof of the last phrase of the Lemma. Let G be a system of chains exhausting
E and such that pG = st(E;�). Let (0) gi(i < �) be a normal well-order of G. Let
h0 be a maximal chain � g0; assume 0 < � < � and that disjoint chains hi(i < �)
are formed such that hi � gni; let us de�ne h�: let gn� be the �rst member of (0)
such that gn� is not contained in (1) [gni(i < �); we denote by h� any maximal
chain L such that gn� � L � En(1). The procedure is going on for every � < �
because otherwise if it stopped for some 
 < �, the system of sets gni(i < 
) would
exhaust E and would be of a power < stE and this is a contradiction.

4:4. Theorem. Given ((E;�); (F;�F )), if (F;�F ) contains an antichain M of
power st(E;�), then there exists a freedom preserving mapping f of (E;�) into
(F;�F ) such that fE �M .

Proof . Let H be any disjoint system of chains exhausting E and such that
pH = stE; let h be a one-to-one mapping of H into M ; if fot every e 2 E we
de�ne fe : = h(eH) where e 2 eH 2 H , the mapping f j E is FP . As a matter
of fact, if akeb then a; b belong to distinct members aH; bH of H , thus h(aH) : =
fa; h(bH) = fb are distinct members of M .

4:5. Remark . All preceding considerations are transferable to binary graphs, where
\sub chain" should be replaced by \complete subgraphs".

4:6. Problem. Is it legitimate to replace in the wording of the theorem 4:4 the
phonem st(E;�) by ps(E;�)?

Let us examine this for trees.

If ps(T;�) is �nite, then ps = st(T ), and everything is O. K. If ps(T ) is
in�nite and attained then RH implies psT = st T and everything is O.K.

4:7. Statement TFPSFS (Tree FP Selfmapping into Free Subset): For any tree T
there is an FP selfmapping g into a free subset A of (T;�).

4:8. Theorem. TFPSFS is a consequence of the RH and is independent of the
usual axioms of the Set Theory.

Proof . According to the theorem 4:4, statement 4:7 holds for every tree T
containing a free subset M of power st(T;�). Now, the last condition is veri�ed if

T is �nite or countable. If 
T = !1, then st T = psT if and only if \The answer
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to the Suslin problem is aÆrmative" (s. 1963:3 Theor. 3:3); and one knows that
this answer SH (Suslin Hypothesis) is a postulate. On the other hand, TFPSPS
implies that the free number ps T is attained for every T ; (obviously, gT shoud be
an antichain of power ps T ). Now, the last fact is provable for every T for which
ps T is not a regular in�nite limit cardinal (cf. Kurepa 1987:1 Theor. 2:4). The
attainability of ps T for the case when ps T is regular limit non countable is implied
by the RH and in this case T is a union of ps T chains and one can apply the
theorem 4:4.

4:9. The dual of TFPSFS obtained by substitutions FPjSI, Free subset j chain does
not hold: it is violated each time when 
T is not attained (s. 2:1 Theorem, 2:1:1
Corollary). Such is the case e. g. for the tree w(Q;�) : = set of all well-ordered
subset of (Q;�) ordered by the relation \to be an initial segment of".

4:10. Remark . ASI [FP] mappings are a particular case of Chain [Antichain]
Preserving mapping carrying every chain [antichain]� (E;�) into a chain [an-
tichain]: one agrees that ? and every singleton are chains and antichains. In a
next paper we shall examine such transformations.
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