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A NOTE CONCERNING SPECTRAL MULTIPLICITY ONE

J. Gill and H. Salehi

Abstract. In the papers [7, 8] S. Mitrovi�c presents a seemingly remarkable generalization
of Cram�er's well-known result concerning the spectral multiplicity of a second order stochastic
process (see [2]), and then derives some consequences of that generalization. Here, we shall show
that (with the exeption of Th. 1. from [8]) the main results of those two papers are false.

1. Introduction. Let x(t), t 2 T = (A;B) be a real-valued, purely
nondeterministic second order stochastic process, mean-square continuous from the
left and with mean-square limits from the right. It is known [2. Th. 2.1] that such
a process permits the so-called canonical representation, that is a representation of
the form

(1) x(t) =
NX
n=1

Z t

A

gn(t; u) dzn(u); t 2 T;

with the following properties:

(Q1) z1(t); . . . are mutually orthogonal processes with orthogonal increments, such
that for every n.

Ezn(t) = 0; Ez2n(t) = Fn(t); t 2 T;

where Fn(t) is a nondecreasing function continuous from the left;

(Q2) g1(t; u); . . . are non-random functions such that

Ex2(t) =

NX
n=1

Z t

A

g2n(t; u) dFn(u) <1; t 2 T ;

(Q3) F1 > F2 > � � � ;

(Q4) H(x; t) =
PN

n=1�H(zn; t), t 2 T , where H(x; t) = �Lfx(s); s � tg, and
H(zn; t) = �Lfzn(s); s � tg for every n.
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This representation is canonical in the sense that no other representation of
the same form (with properties (Q1){(Q4)) exists for any smallerN . Thus, although
the functions gn(t; u) and the processes z(t) are not uniquely determined by the
process x(t), the number N is indeed uniquely determined by the x(t) process.
This uniquely determined number N is called the spectral multiplicity of the x(t)
process.

Each function Fn from m(Q3) determines a classRn of all measures equivalent
to Fn. These equivalence classes form a nondecreasing sequence R1 > R2 > . . . ,
called the spectral type of the x(t) process; the spectral type is uniquely determined
by the x(t) process.

Cramer's result mentioned above provides a way to represent a second order
process x(t) by means of N (where N is uniquely determined by x(t)) mutually
orthogonal processes with orthogonal increments. It is natural to ask whether it
is possible to give suÆcient conditions under which such a representation would
involve only one process with orthogonal increments (that is suÆcient conditions
for N = 1). In [2, Th. 5.1], Cram�er gives such a set of suÆcient conditions;
he proves the following result: If X is the class of all processes x(t) admitting
canonical representations of of the form (1.1) in which each term on the right hand
side satis�es the conditions:

(R1) gn(t; u) and @gn(t; u)=@t are bounded and continuous for u; t 2 T; u � t;

(R2) gn(t; t) = 1; t 2 T ;

(R3) Fn(u) = Ez2n(u) is absolutely continuous and not identically constant, with
fn(u) = dFn(u)=du having at most �nitely many discintinuities in any �nite
subinterval of T ;

then X consists of processes with the spectral multiplicity N = 1. It is this result
that S. Mitrovi�c attempts to generalize in [7]. There, in the �rst of two theorems, S.
Mitrovi�c states that, for a second order process x(t) to have the spectral multiplicity
N = 1, it is suÆcient that each term in its canonical representation (1.1) satis�es
conditions (R1), (R3) listed above and

(R�2) gn(t; t) = 0; t 2 T .

Thus, the suÆcient conditions of S. Mitrovi�c di�er from those of Cram�er only in
(R2), where the contrast is substantial.

The other results in [7] and [8] are derived from the �rst theorem from [7],
quoted in the previous paragraph; thus, their validity depend entirely on the latter
theorem. The only result that is independent from the �rst theorem in [7] is Th. 1
in [8]; this theorem, however, is proved as Example 11 in [3].

