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SUFFICIENT CONDITIONS FOR UNIFORM CONVERGENCE

OF A CLASS OF SPLINE DIFFERENCE SCHEMES

FOR SINGULARLY PERTURBED PROBLEMS

Katarina Surla and Zorica Uzelac

Abstract. A family of spline di�erence schemes for singularly perturbed boundary value
problems is derived. The schemes have the �rst order of the uniform convergence. Numerical
results are presented.

1. Introduction. The cubuc spline di�erence scheme for the problem

Ly � "y00 + p(x)y0 = f(x); 0 < x < 1

y(0) = �; y(1)�

p(x) > 0;

(1.1)

when " = 1 was derived by Il'in [6]. In order to avoid the diÆculties relative to the
cell Raynolds number the exponentialy �tted factor a�ecting the highest derivative
was used by Surla [8]. So, the uniformly convergent spline di�erence scheme was
obtained. In both papers the spline function �(x) from C2[0; 1] was used.

Our object is to weaken the continuity conditions by taking �(x) 2 C1[0; 1]
and try to get a scheme with better accuracy and simpler form. In such way
the schemes in Section 2 are obtained. These schemes belong to the family of
exponentialy �tted schemes which are analysed in detail by Doolan, Miller, Schilders
[3] and Farrell [4]. One of them is well-known Allen-Southwell-Il'in scheme.

Using the approach of Kellog, Tsan [7] a complete error analysis is given in
Section 3. Some schemes wich belong to this family are analysed in [9].

Some new schemes and numerical results are presented in Section 4.

2. Derivation of the schemes. Let n be a positive integer and de�ne the
uniform mesh fxjg by xj = jh, j = 0; . . . ; n+1, where mesh lenght h = 1=(n+1).
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The spline �(x) on each interval Ij = [xj ; xj+1], j = 0; . . . ; n has the following
form:

�j(x) = �
(0)
j + (x� xj)�

(1)
j + (x � xj)

2�
(2)
j =2 + (x� xj)

3�
(3)
j =6; x 2 Ij :

�
(0)
j is the approximate value (to be determined) for yj = y(xj).

The unknown coeÆcients �
(K)
j , K = 0; 1; 2; 3, j = 0; . . . ; n will be determined

from the following conditions:

�j(x) satis�es, at the grid points xj and xj+1, the following comparison prob-
lem to the problem (1) with arti�cal viscosity ~�j(x) (�(x) will be determined):

~L~y(x) � ~�(x)~y00(x) + ~p(x)~y0(x) = ~f(x) ~y(0) = �; ~y(1) = �; x 2 [0; 1];

~�(x), ~p(x) and ~f(x) are approximations to �(x), p(x) and f(x) respectively,

�0(0) = �; �n(1) = �; �(x) 2 C1[0; 1]:

From the conditions above we can form the system of 4n+ 4 equations with
4n+ 4 unknowns:

~L�j(x)x=xj =
~fj(x)x=xj ;

~L�j(x)x=xj+1 =
~fj(x)x=xj+1 ;

�j(x)x=xj+1 = �j+1(x)x=xj+1 ;

�0j(x)x=xj+1 = �0j+1(x)x=xj+1 ;

�0(0) = �; �n(1) = �:

j = 0; . . . ; n;

j = 0; . . . ; n;

j = 0; . . . ; n� 1;

j = 0; . . . ; n� 1;

(2.1)

When ~�(x), ~p(x) and ~f(x) are piecewise constant approximations to �(x),
p(x) and f(x) respectively ( ~p(x) = ~pj�1 for x 2 Ij�1, etc.), then the system (2.1)
on the interval Ij�1 has the following form:

~�j�1�
(2)
j�1 + ~pj�1�

(j)
j�1 =

~fj�1;

~�j�1(�
(2)
j�1 + h�

(3)
j�1) + ~pj�1(�

(1)
j�1 + h�

(2)
j�1 + h2�

(3)
j�1=2) =

~fj�1;

�
(0)
j�1 + h�

(1)
j�1 + h2�

(2)
j�1=2 + h3�

(3)
j�1=6 = �(0);

�
(1)
j�1 + h�

(2)
j�1) + h2�

(3)
j�1=2 = �

(1)
j :

