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SUFFICIENT CONDITIONS FOR UNIFORM CONVERGENCE
OF A CLASS OF SPLINE DIFFERENCE SCHEMES
FOR SINGULARLY PERTURBED PROBLEMS

Katarina Surla and Zorica Uzelac

Abstract. A family of spline difference schemes for singularly perturbed boundary value
problems is derived. The schemes have the first order of the uniform convergence. Numerical
results are presented.

1. Introduction. The cubuc spline difference scheme for the problem

Ly=cy" +p(x)y’ = f(x), 0<z<l1
y(0) =, y(1)p (1.1)
p(z) >0,

when £ = 1 was derived by II'in [6]. In order to avoid the difficulties relative to the
cell Raynolds number the exponentialy fitted factor affecting the highest derivative
was used by Surla [8]. So, the uniformly convergent spline difference scheme was
obtained. In both papers the spline function v(z) from C?[0, 1] was used.

Our object is to weaken the continuity conditions by taking v(x) € C1[0,1]
and try to get a scheme with better accuracy and simpler form. In such way
the schemes in Section 2 are obtained. These schemes belong to the family of
exponentialy fitted schemes which are analysed in detail by Doolan, Miller, Schilders
[3] and Farrell [4]. One of them is well-known Allen-Southwell-I'in scheme.

Using the approach of Kellog, Tsan [7] a complete error analysis is given in
Section 3. Some schemes wich belong to this family are analysed in [9].

Some new schemes and numerical results are presented in Section 4.

2. Derivation of the schemes. Let n be a positive integer and define the
uniform mesh {z;} by z; = jh, j =0,... ,n+1, where mesh lenght h = 1/(n+1).
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The spline v(z) on each interval I; = [z;,zj11], j = 0,...,n has the following
form:

vi(z) = 1/](-0) +(x — CEj)V](-l) +(x — xj)2yj(-2)/2 +(x — :Uj)31/](-3)/6, x € I;.

VJ(-O) is the approximate value (to be determined) for y; = y(z;).

The unknown coefficients V](.K), K=0,12,3,7=0,...,n will be determined
from the following conditions:

vj(z) satisfies, at the grid points 2; and 241, the following comparison prob-
lem to the problem (1) with artifical viscosity ;(x) (o(x) will be determined):

Lj(z) =6 (x)j" (z) + B(2)§'(z) = f(x) 5(0)=a, §(1)=0, ze€[0,1],
5(z), p(z) and f(z) are approximations to o(z), p(z) and f(z) respectively,
ao(0) =v, wa(1) =4, v(z)eC'0,1].

From the conditions above we can form the system of 4n + 4 equations with
4n + 4 unknowns:

Lvj(2)o=a; = Jj(2)a=a; i=0,....n,

Lvj(®)s=a,;,, = fj(m)zszu J=0,...,n,

Vi () sz;r = Vjs1 (T)omayans G =0pereym—1, (2.1)
1/(3:) z]H—VJH( Je=aj41s J=0,...,m—1,
w(0) =a, vp(l) =4.

When &(z), p(z) and f(z) are piecewise constant approximations to o(z),
p(x) and f(z) respectively ( p(z) = pj—1 for & € I;_4, etc.), then the system (2.1)
on the interval I;_; has the following form:

Gj—1V ()1 +pj- 11/(71—f] 15

611 (v + h?)) - 1+ R 2) = fi
O+ D+ n2? 24+ 130, 16 = 0O,
1/](-1_)1 + hl/](._)l) + h21/j_1/2 = 1/](.1).
By expressing y](.i)l from the first equation and VJ(-?:)l from the second equation, the
third and the fourth equations have the following form:

](0) —l/( )1 +’YJ IV( 1+S] lf] 1, (22)
Y = A D)+ 2hfi /(2650 + hpi) (2.3)
where
4 201 —hiah g R2(66;_1 +p;—1h) . h(1267_; —pi_h?)
j-1 j Yi-1 =

T 2+ pih’ T 665-1(265-1 + py—1h) 665-1(26)—1 +pj-1)h’
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On the interval I; we have:

v =i 55 + 8, (2.4)
v = AN+ 2nf;/(265 + hiy) (2.5)
From (2.2) we get
il = =2 =S5 fi ) /A (2.6)
and from (2.4)
v = D = v = 5 5)/% (2.7)

By putting (2.7) and (2.6) into equation (2.3) we get the following difference
scheme:

Ao o (A Ly o, Lo Sig (2 AaSia) e
Yi-1 Yi-r Y)Y Yi 2651 + hpj-1 Yi-1
(2.8)

We can see that scheme (2.8) is a member of the family of implicit difference
schemes wich have the form:

R =Qf;, j=1,2,...,n (2.9)
where

5 (0) _ =~ (0 e (0) | ~+ (0 ~F o o~ c o
Rl/](. ) = o 1/](-_)1 +7“j1/](- ) +r;.ruj(.+)1 Qfi=qifi-1+d;f;+ qffjﬂ.