2. Fallacy of the main result from [7]. In proving the �rst theorem in
[7], S. Mitrovi�c repeats word-by-word the argument used by Cram�er in the proof of
Th. 5.1 in [2], seemingly not being aware that the speci�c statement which are true
for integral equations of Volterra of the second type appearing in [2, Th. 5.1] are
not necessarily true for integral equations of Volterra of the �rst type appearing
in [7]; aspects in which those two types of integral equations di�er concern the
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existence and uniqueness of their solutions, that is exactly what S. Mitrovi�c uses
(for a brief discussion of these integral equations, see e.g. [5]). Let us clarify this.
The integral equations that S. Mitrovi�c considers (those that the proof of the �rst
theorem in [7] depends upon) are

(2.1)

Z s

A

@gn(s; u)=@shn(u)fn(u)du = (�1)n+1; s 2 (A; t]; t 2 T; n = 1; 2:

where gn(s; u) and fn(u), n = 1; 2, are from the canonical representation of x(s),
and h1(u), h2(u) are functions to be determined. S. Mitrovi�c claims that, being
Volterra equations of the �rst type, the equations (2.1) have unique continuous
solutions that are almost everywhere (with respect to the respective measures F1(u),
and F2(u)) di�erent from zero.

It is easy to see, however, that functions Fn(u) = u and

gn(s; u) =

�
s� u; u � s

0; u > s
; n = 1; 2;

satisfy conditions (R1), (R
�

2) and (R3), but the equations (2.1) do not have contin-
uous solutions.

Although this simple example shows that the proof of the main theorem in
[7] is false, it still does not provide a clear evidence that the main result itself is
false. Such an evidence, however, can be found in [1, Th. 3] and [9, pp. 8{9], where
in each case a process of in�nite spectral multiplicity, satisfying (R1), (R

�

2), (R3),
is constructed. To simplify the discussion and make our point completely clear,
we shall construct a process that satis�es conditions (R1), (R

�

2) and (R3) of S.
Mitrovi�c, but has spectral multiplicity N = 2; our procedure will be a combination
of those of [1] and [9].

Example. Let T = (0; 1). A sequence C1; . . . ; Cn; . . . of unions of Cantor
sets will be constructed in the following way:

C1 is a Cantor set from T , such that m(C1) = 1=2 (here and thereafter, m
will denote the Lebesgue measure, and Ac will denote the complement of the set
A); T \ Cc

1 sonsists of countably many open intervals. C2 is the union of Cantor
sets obtained on all the open intervals of T \ Cc

1 ; the set C2 is constructed so that
the Lebesgue measure of each of its Cantor components is equal to 1/2 lenght of
the interval in wich it is contained, so that m(C2) = 1=22. T \ Cc

1 \ Cc
2 consists

of countably many open intervals. Sets C3; C4; . . . ; Cn; . . . are constructed in an
analogous way, namely Cn is the union of Cantor sets obtained on all the open
intervals of C \ Cc

1 \ � � � \ Cc
n�1; the set Cn is constructed so that the Lebesgue

measure of each of its Cantor components is equal to 1/2 lenght of the interval in
wich it is contained, so that m(Cn) = 1=2n.

Let us now de�ne sets A1 and A2 in the following way:

A1 =

1[
n=1

C2n�1; A2 =

1[
n=1

C2n:
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It is clear that A1 \ A2 = ; and m(A1) + m(A2) = 1 = m(T ). In the argument
that will follow, we shall use the fact that

(2.2) m(Ak \ (a; b)) > 0; k = 1; 2;

for any choice of the numbers a, b such that 0 � a < b � 1. To prove this, let us
take an arbitrary subinterval i = (a; b) of T . It is easy to see that, for some n, i
contains an end-point of at least one of the open intervals from T \ Cc

1 \ � � � \ Cc
n

(indeed, the converse would mean that, for each n, i is contained in one of thoos
intervals; since the lenght of i is constant andm(T\Cc

1\� � �\C
c
n)! 0; n!1, this

is impossible). Let I be one of the end-points of a subinterval from T \Cc
1\� � �\C

c
n

that is in i; we can assume that, for instance, I is the left end-point of the interval
(I; J) � T \Cc

1 \ � � � \C
c
n. Let (I; I

�) = (I; J)\ i. After �nitely many steps, say k,
we shall �nd an interval (I1; I2) � T \ Cc

1 \ � � � \ C
c
n+k such that (I1; I2) � (I; I�).

In the next step, a Cantor set from (I1; I2) will be used to make one of the sets A1

and A2, say A1. Consequently, we have

m(A1 \ i) > m(A1 \ (I1; I2)) > (I2 � I1)=2 > 0:

By advancing the same argument for one more step, we obtain

m(A2 \ i) > m(A2 \ (I1; I2)) > (I2 � I1)=2
2 > 0:

In this way, (2.2) it proved.