By expressing �
(2)
j�1 from the �rst equation and �

(3)
j�1 from the second equation, the

third and the fourth equations have the following form:

�
(0)
j = �

(0)
j�1 + ~
j�1�

(1)
j�1 +

~Sj�1 ~fj�1; (2.2)

�
(1)
j = ~Aj�1�

(1)
j�1 + 2h ~fj�1=(2~�j�1 + h~pj�1) (2.3)

where

~Aj�1 =
2~�j�1 � ~pj�1h

2~�j�1 + ~pj�1h
; ~Sj�1 =

h2(6~�j�1 + ~pj�1h)

6~�j�1(2~�j�1 + ~pj�1h)
; ~
j�1 =

h(12~�2j�1 � ~p2j�1h
2)

6~�j�1(2~�j�1 + ~pj�1)h
:
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On the interval Ij we have:

�
(0)
j+1 = �

(0)
j + ~
~�

(1)
j + ~S ~fj ; (2.4)

�
(1)
j+1 =

~Aj�
(1)
j + 2hfj=(2~�j + h~pj) (2.5)

From (2.2) we get

�
(1)
j�1 = (�

(0)
j � �

(0)
j�1 �

~Sj�1 ~fj�1)=~
j�1 (2.6)

and from (2.4)

�
(1)
j = (�

(0)
j+1 � �(0) � ~Sj ~fj)=~
j (2.7)

By putting (2.7) and (2.6) into equation (2.3) we get the following di�erence
scheme:

~Aj�1

~
j�1
��

(0)
j�1�

�
~Aj�1

~
j�1
+

1

~
j

�
�
(0)
j +

1

~
j
�
(0)
j+1 =

~Sj

~
j
~fj+

�
2h

2~�j�1 + h~pj�1
�

~Aj�1
~Sj�1

~
j�1

�
~fj�1:

(2.8)

We can see that scheme (2.8) is a member of the family of implicit di�erence
schemes wich have the form:

~R�
(0)
j = ~Q ~fj ; j = 1; 2; . . . ; n (2.9)

where

~R�
(0)
j � ~r�j �

(0)
j�1 + ~rcj�

(0)
j + ~r+j �

(0)
j+1

~Q ~fj � ~qj ~fj�1 + qcjfj + ~q+j
~fj+1:

The local truncation error �j(g(x)) of scheme (2.9), for an arbitrary, suÆ-
ciently smooth, function is de�ned by

�j(g) = ~Rg(xj)� ~Q(~Lg(xj)) (2.10)

The following lemma from Berger et al. [2] gives properties of the exact
solution of (1.1) wich we take into account in derivation of the �tting factor �(x).

Lemma 2.1 Let p(x) 2 C3[0; 1]. Then the solution of (1) can be writen in

the form y(x) = u(x) +W (x) where

u(x) =
"y0(0)

p(0)
� exp

�
�p(0)x

"

�
(2.11)

jW
(i)
(x)j �M(1 + "�i+1 exp(�2Æxj=")); i = 0; 1; 2; 3; 4:

M and Æ are constants independent of ".
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The �tting factor �(x) we shall �nd from the condition that truncation error
(2.10) for function u(x) (2.11), when p(x) = p = const, will be equal to zero. In
that way the error in
uenced by the boundary layer function is diminished.

Lemma 2.2. Let p(x) = p = const in equation, (1.1) then �j(u) = 0 for

~� = hp
2 cth

hp
2" .

Proof. For p(x) = p = const we have:
~r
j�

~r
j+

= ~r�

~r+ = ~A = ~!�1
~!+1 = ehp=" where

~! = cth (hp=2"). As Lu(x) = 0 it easy to see that, �j(u) = 0.

For p(x) 6= const, ~�j(x) is de�ned in the following form:

~�j = h~pj ~!j=2; x 2 Ij ; where ~!j = cth (h~pj=2") (2.12)

Now, the coeÆcients of scheme (2.8) have the following form:

~r�j =
3~!j�1(~!j�1 � 1)

h(3~!2j�1 � 1)
; ~r+j =

3~!j(~!j + 1)

h(3~!2j � 1)
;

~rcj = �~r�j � ~r+j ; ~q+j = 0 (2.13)

~q�j =
3~!j�1 � 1

2~pj�1(3~!2j�1 � 1)
; ~qcj =

3~!j + 1

~pj(3~!2j � 1)

The choice of approximation to p(x) and f(x) determines the particular
scheme.

