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PERFECT MATCHINGS IN A CLASS OF BIPARTITE GRAPHS

Ivan Gutman

Abstract. Some relations for the number of perfect matchings in a class of graphs are
established.

In this paper we consider undirected graphs without loops and multiple
edges. Let Ip = fi1; i2; . . . ; i2pg � f1; 2; . . . ; ng and ij < ij+1; j = 1; . . . ; 2p � 1.
Consider a graph G(n; Ip) having n vertices. These vertices are labeled by
1; 2; . . . ; n and the following edges exist in G(n; Ip) : (i; i + 1); i = 1; 2; . . . ; n �
1; (1; n); (ij ; i2p�j+1); j = 1; . . . ; p. It is further required that i2p� i1 < n�1 and
ip+1 � ip > 1, otherwise we would have to allow multiple edges in G(n; Ip).

The structure of G(n; Ip) is presented in Fig. 1. From Fig. 1 it is easy to
conclude that G(n; Ip) will be bipartite if n is even and i2p�j+1 � ij � 1 (mod 2)
for j = 1; . . . ; p.

If G is a graph possessing n vertices and n is even, then a perfect matching
M(G) ofG is a set of n=2 edges ofG, such that if (u; v) 2M(G) and (w; z) 2M(G),
then j fu; v; w; zg j6= 3.

The number of distinct perfect matchings of the graph G is denoted by k(G).

In this paper we establish several results for k(G(n; Ip)) when G(n; Ip) is bi-
partite. In the discussion which follows is always assumed that G(n; Ip) is bipartite.
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Theorem 1. If p = 1, then k(G(n; Ip)) = 3. If p = 2, then k(G(n; Ip)) =
[9 + (�1)i2�i1 ]=2. If p > 2, then k(G(n; Ip)) is uniquely determined by the ordered
sequence S = [S1; S2; . . . ; Sp�1] of symbols E (even) and O (odd), de�ned as

Sj =

(
E if ij+1 � ij � 0 (mod 2)

O if ij+1 � ij � 1 (mod 2):

In order to prove Theorem 1 we need an auxiliary result.

Let G be a graph and v1; v2; v3; v4 its distinct vertices, such that v1 and vi+1
are adjacent, i = 1; 2; 3; v1 and v4 are not adjacent, and v2 and v3 have degree two.
Let the graph H be obtained by deleting from G the vertices v2 and v3 and by
joining v1 and v4.

Lemma 1. k(H) = k(G).

Proof. We demonstrate a one-to-one correspodence between the perfect
matchings of G and H .

Let M 0(G) be a perfect matching of G containing the edge (v1; v2). Then
necessarily (v2; v3) 62 M 0(G); (v3; v4) 2 M 0(G). The corresponding perfect match-
ing of H is M 0(H) = M 0(G)nf(v1; v2); (v3; v4)g [ f(v1; v4)g. Note that (v1; v4)
belongs to M 0(H).

LetM 00(G) be a perfect matching of G not containing (v1; v2). Then (v2; v3) 2
M 00(G); (v3; v4) 62M 00(G). The corresponding perfect matching of H is M 00(H) =
M 00(G)nf(v2; v3)g. Note that (v1; v4) 62M 00(H).

Since any perfect matching of G is either of type M 0(G) or M 00(G), and
any perfect matching of H is either of type M 0(H) or M 00(H), the correspodence
described above is a bijection. �

Proof of Theorem 1 . For p = 1 and p = 2 the statement of Theorem 1 can
be easily veri�ed by direct checking. Therefore we focus our attention on the case
p > 2.

Denote by q = q(S) the number of times the symbol E occurs in the sequence
S.

As an immediate consequence of Lemma 1, whenever for some j = 1; . . . ; p�
1; p + 1; . . . 2p � 1 we have ij+1 � ij � 3, we can perform a \contraction" of
G(n; Ip) by reducing by two the number of vertices laying between ij and ij+1;
this transformation does not a�ect the value of k. Similar contractions can be
performed between ip and ip+1 provided ip+1 � ip > 3, and between i1 and in
provided i1 + n� in > 3.

Applying the contraction as many times as possible, we �nally arrive at the
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graph G(n�; I�p ) for which n� = 4p� 2q + 2; I�p = fi�1; i
�

2; . . . ; i
�

2pg and

i�1 = 2

i�j+1 � i�j = i�2p�j+1 � i�2p�j =

�
1 if Sj = E

2; if Sj = O
j = 1; 2; . . . ; p� 1

i�p+1 � i�p = 3

i�2p = n� � 1:

The contracted graph G(n�; I�p ) has the same number of perfect matchings as
G(n; Ip). On the other hand, it is clear that the structure of the graph G(n�; I�p ) is
fully determined by the sequence S. �

Bearing in mind Theorem 1, we shall denote the number of perfect matchings
of G(n; Ip) by k(S). The contracted graph corresponding to S will be denoted by
G(S).

A typical graph of the type G(S) is depicted in Fig. 2. Such graphs consist
of a linear array of squares and hexagons. The number of squares and hexagons is
q + 2 and p� q � 1, respectively.