The local truncation error 7;(g(z)) of scheme (2.9), for an arbitrary, suffi-
ciently smooth, function is defined by

7j(9) = Ry(z;) — Q(Ly(x;)) (2.10)

The following lemma from Berger et al. [2] gives properties of the exact
solution of (1.1) wich we take into account in derivation of the fitting factor o(x).

LEMMA 2.1 Let p(z) € C3[0,1]. Then the solution of (1) can be writen in
the form y(x) = u(z) + W(x) where

u(z) = ey’ (0) - exp (@) (2.11)

WO| < M(1 4+~ exp(~202;/€)), i =0,1,2,3,4.

M and § are constants independent of €.
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The fitting factor o(x) we shall find from the condition that truncation error
(2.10) for function u(z) (2.11), when p(z) = p = const, will be equal to zero. In
that way the error influenced by the boundary layer function is diminished.

LEMMA 2.2. Let p(z) = p = const in equation, (1.1) then 7j(u) = 0 for
%cth %.
1>

o
Proof. For p(xz) = p = const we have: Z’—:r =
© = cth (hp/2¢). As Lu(z) = 0 it easy to see that, 7;(u)
For p(x) # const, 6;(x) is defined in the following form:

—1
1

€

= eh?/c where

b
&

:ANZ
=0.

(ij = hﬁjd;j/2, S Ij, where uN)j = cth (hﬁj/2€) (212)
Now, the coefficients of scheme (2.8) have the following form:

SR s | SN I
T TRE, -1 0 T hEE -1

~co 5 ~t+ At —
rp=-r; =15, 4 =0 (2.13)
3(;']'_1 -1 . 3(11]' +1

GG, ) VT RBaE-)

The choice of approximation to p(z) and f(z) determines the particular
scheme.
Choosing p; = pj—1 = pj, fj = fj—1 = f; scheme (2.13) becomes the scheme
of the form RV](O) = @ f; where
i —1)/2h, v} =pj(w; +1)/2h, r§=—r; —r], (2.14)
qj :qj-'zO, qj =1, wj = cth (hp;/2e). .

This is precisely the Allen-Southwell-Il’in finite difference scheme. It was
proved by I'in [5], Kellog & Tsan [7] that this method has the first order of the
uniform convergence at the nodes. So, the spline difference method (2.14) also must
be uniformly convergent of the first order at the nodes.

Choosing pj—1 = (pj—1 +;j)/2, B; = (pj + Pj+1)/2, fi-1 = (fi-1 + [i)/2,
fj = (fj+ fj+1)/2 the corresponding implicit difference scheme has the coefficients:

- _ Bwj—1(wj—1 — 1) = 3wj(w; +1) PC— —p ot
i h(3w]271 — 1) ) j h(3w]2 _ 1) ’ J J 7
3(4.}]',1 -1 + 3wj +1

~ ) q — A~ /o 9 4\
ij_1(3w]271 - 1) J 2pj (3&); - 1)

(2.15)

q; = , ¢ =q; +qf

This scheme is analysed in [9].
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For the family (2.13) the following theorem holds.

THEOREM 2.1. Let {1/](-0)}, j=0,1,...,n+ 1 be the approzimation to the
solution y(z;) of (1.1) obtained using (2.13). Let p(z), f(z) € C3[0,1],

pj = p(z;) + Coh, f; = f(z;) + Cih; (2.16)

then

i — ()| < Mh (2.17)

where Cy, C1 and M are constants independent of € and mesh length h.

3. Proof of the uniform convergence. In this section we will prove
Theorem 2.1. The proof is based on the comparison functions method developed
by Kellogg & Tsan [7] and Berger et al. [2]. This method uses the following two
lemmas:

LEMMA 3.1. Let {V;} be a set of values at the grid points {z;}, 7 =0,...,
n + 1 satisfying Vo <0, Vi1t <0 and RV; > 0,5 =0,...,n. Then V; <0 for
i=01,... n+1.

LemMA 3.2. If Ki(h,e) > 0 and Ka(h,e) > 0 are functions that satisfy:
R(K1(h,e)pj + Ka(h,e)v;) > R(£z;) = £7;(y) where z; = y; — V](O),' then |z;| <
Ky (s e)lej| + Ka(h, €)|h;]-

As in Berger et al. [2] we use two comparison functions p; = -2+ z; and

Y; = —exp(Bz;/e) = —(u(B))’, where u(B8) = exp(—Bh/a), § > 0 will be chosen
appropriately.