Choosing ~pj = ~pj�1 = pj , ~fj = ~fj�1 = fj scheme (2.13) becomes the scheme

of the form R�
(0)
j = Qfj where

r�j = pj(!j � 1)=2h; r+j = pj(!j + 1)=2h; rcj = �r�j � r+j ;

q�j = q+j = 0; qcj = 1; !j = cth (hpj=2"):
(2.14)

This is precisely the Allen-Southwell-Il'in �nite di�erence scheme. It was
proved by Il'in [5], Kellog & Tsan [7] that this method has the �rst order of the
uniform convergence at the nodes. So, the spline di�erence method (2.14) also must
be uniformly convergent of the �rst order at the nodes.

Choosing ~pj�1 = (pj�1 + pj)=2, ~pj = (pj + pj+1)=2, ~fj�1 = (fj�1 + fj)=2,
~fj = (fj+fj+1)=2 the corresponding implicit di�erence scheme has the coeÆcients:

r�j =
3!j�1(!j�1 � 1)

h(3!2j�1 � 1)
; r+j =

3!j(!j + 1)

h(3!2j � 1)
; rcj = �r�j � r+j ;

q�j =
3!j�1 � 1

2~pj�1(3!2j�1 � 1)
; q+j =

3!j + 1

2~pj(3!2j � 1)
; qcj = q�j + q+j :

(2.15)

This scheme is analysed in [9].
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For the family (2.13) the following theorem holds.

Theorem 2.1. Let f�
(0)
j g, j = 0; 1; . . . ; n + 1 be the approximation to the

solution y(xj) of (1.1) obtained using (2.13). Let p(x), f(x) 2 C3[0; 1],

~pj = p(xj) + C0h; ~fj = f(xj) + C1h; (2.16)

then

j�
(0)
j � y(xj)j �Mh (2.17)

where C0, C1 and M are constants independent of " and mesh length h.

3. Proof of the uniform convergence. In this section we will prove
Theorem 2.1. The proof is based on the comparison functions method developed
by Kellogg & Tsan [7] and Berger et al. [2]. This method uses the following two
lemmas:

Lemma 3.1. Let fVjg be a set of values at the grid points fxjg, j = 0; . . . ;

n + 1 satisfying V0 � 0, Vn+1 � 0 and ~RVj � 0, j = 0; . . . ; n. Then Vj � 0 for

j = 0; 1; . . . ; n+ 1.

Lemma 3.2. If K1(h; ") � 0 and K2(h; ") � 0 are functions that satisfy:

R(K1(h; ")'j +K2(h; ") j) � R(�zj) = ��j(y) where zj = yj � �
(0)
j ; then jzj j �

K1(h; ")j'j j+K2(h; ")j j j.

As in Berger et al. [2] we use two comparison functions 'j = �2 + xj and
 j = � exp(�xj=") = �(�(�))j , where �(�) = exp(��h=a); � > 0 will be chosen
appropriately.

Troughout the paper let Æ, M , M1, . . . , denote positive constants that may
take di�erent values in di�erent formulas, but that are always independent of " and
h.

Lemma 3.3. There are constants M1 and M2 such that for h � M1, 0 <
� < M2 and j = 1; . . . ; n the following holds

~R'j �Mh="; h � " (3.1)

~R'j �M; " � h (3.2)
~R j �M�j(�)h="2; h � " (3.3)
~R j �M�j(�)=h; " � h (3.4)
~R j=�(�) �M�j�1(�)=h; " � h: (3.5)

The proof of the Lemma 3.3 is similar to the proof of the coresponding lemma
in [9].

Now we will consider the truncation error of the schemes (2.13) under the
conditions (2.16).