Let us now denote by �n(u) the indicator-function of the set An, n = 1; 2;
and let us de�ne functions g1(t; u) and g2(t; u) in the following way:

gn(t; u) =

� R t
u
(t� �)�n(�) d�; u < t

0; u � t
; n = 1; 2:

Moreover, let z1(u) and z2(u) be mutually orthogonal real-valued random processes
with orthogonal increments; it will be assumed that

Ezn(u) = 0; Fn(u) = Ez2n(u); u 2 T; n = 1; 2:

It is clear that the above functions gn(t; u) and Fn(u), n = 1; 2; satisfy the
conditions (R1), (R

�

2), (R3).

Let us process x(t) be de�ned by

x(t) =

2X
n=1

Z t

0

gn(t; u) dzn(u); t 2 T:

We shall show that the spectral multiplicity of x(t) is N = 2.

It is easy to check that the conditions (Q1), (Q2) and (Q3) are satis�ed. To
prove that N = 2 it is suÆcient (see Lemma 3.1 from [2]) to show that (Q4) is
satis�ed as well. A suÆcient condition for (Q4) is

(2.3) zn(t) 2 H(x; t); t 2 T; n = 1; 2:
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It is this last relation that we shall prove.

If we show that

zn(t) = d2x(t)=dt2; t 2 T; n = 1; 2;

then, because d2x(t)=dt2 2 H(x; t), it will mean that (2.3) is satis�ed and, ulti-
mately, that N = 2.

By writing x(t) in the form

x(t) =

2X
n=1

Z t

A

(t� �)�n(�)zn(�) d�; t 2 T;

and using the de�nition of the derivative, it is not diÆcult to obtain

dx(t)=dt =
2X

n=1

Z t

A

�n(�)zn(�) d�; t 2 T:

To �nd d2x(t)=dt2, one can proceed as follows. The de�nition of the derivative
gives

(2.4)

d2x(t)=dt2 = l:i:m:h!0
1

h

� 2X
n=1

Z t+h

t

�n(�) (zn(�)� zn(t))d�

+

2X
n=1

zn(t)

Z t+h

t

�i(�)d�

�
:

Since each of the sets A1, A2 has either zero or unit metric density at almost any
t 2 (A;B) (see [6, x 140]), we have

l:i:m:h!0
1

h

Z t+h

t

�n(�)d� =

�
0; almost everywhere on Ac

n,

1; almost everywhere on An,

and thus

(2.5) l:i:m:h!0
1

h

2X
n=1

zn(t)

Z t+h

t

�n(�)d� =

2X
n=1

zn(t)�n(t):

Without diÆculties, it can be shown that

E

�����
2X

n=1

Z t+h

t

�n(�)(zn(�) � zn(t))d�

�����
2

� 2h3;

which implies that

(2.6) l:i:m:h!0
1

h

2X
n=1

Z t+h

t

�n(�)(zn(�)� zn(t))d� = 0:



126 Gill and Salehi

Equations (2.5) and (2.6), together with (2.4), give

d2x(t)=dt2 =

2X
n=1

zn(t)�(t) a.e. on T .

Thus,

(2.7) d2x(t)=dt2 = zn(t) a.e. on An.

Since d2x(t)=dt2 2 H(x; t), (2.7) means that

zn(t) 2 H(x; t) a.e. on An.

However, since process zn(t), n = 1; 2, is continuous to the left and An, n = 1; 2,
has nonzero measure in every interval from T , it follows that (2.3) is satis�ed.
Consequently, it is proved that process x(t) has spectral multiplicity N = 2, in
spite of the fact that conditions (R1), (R

�

2) and (R3) are satis�ed.

Being dependent on the �rst theorem from [7], the validity of the remaining
result from [7] as well as those from [8] (with the exception of already mentioned
Th. 1) is in doubt at least in their present form.

At the end, it should be pointed out that, additionally, some statements and
some proofs from both [7] and [8] are too vague and incomplete. For instance, the

statement (given at the beginning of [8]) that, if a process x(t) =
R t
A
g(t; u) dz(u),

t 2 T , satis�es (R1), (R
�

2), (R3), then its spectral multiplicity is equal to one, does
not follow from [7], as S. Mitrovi�c asserts. Also, since the continuity of a function
of two variables is not a consequence of its continuity with respect to each of the
variables separately (see [4, Ch. 9, Ex. 1]), S. Mitrovi�c does not derive a full proof
of the Lemma in [8]. Finally, it should be mentioned that, apparently because of
the inconsistency in using the terminology, Th. 2 and Th. 3 from [8] represent but
one statement.
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