Troughout the paper let 6, M, My, ..., denote positive constants that may
take different values in different formulas, but that are always independent of £ and
h.

LEMMA 3.3. There are constants M, and Mo such that for h < My, 0 <
B < My andj=1,...,n the following holds

Ryp; > Mh/e, h<e (3.1
Rpj> M, e<h (3.2)
Ruj > My (B)h/e?, h<e (3.3)
Rib; > My (B)/h, e<h (3.4)
Ripj/p(B) = My~ (B)/h, e<h. (3.5)

The proof of the Lemma 3.3 is similar to the proof of the coresponding lemma
in [9].

Now we will consider the truncation error of the schemes (2.13) under the
conditions (2.16).

LEMMA 3.4 Let (2.16) hold; then for the truncation error (2.10) for family
of the scheme (2.13) we get the following estimates:
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(3.6) |7i(y)] < M(h+exp(—dzj_1/e)), j=1,...,n fore <h,
(3.7) |7 (y)| < M(h?/e + h*e ?exp(—dz;/e)), j=1,...,n for h <e,

Proof. From (2.10) we have

7i(y) = R(y; — v}”) = Ry; — Q(Ly; + O(h)) = 7(y) + N

where - -
IN| < Mh?/max(h,e), 7;(y) = Ry; — Q(Ly;).

For y(z) sufficiently smooth, the standard Taylor development of 7; for fixed
€ has the form:

7i(y) = Toy; + Thyj + Toy] — 7y Ro(xj_1,25,y) + 7} Ro(xj, j41,y)
+ed; Ro(zj-1,25,9") —pj—1d; Ralzj-1,75,9),

where

—a n+1 b
Rufab.g) = g (O T = (0= g6, €€ ()

When it is clear from the context, the subscriptsin 7. ..
Since 7j(y) = 7j(u) + 7;(W), (see Lemma 2.1), we will estimate 7;(u) and
7;(W) separately.

,tj;f will be omitted.

Since Ty = T1 = 0 we shall estimate T5 and the remainder terms.
To = B*(F +7)/2+pj_1hg —e(§ +¢°). (3.8)
Since 1 < & < M max(g/h, 1) from (3.8) and Lemma 2.1 we get
|TosW"| < Mh, for e < h. (3.9)

In the case ¢ < h consider the remainder term Y; = p;—1¢~ Ri(zj_1,z;, W') (the
others being similar).

Vil =1 pj1(Ro(zj 1,25, W') + hW" (x;))]

<M /Ij (1+ e texp(—ds/e))ds + h(l + e Lexp(—dz;/¢)).

So
[Y;| < M(h+exp(—dzj_1/e)), j—1,...,n for e <h. (3.10)
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From (3.9) and (3.10) we get
|7;(W)| < M(h+ exp(—dzj_1/¢)), for e < h. (3.11)

Let us consider now the case h < e. For p(z) = p = pj_1 = p; = const it is easy to
see that |Ty| < Mh?/max(h,¢).
When p(z) # const we will expand T> at pj—1 = pj_1h/(2¢). Let 7~ =
7 (pj-1), 7T =71(p;), & =G (pj-1), ¢° = ¢°(p;) then Tp = A; + Ay + A3, where
Ay =h2)2- (F (pj=1) + 7T (Bj=1)) + Bj—1hG (Bj—1) — (G (Bj—1) + G (Bj-1)),
Ay =h?/2- (7 (pj) — FH(pj—1)) + h(pj—1 — Bj—1)G (Bj-1),
Az =e(q°(pj—1) — @°(p;))-

The expression A; has the same form as 7> for p(z) = pj_1 = const, so
|A1] < Mh?/ max(h,e). After some algebraic computation we get

2

|TyW"| < M (1 + e~ exp(—26z;/e)), (3.12)

max(h, ¢)
and that the remainder terms are bounded by
Mh?(1+¢e 2exp(—26£/¢)), zj—1 <ELTjqn. (3.13)
From (3.12) and (3.13) we conclude that

|7, (W)| < Mh?e (1 + ¢ 'exp(—dz;/¢)) for h<e. (3.14)

Let us estimate 7;(v). From Lemma 2.2 we have 7;(u) = 7;(u) —Tjo(u), where
Tjo(u) denotes the truncation error for p(z) = p(0) = p;—1 = p; = const.

