
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 44 (58), 1988, pp.137{142

SYSTOLIC ARRAYS TO SOLVE ALGEBRAIC EQUATIONS

BY BERNOULLI'S METHOD

Octav Brudaru

Abstract. The paper presents three linear systolic arrays to solve algebraic equations by
Bernoulli's method. Two of them are able to execute the de
ation after the �nding of the real
root.

1. Introduction. Many systolic algorithms have been proposed in order to
solve problems in the �eld of numerical analysis (e.g. [1{4], [6{9], [12]).

This paper continues the work devoted to the design of systolic arrays to solve
nonlinear equations. In [3] we give a systolic implementation of the Lin-Bairstow
method and in [4] we propose a systolic network able to �nd zeros of a nonlinear
real function de�ned by an arithmetic expression whose systolic computation is
studied in [5].

In this paper we propose a systolic manner to �nd the real roots of polynomials
by using the Bernoulli's method. The simple and regular form of this algorithm
and the modest hardware requirements make it suitable for use in VLSI.

In Section 2 we outline the Bernoulli's method and give the basic systolic
array. In Section 3 we present two completed versions of the basic array, both
being able to execute the de
ation of the processed polynomial inside the network.

2. The basic systolic array. Our notation is taken from [11, p. 319]. Let
us consider the real coeÆcients polynomial p(x) = a0x

n + a1x
n�1 + � � � + an. If r

is the single dominant root of p then it may be the limxk=xk�1, for k tending to
in�nity, where (xk)k�1 is the solution of the di�erence equation of order n

(1) a0xk + a1xk�1 + � � �+ anxk�n = 0;

for the initial values xj = 0, j = 1; . . . ; n�1 and xn = 1. Without loss of generality
we can assume that a0 = �1 and thus (1) can be rewriten as

(2) xk = a1xk�1 + a2xk�2 + � � �+ anxk�n; k > n:

AMS Subject Classi�cation (1980): Primary 68D20.



138 Brudaru

As it is suggested in [10, pp. 226{227], we consider that rk = xk=xk�1 approaches
r if

(3) jrk � rk�1j � e and k � K;

where e and K are given. Let us take �r = rk for smallest k satisfying (3).

Further, the clock tick (CT) is the time to execute a division or both a
multiplication and an addition. The time is denoted by t and is the number of CTs.
Also, we assume that each processor is active during each CT. The processors used
to construct the basic systolic array (BSA) are depicted in Figure 1. They work so
that (a) zout(t+1) = zin(t) + axin(t), xout(t+1) = xin(t): (b) z(t+1) = x(t)=y(t);
(c) xout(t+ 1) = xin(t); (d) rc(t + 1) = (jx(t) � y(t)j � e).

We note that each of the processors (a) and (b) has a register able to keep
a value denoted by 'a' and 'e', respectively. The additional inputs to reset these
processors are omitted.

An obvious solution to the parallel evaluation of (2) is to use the two-way
pipeline algorithm presented by Kung in [6]. The resulted BSA is given in Fig. 2.

The register of the processor Pi keeps the coeÆcient ai of p, i = 1; . . . ; n.

If L is the label of an input or output of a processor then L(t) designates the
value circulating trought this during the t pulse number.

Let us analyse the work of BSA. The initial values are sent by the host to
BSA so that X1

in(t) = 0, t = 1; . . . ; n � 1 and X1
in(n) = 1. Therefore, it is clear

that xj enters Pi during j + i � 1 CT, while Zn
in(t) = 0, t � 1. During the n-th

CT, all initial values are inside of BSA so that X i
in(n) = xn+1�i, i = 1; . . . ; n.

The computation starts at this moment and gives Z1
out(n + 1) = xn+1. From that

moment the host does not emit so that only the values sent by Z1
out reach X

1
in, and

the computation continues so that a new value xk emerges from Z1
out at every CT.