Lemma 3.4 Let (2.16) hold; then for the truncation error (2.10) for family

of the scheme (2.13) we get the following estimates:
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j�j(y)j �M(h+ exp(�Æxj�1=")); j = 1; . . . ; n for " � h;(3:6)

j�j(y)j �M(h2="+ h2"�2 exp(�Æxj=")); j = 1; . . . ; n for h � ";(3:7)

Proof. From (2.10) we have

�j(y) = ~R(yj � �
(0)
j ) = ~Ryj � ~Q(Lyj + O(h)) = ~�j(y) +N

where
jN j �Mh2=max(h; "); ~�j(y) = ~Ryj � ~Q(Lyj):

For y(x) suÆciently smooth, the standard Taylor development of ~�j for �xed
" has the form:

~�j(y) = T0yj + T1y
0

j + T2y
00

j � ~r�j R2(xj�1; xj ; y) + ~r+j R2(xj ; xj+1; y)

+ "~q�j R0(xj�1; xj ; y
00)� pj�1~q

�

j R1(xj�1; xj ; y
0);

where

Rn(a; b; g) = g(n+1)(�)
(b� a)n+1

(n+ 1)!
=

1

n!

Z b

a

(b� s)ng(n+1)(s)ds; � 2 (a; b):

When it is clear from the context, the subscripts in ~r�j ; . . . ; ~q
+
j will be omitted.

Since ~�j(y) = ~�j(u) + ~�j(W ), (see Lemma 2.1), we will estimate ~�j(u) and
~�j(W ) separately.

Since T0 = T1 = 0 we shall estimate T2 and the remainder terms.

T2 = h2(~r� + ~r+)=2 + pj�1h~q
� � "(~q� + qc): (3.8)

Since 1 � ~! �M max("=h; 1) from (3.8) and Lemma 2.1 we get

jT2W
00j �Mh; for " � h: (3.9)

In the case " � h consider the remainder term Yj � pi�1~q
�R1(xj�1; xj ;W

0) (the
others being similar).

jYj j = j~q�pj�1(R0(xj�1; xj ;W
0) + hW 00(xj))j

�M

Z xj

xj�1

(1 + "�1 exp(�Æs="))ds+ h(1 + "�1 exp(�Æxj=")):

So
jYj j �M(h+ exp(�Æxj�1=")); j � 1; . . . ; n for " � h: (3.10)
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From (3.9) and (3.10) we get

j~�j(W )j �M(h+ exp(�Æxj�1=")); for " � h: (3.11)

Let us consider now the case h � ". For p(x) = ~p = ~pj�1 = ~pj = const it is easy to
see that jT2j �Mh2=max(h; ").

When p(x) 6= const we will expand T2 at ~�j�1 = pj�1h=(2"). Let ~r� =
~r�(~�j�1), ~r

+ = ~r+(~�j), ~q
� = ~q�(~�j�1), ~q

c = ~qc(�j) then T2 = A1+A2+A3, where

A1 = h2=2 � (~r�(~�j�1) + ~r+(~�j�1)) + ~pj�1h~q
�(~�j�1)� "(~q�(~�j�1) + ~qc(~�j�1));

A2 = h2=2 � (~r+(~�j)� ~r+(~�j�1)) + h(pj�1 � ~pj�1)~q
�(~�j�1);

A3 = "(~qc(~�j�1)� ~qc(~�j)):

The expression A1 has the same form as T2 for p(x) = ~pj�1 = const, so
jA1j �Mh2=max(h; "). After some algebraic computation we get

jT2W
00j �M

h2

max(h; ")
(1 + "�1 exp(�2Æxj=")); (3.12)

and that the remainder terms are bounded by

Mh2(1 + "�2 exp(�2Æ�=")); xj�1 � � � xj+1: (3.13)

From (3.12) and (3.13) we conclude that

j~�j(W )j �Mh2"�1(1 + "�1 exp(�Æxj=")) for h � ": (3.14)

Let us estimate �j(u). From Lemma 2.2 we have ~�j(u) = ~�j(u)��j0(u), where
�j0(u) denotes the truncation error for p(x) = p(0) = ~pj�1 = ~pj = const.