7~'j (U,) = (T2 — TQO)U;! —(r~ — T'O_)RQ(HZj_l,ZEj,U)
+ (’f’+ — FS’_)RQ

— (pj—1a” —p(0)dy )Ry (xj—1,zj,u’)

—_ o~

zj, jp1,u) + (G- —qp )Ro(xj—1,x;,u")

Computing some Taylor expansions we get, the estimate

Ty — Taolu < M(h*z;/e® + h?)e 2 exp(—p(0)z;/e)
< Mh*c 2 exp(—éz;/e) for h<e.

The remainder terms are bounded by h?c 2 exp(—dz;/e) for h < e, thus

7 (u)|Mhe 2 exp(—dz;/c) for h <e. (3.16)
i j
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For e < h we get |15 — Tholuj < M exp(—dz;/e).
Since |G~ —q5 | < M(zj—1 + O(h))e~' exp(—dh/e) we have that

Ipj-1G~ = p(0)gq |Ri(zj—1,75,u") < M exp(—dzj_1/e).
The estimates for the other remainders in (3.15) are similar. Thus
|7i(uw)] < M exp(dz;_q1/e) for e < h. (3.17)

and the proof of Lemma 3.4 is completed.
Now we can prove the main Theorem 2.1. Using estimates from Lemma 3.2
and Lemma 3.4 by Lemma 3.2 we get that (2.17) holds.
4. Numerical results. We consider the following simple problem of type
(1.1):
ey’ +y' =z, y(0)=y(1)=0, (4.1)

which has the solution
y(x) = (e — 1/2)(1 — exp(—2/¢)) /(1 — exp(—1/e)) — ex + 2* /2.

The numerical results for the problems above obtained by (2.15) are presented
in [9]. In this paper we present the numerical results obtained by the following
schemes:

I: Choosing
i1 =p(x; —h/2) =pj_1)2, fi-1=f(z; —h/2) = f-1/2,
Pj =p@j +h/2) = pjtase,  fi=fla;+h/2) = fine
(2.13) becomes 7 l/](.(i)l + rjcyj(.o) + rjl/](i)l =q; fi-12 + qffj+1/2 where
 Bwiapwiap—1) o BwinpWwippet+l) o
Ty = h(3 2 _1) » Ty = h(3 2 _1) » Ty =T +Tj’
Wi_1/2 Wit1/2
_ 3wj_1/2 —1 L 3wjyre +1

q; = » 45 = .
/ pj71/2(3W]2'_1/2 -1 Y Pj+1/2(3wjz'+1/2 -1)

1I: ChOOSing ;5]'_1 = Pj—1, fj—l = fj—l; ﬁj = Pj+1, f] = fj+17 (213) becomes the
scheme of the form RV](O) = @ f;, where

_B3wia(wia—1) 3wip (Wi +1) .

- +_ —
rT = , v =2 T T el =
J h(3w32-71 -1) J h(?x,‘)JQ-Jrl -1) 7o J
_ 3(4.}]',1 -1 + 3w]-+1 +1 c
P o Sk S S, 3L Tk S
TopiaBwi 1) Y i (Bwi,, - 1)
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I1T: ChOOSng [3]'_1 :.pj_l, f.j—l = fj—la ]5]' = Dy, f] = fj, (213) becomes the
scheme of the form RV{O) = Qfj, where

- _3wiwia -y Swlwi+l) o o
T Th@WE, 1) T T h@er—2y T
— 3&)]',1 -1 c Swj +1 +
q, = , q; = , q; = 0.
7oopim @i -1 Y pBei 1)

The numerical results are presented in Tables 1 — 3; table summarizes the
results of applications of a particular scheme. For each scheme the mesh length
h = 1/I was succesively halved starting with I= 16 and ending with I= 1024. The
maximum error at all the mesh points Eo, = max; |y; — VJ(-O)| is listed under E.
The numerical rate of convergence is determined as in Doolan et al. [3]: rate=

(InZge—InZgy1.)/1In2 where Zg,. = max|1/]}-t/2K — V?/2K+l|, K =0,1,2,3,4,

and v"/2" denotes the value of VJ(-O) at the mesh point z; for the mesh length h/2K.
Table 1: Numerical results for I applied to (4.1)
1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
K Je