Systolic arrays to solve algebraic equations by Bernoulli's method 139

Consequently, Z1
out(k) = xk, k = n + h and h � 1. Observe that because of D1,

xk and xk�1 enter simultaneously DP, thus r(k + 1) = rk . Because of D2, rk and
rk�1 enter C at the same time and rc(k+2) has the right value. This value is sent
to the host as a return code indicating that r(k + 1) approaches the root r. We
suppose that the host transmits at most K true values on the control path as soon
as x1 entres P1. As a consequence of the above analysis we can state.

Theorem 1. If X1
in(t) = 0, t = 1; . . . ; n� 1, X1

in(n) = 1, Zn
in(t) = 0, t � 1

then Z1
out(t) = xk, n < k � K. If there exists k0 so that k0 � K and rc(k0+2) = 1

then r(k0 + 1) = �r.

Let us remark that if k0 is de�ned as in Theorem 1, then BSA needs only
k0 CTs to �nd �r as compared with O(n(k0 � n � 1)) amount of time required
by the direct sequential algorithm (SA). Observe that BSA is more eÆcient if
k0 < cn (k0 � n � 1), i.e. k0 > n(n + 1)c=(cn � 1) for some positive connstant c
representing the time needed by SA to perform an inner-product step. We note
that it is reasonable to suppose that c � 1 CT. Observe that n(n+1)c=(cn� 1) �
n(n+ 1)=(n� 1) for each c � 1, and therefore k0 > n(n+ 1)=(n� 1) is a suÆcient
condition in order to have that BSA dominates SA.

3. Variants executing the de
ation. In this section we present two
variants of BSA able to execute the de
ation of the processed polynomial as soon
as a real root is found.

First we present a way to execute the de
ation with additional processors.
The processor used to do this is depicted in Figure 3(a). It works so that wout(t+
1) = win(t)uin(t) + din(t), uout(t + 1) = uin(t), t � 1, and is a variant of the
processor in Figure 1(a). Moreover, each Pi of BSA is modi�ed in order to change
the content of its register keeping the associated coeÆcient, by ading an input
(output) Ai

in(A
i
out) as it is shown in Figure 3(b).

The coeÆcients of the quotient are computed by using a linear systolic array
implementing the Horner's rule presented by Pam and Mostow in [9]. The obtained
systolic array, called BSAD1, is shown in Figure 4. The true value rc(k0+2) can be
used to control the work ofQi and the updating of the register of Pi, i = 1; . . . ; n�1.
Then delay processor D3 ensures that the value of r(k0 +1) and the control signal
arrive simultaneously at Q1. The work of BSAD1 during the de
ation stage is
described below. Let p(x) = q(x)(x � �r) where q(x) = �xn�1 + b1x

n�2 + � � � +
bn�2x + bn�1. After the de
ation, a new iteration starts with q instead of p, thus
we need b1; . . . ; bn�1. Let us take t0 = k0 + 2. If U1

in(t0) = �r, W 1
in(t0) = �1 and

A1
out(t0) = a1 thenQ1 computes b1 = (�1)�r+a1, setsW

1
out(t0+1) = A1

in(t0+1) = b1



140 Brudaru

and U1
out(t0 + 1) = �r. Thus during the t0 + 1 CT a1 is replaced by b1. Clearly,

U i
in(t0+i�1) = �r, i = 2; . . . ; n�1, and if Ai

out(t0+i�1) = ai thenW
i
out(t0+i) = bi,

i = 2; . . . ; n�1. We conclude that the de
ation is executed by BSAD1 in n�1 CTs
and the coeÆcients of q are already loaded in BSA after this time. A new iteration
can begin during the t0 +n� 1 CT or t0 +1 CT if we assume that a new iteration
starts as soon as the register of P1 is updated. In this last case, the de
ation and
the �rst iteration adressed to the de
ated polynomial are parallel.

Consequently, we can formulate

Theorem 2. The systolic array BSAD1 correctly executes the iteration (2)
for p(x) (with the same performances as BSA) and the de
ation (in n � 1 CTs).
The �rst iteration involving the de
ated polynomial q may begin with 3 CTs after
the moment at which a root of p(x) is found.