~�j(u) = (T2 � T20)u
00

j � (~r� � r�0 )R2(xj�1; xj ; u)

+ (r+ � ~r+0 )R2(xj ; xj+1; u) + "(~q� � q�0 )R0(xj�1; xj ; u
00)

� (pj�1q
� � p(0)~q�0 )R1(xj�1; xj ; u

0)

Computing some Taylor expansions we get the estimate

jT2 � T20ju
00

j �M(h4xj="
3 + h2)"�2 exp(�p(0)xj=")

�Mh2"�2 exp(�Æxj=") for h � ":

The remainder terms are bounded by h2"�2 exp(�Æxj=") for h � ", thus

j~�j(u)jMh"�2 exp(�Æxj=") for h � ": (3.16)
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For " � h we get jT2 � T20ju
00

j �M exp(�Æxj=").

Since j~q� � q�0 j �M(xj�1 +O(h))"�1 exp(�Æh=") we have that

jpj�1~q
� � p(0)q�0 jR1(xj�1; xj ; u

0) �M exp(�Æxj�1="):

The estimates for the other remainders in (3.15) are similar. Thus

j�j(u)j �M exp(Æxj�1=") for " � h: (3.17)

and the proof of Lemma 3.4 is completed.

Now we can prove the main Theorem 2.1. Using estimates from Lemma 3.2
and Lemma 3.4 by Lemma 3.2 we get that (2.17) holds.

4. Numerical results. We consider the following simple problem of type
(1.1):

"y00 + y0 = x; y(0) = y(1) = 0; (4.1)

which has the solution

y(x) = ("� 1=2)(1� exp(�x="))=(1� exp(�1="))� "x+ x2=2:

The numerical results for the problems above obtained by (2.15) are presented
in [9]. In this paper we present the numerical results obtained by the following
schemes:

I: Choosing

~pj�1 = p(xj � h=2) � pj�1=2;

~pj = p(xj + h=2) � pj+1=2;

~fj�1 = f(xj � h=2) � f�1=2;

~fj = f(xj + h=2) � fj+1=2

(2.13) becomes ~r�j �
(0)
j�1 + rCj �

(0)
j + r+j �

(0)
j+1 = q�j fj�1=2 + q+j fj+1=2 where

r�j =
3!j�1=2(!j�1=2 � 1)

h(3!2j�1=2 � 1)
; r+j =

3!j+1=2(!j+1=2 + 1)

h(3!2j+1=2 � 1)
; rCj = r�j + r+j ;

q�j =
3!j�1=2 � 1

pj�1=2(3!
2
j�1=2 � 1)

; q+j =
3!j+1=2 + 1

pj+1=2(3!
2
j+1=2 � 1)

:

II: Choosing ~pj�1 = pj�1, ~fj�1 = fj�1, ~pj = pj+1, ~fj = fj+1, (2.13) becomes the

scheme of the form R�
(0)
j = Qfj , where

r�j =
3!j�1(!j�1 � 1)

h(3!2j�1 � 1)
; r+j =

3!j+1(!j+1 + 1)

h(3!2j+1 � 1)
; �rcj = r�j + r+j ;

q�j =
3!j�1 � 1

pj�1(3!2j�1 � 1)
; q+j =

3!j+1 + 1

pj+1(3!2j+1 � 1)
; qcj = 0:
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III: Choosing ~pj�1 = pj�1, ~fj�1 = fj�1, ~pj = pj , ~fj = fj , (2.13) becomes the

scheme of the form R�j(0) = Qfj , where

r�j =
3!j�1(!j�1 � 1)

h(3!2j�1 � 1)
; r+j =

3!(!j + 1)

h(3!2j � 2)
; �rcj + r+j ;

q�j =
3!j�1 � 1

pj�1(3!2j�1 � 1)
; qcj =

3!j + 1

pj(3!2j � 1)
; q+j = 0:

The numerical results are presented in Tables 1 { 3; table summarizes the
results of applications of a particular scheme. For each scheme the mesh length
h = 1=I was succesively halved starting with I= 16 and ending with I= 1024. The

maximum error at all the mesh points E1 = maxj jyj � �
(0)
j j is listed under E1.

The numerical rate of convergence is determined as in Doolan et al. [3]: rate�

(lnZK;" � lnZK+1;")= ln 2 where ZK;" = max j�
h=2K

j � �
h=2K+1

j j, K = 0; 1; 2; 3; 4,

and �h=2
K

denotes the value of �
(0)
j at the mesh point xj for the mesh length h=2K .
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