Eoo rate Eoo rate Eoo rate Eoo rate Eoo rate Eoo rate Eco rate Eco rate Eoo rate

16 1.6 E-7 2.2 F-6 2.5 E-523 E-415 E3 62 E312 E215 E2 17 E2

0 4.00 3.99 3.97 3.87 3.55 2.78 1.71 1.06 0.95
32 1.0 E8 1.4 E7 1.6 E-6 1.6 E-5 1.3 E-4 94 E432 E363 E3 81 E3

1 4.00 3.99 3.99 3.96 3.86 3.55 2.78 1.73 1.08
64 62 E-1088F9 1.0E7 1.0E6 90E6 7.1E5 43E4 1.6 E-3 32 E3

2 4.00 4.00 4.00 4.00 3.98 3.87 3.55 2.77 1.73
128 3.9E-1155FE-1065E9 64E8 57E7 48E6 3.6E5 2.2 E4 83 E4

3 . 4.00 4.0 4.00 4.00 3.99 3.97 3.87 3.55 2.78
256 0. 3.5E-114.0E1040E9 3.6E8 30FE7 25E6 18 E5 11 E4

4 4.00 4.00 4.00 4.00 4.00 3.99 3.97 3.87 3.55
512 0. 0 25F-1125E1022E9 19FE8 1.6 E7 12 E6 95 E-6

1024 0. 1.6 E-11 1.4 E-10 1.2 E-9 1.0E-8 81 E8 64 E-8

e
=]
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Table 2: Numerical results for II applied to(4.1)

K Je

1/2

1/4

1/8 1

/16 1/32

1/64

1/128

1/256

1/512

Eoo rate Eoo rate Eoo rate Eoo rate Eco rate Eoo rate Eoo rate Eco rate Eco

rate

16

1.5 E-4 5.3

2.00

1.98

1.95

1.24

1.24 —2.93

E4 1.5 E-3 34 E352 E33.0 E324 E36.1

5.07

E3 19
1.23

E-3
.96

32

3.8

2.00

E5 1.3

2.00

E-4 39 E495

1.99

E419 E327 E315

1.95

1.79

1.24

E-3 1.2
—2.93

E-3 3.1
5.10

E-3
1.25

64

9.6

2.00

E-6 3.3

2.00

E-599 E-524

2.00

E-4 53 E-410 E3 14

1.99

1.95

1.80

E3 179
1.23

E4 64
—2.94

E-4
5.10

128

2.4

2.00

E-6 8.4

2.00

E6 25 E-56.2

2.00

E5 1.3 E6 28 E45.3

2.00

1.99

1.95

E4 74
1.800

E4 40
1.24

E-4
—2.93

256

6.0 E-7 2.1

2.00

E6 62 E61.5

2.00

2.00

E534 ES5 74 E5 14

2.00

2.00

1.99

E-4 27
1.95

E-4 3.7
1.80

E-4
1.24

512
1024

1.5
3.7

E753
E-8 1.3

E7 15
E-7 3.9

E-63.8 FE-6 87 E-6 1.8 E-5 3.8 E-576
E-797 E-72.1 E646 E696 E61.9

E-5 1.3
E5 38

E-4
E-5

Table 3: Numerical results for III applied to (4.1)

172

1/4

18 1

/16 1/32

1/64

1/128

1/256

1/512

Eoo rate Eoo rate Foo rate Foo rate Eoo rate Foo rate Eoo rate Foo rate Eoo

rate

16

7.4 E-3 13 E219

1.00

1.00

E224 E228 E234

1.00

1.02

1.12

E241 E245 E2 46

1.31

1.22

.99

E-2
95

32

3.7

E3 175
1.00

E-3 9.6
1.00

E3 1.1
1.00

E2 1.3
1.00

E2 1.5
1.02

E-2 1.8
1.12

E2 2.1
1.31

E2 23
1.24

E-2
1.02

64

1.8

E3 3.2
1.00

E-3 4.8
1.00

E359
1.00

E-3 6.7
1.00

E3 172
1.00

E-3 7.8
1.02

E-3 9.1
1.12

E3 1.0
1.30

E-2
1.24

128

9.2

E-4 1.6
1.00

E3 24
1.00

E329
1.00

E-3 33
1.00

E-3 3.5
1.00

E-3 3.7
1.00

E-3 4.0
1.02

E3 4.6
1.12

E-3
1.30

256

4.6

E-4 8.1
1.00

E4 12
1.00

E3 1.4
1.00

E-3 1.6
1.00

E3 1.7
1.00

E3 1.8
1.00

E-3 1.9
1.00

E3 20
1.02

E3
1.12

412
1024

23
1.1

E-4 4.0
E-4 2.0

E-4 6.0
E-4 3.0

E4 7.4
E-4 37

E-4 84
E4 4.2

E-4 8.9
E-4 4.4

E-4 9.3
E4 4.6

E-4 9.5
E-4 4.7

E4 97
E4 438

FA-
E-4
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