Theorem 2. For i = 1; . . . ; p� 1 de�ne the matrices Xi as

Xi =

�
1 1
1 0

�
if Si = E; Xi =

�
2 �1
1 0

�
if Si = 0:

Then k(S) = 3(X1X2 . . .Xp�1)11 + 2(X1X2 . . .Xp�1)12.

Theorem 2 is equivalent to a result proved in [1]. We mention it for com-
pleteness, and because of its formal similarity with Theorem 3.

For p > 2 the sequence S can be presented as

S = [Ot0EOt1EOt2 . . .EOtp ] (1)

where ti � 0, and where use the convention OO = O2; OOO = O3; OOOO =
O4; . . . , and also EO0E = EE.

Theorem 3. Let the sequence S be of the form (1). For i = 0; 1; . . . ; q
de�ne the matrices Yi as

Yi =

�
ti + 1 1
1 0

�
:

Then k(S) = (Y0Y1; . . .Yq)11+(Y0Y1 . . .Yq)12+(Y0Y1 . . .Yq)21+(Y0Y1 . . .Yq)22:
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Denote the edges (1; n�) and (i�p +1; i�p +2) of the graph G(S) by e1 = e1(S)
and e2 = e2(S), respectively. Let further k11(S); k12(S); k21(S) and k22(S) denote
the number of perfect matchings of G(S), which contain respectively e1 and e2,
only e1, only e2, and neither e1 nor e2. Then

k(S) = k11(S) + k12(S) + k21(S) + k22(S): (2)

In order to deduce Theorem 3 we prove a somewhat stronger result. Denote
the matrix product Y0Y1 . . .Yq by Y(S).

Lemma 2.

Y(S)ij = kij(S); i; j 2 f1; 2g (3)

It is evident that Theorem 3 is an immediate corollary of Lemma 2 and eq.
(2).

Proof of Lemma 2. We make an iduction on q, the number of symbols E in
S.

First, if q = 0, then eq. (3) is easily veri�ed.

Consider now two sequences S0 and S00 of symbols E and O. Denote by S0�S00

the sequence in which the elements of S0 are followed by a symbol E and then by
the elements of S00. Suppose that eq. (3) holds for maxfq(S0); q(S00)g. Then

Y(S0 � S00) = Y(S0)Y(S00): (4)

In order to obtain the identity (4) we analyse the perfect matchings of G(S0�
S
00). The newly added symbol E in S0 � S00 corresponds to a square in the graph

G(S0�S00). Two of the four edges of this square lie on the boundary of G(S0�S00);
they are denoted by f1 and f2. The two additional edges, which do not belong to
the boundary, are denoted by f3 and f4; see Fig. 3.

Since we have resticed our consideration to bipartite graphs, it is not diÆcult
to see that a perfect matching of G(S0�S00) either contains both f1 and f2 or none
of them.
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We �rst examine those perfect matchings of G(S0 � S00) which contain both
of the edges e1 and e2 (see Fig. 3). Their number is k11(S

0 � S00). Among these
perfect matchings some contain f1 and f2, and some not.

Perfect matchings which contain f1 and f2 cannot contain f3 and f4. Ob-
serving that f3 = e2(S

0) and f4 = e1(S
00), we conclude that the number of such

perfect matchings is k11(S
0)k11(S

00).

For the same reason the number of perfect matchings which contain e1 and
e2, but not f1 and f2, is equal to k12(S

0)k21(S
00).

This gives
k11(S

0 � S00) = k11(S
0)k11(S

00) + k12(S
0)k21(S

00)

or, by taking into account the induction hypothesis,

k11(S
0 � S00) = Y(S0)11Y(S00)11 +Y(S0)12Y(S00)21:

This means that the relation

kij(S
0 � S00) = [Y(S0)Y(S00)]ij (5)

is valid for i = j = 1.

The remaining three relations of type (5) are deduced by using a completely
analogous reasoning. Hence (5) holds for i; j 2 f1; 2g.

If we choose the sequence S00 so that q(S00) = 0, then q(S0 � S00) = q(S0) + 1.
Therefore (5) implies that if (3) holds for sequences S possessing q symbols E, then
it will also hold for sequences possessing q + 1 symbols E.

This proves Lemma 2 and therefore also Theorem 3. �

Corollary 3.1. The numbers kij(S) obey the identity

k11(S)k22(S)� k12(S)k21(S) = (�1)p+1:

Proof . Corollary 3.1. is just another way to state that det Y(S) = (�1)p+1.
This latter relation follows from Y(S) = Y0Y1 . . .Yp and the obvious fact that
det Yi = �1; i = 0; 1; . . . ; q:�

Corollary 3.2. Cyclic permutations of the factors do not alter the trace of
the product Y = Y0Y1Y2; . . .Yq.

Proof . It is suÆcient to demonstrate that the above statement is true for
Y

0 = Y1Y2 . . .YnY0. Let t0 + 1 = a. Then

Y
0 = Y�1

0 YY0 =

�
0 1
1 �a

�
Y

�
a 1
1 0

�
and therefore, Y 0

11 = aY21+Y22; Y
0

22 = Y11�aY21. Hence, Y
0

11+Y 0

22 = Y11+Y22:�
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