Observe that the application of Bernoulli's method can be extended from a
polynomial to its quotient as long as each new set of iterations terminates with the
�nding of a real root, and the process is executed entirely inside of BSAD1. Thus
BSAD1 eliminates the additional time wich could be needed by the host in order
to compute and broadcast the coeÆcients of q(x).

In order to eliminate the additional processors Q1; . . . ; Qm required by
BSAD1, we propose a new variant. In this variant, called BSAD2, Q1; . . . ; Qm

are eliminated with the price of a minor increasing of the complexity of each
Pi. The processor P 0 used to construct BSAD2 is depicted in Figure 5. It
works so that xout(t + 1) = xin(t), cout(t + 1) = cin(t), and if cin(t) = 0 then
zout(t + 1) = zin(t) + xin(t) a, otherwise (cin(t) = 1)wout(t + 1) = a + xin(t)win(t)
and R := wout(t+1), t � 1. The processor A(M) performs an addition (multiplica-
tion) while R is the register keeping a. The processor denoted by S is a two-input
multiplexor transmiting the input whose label is equal to cin(t). We suppose that
the sum of delays introduced by S, M and A does not exceeed one CT. The ar-
ray BSAD2 is presented in Figure 6. The subarray containing the processors C,
DP , D1 and D2 in Figure 2 and D2 in Figure 4 is conected to P 0

1 but it is not
drawn in Figure 6. We note that the computation of (2) moves from P 0

i to P 0
i�1,

i = n; n � 1; . . . ; 2, while just one true value sent by rc and entering C1
in suÆces

to move the front of the de
ation computation from P 0
i to P 0

i+1, i = 1; . . . ; n � 1.
Observe that P 0

n may be replaced by Pn because the de
ation stops at P 0
n�1.



Systolic arrays to solve algebraic equations by Bernoulli's method 141

It is clear that BSAD2 has all the performances of BSA and BSAD1 concerning
the response time and the period, but BSAD2 dominates BSAD1 because it requires
only n inner-product step processors. A statement similar to Theorem 2 can be
formulated in connection with BSAD2.

Also, we note that BSAD2 can be improve by using a single way instead of w-
way and z-way, because these ways are used in di�erent stages of the computation.

REFERENCES

[1] F. Andr�e, P. Frison, P. Quinton, Algorithmes systoliques: de la th�eorie �a la pratique, L'Onde
El�ectrique, 64 no. 615 (1984), 5{16.

[2] O. Brudaru, Systolic algorithms to solve linear systems by iteration methods, An. Stiint.
Univ. "Al. I. Cuza" Iasi, Sect. Ia Mat. 1 (1985), 301{306.

[3] O. Brudaru, Systolic arrays for polynomial quadratic factors computation, Proc. CompEuro
'87-VLSI and Computers, (Hamburg, May 1987), to appear.

[4] O. Brudaru, Systolic arrays for solving nonlinear equations by a noniterative method, An.
Stiint. Univ. "Al. I. Cuza" Iasi, to appear.

[5] O. Brudaru, Systematic synthesis of systolic arrays for some real functions computation,
in preparation.

[6] H.T. Kung, Let's design algorithms for VLSI systems, Tehnical Report CMU-CS-79-151,
Carnegie-Mellon Univ., Pittsburgh, 1979.

[7] H.T. Kung, Why systolic architectures?, Computer Magazine 15 (1982), 37{46.

[8] C.E. Lieserson, Area-EÆcient VLSI Computation, MIT Press, Massachusetts, 1983.

[9] M.S. Pam, J. Mastow, A transformational model of VLSI systolic design, Proc. IFIP 6th
Symp. Comput. Harwarde Descriptive Lang. Appl., Carnegie-Mellon Univ., Pittsburgh,
1983.



142 Brudaru

[10] J.R. Rice, Numerical Methods, Software and Analysis, McGraw-Hill, New-York, 1983.

[11] F. Scheid, Theory and Problems of Numerical Analysis, Schaum's Qutline Series, McGraw-
Hill, New York, 1968.

[12] J.D. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984.

Polytechnical Institute of Iasi (Received 23 04 1987)
Computer Centre
Splai Bahlui 63
66000-Iasi
Romania


