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CONDITIONS ON THE CONHARMONIC CURVATURE TENSOR

OF KAEHLER HYPERSURFACES IN COMPLEX SPACE FORMS

M. -Dori�c, M. Petrovi�c-Torga�sev and L. Verstraelen

Abstract. Among all Kaehler hypersurfaces of complex space forms, we characterize
the complex linear hyperplanes, the complex hypercylindes in the complex Euclidean spaces and
the complex hyperquadrics in the complex projective spaces, in terms of some intrinsic curvature
conditions which all involve the conharmonic curvature tensor of these hypersurfaces.

1. Introduction. Let Mn a Kaehler hypersurface of complex dimension n
in a complete simply connected Kaehler manifold of constant holomorphic section-
al curvature ~Mn+1(c) (i.e. in a complex space form ~Mn+1(c)). It is known that a

complex space form ~Mn+1(c) is holomorphically isometric with CPn+1(c), Cn+1 or
Dn+1(c), according to c being positive, zero or negative �CPn+1(c) is the complex
projective space with the Study-Fubini metric of holomorphic sectional curvature
c, Cn+1 the complex Euclidean space and Dn+1(c) the unit ball all in Cn+1 with
the Bergman metric of holomorphic sectional curvature c. By setting one coor-
dinate equal to zero, CPn(c), Cn and Dn(c) occur naturally as totally geodesic
complex hypersurfaces in CPn+1(c), Cn+1 and Dn+1(c), respectively; these hyper-
surfaces are also called the complex hyperplanes of CPn+1(c), Cn+1 and Dn+1(c),
respectively. The complex hypersphere Qn in CPn+1(c) is the complex hypersur-
face with equation z20 + z21 + � � �+ z2n+1 = 0, where z0; z1; . . . ; zn+1 are homogenous
coordinates; Qn is a locally symmetric Einstein space. A complex hypercylinder
Bn in Cn+1 is the product of an (n � 1)-dimensional complex hyperplane Cn�1

in Cn � Cn+1 with a complex curve in a 2-dimensional complex plane orthogo-
nal to Cn�1 in Cn+1. According to a result of K. Abe [1], a complete complex
hypersurface in a complex Euclidean space for which rank (A) � 2 is a complex
hypercylinder, where A denotes the second fundamental tensor of the hypersurface.

It is a classical theme in di�erential geometry to study relations between in-
trinsic and extrinsic properties of submanifolds. Therefore the purpose of this paper
is to classify those hypersurfaces Mn which satisfy one of the following conditions:
K ÆQ = 0, Q ÆK = 0, K Æ R = 0, R ÆK = 0, K Æ C = 0, C ÆK = 0, P ÆK = 0,
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K Æ P = 0, B ÆK = 0, K ÆB = 0, K ÆG = 0, G ÆK = 0, where R, C, P , B, Q, G
and K are respecitvely the Riemann-Christo�el curvature tensor, the Weyl confor-
mal curvature tensor, the Weyl projective curvature tensor, the Bochner curvature
tensor, the Ricci endomorphism, the Einstein tensor and conharmonic curvature
tensor of Mn, and where the �rst tensor acts on the second as a derivation.

For hypersurfaces in Euclidean spaces, K. Nomitzu initiated the study of such
curvature conditions in his paper [12]. For any pair X and Y of vector �elds in
Riemannian manifold, R(X;Y ) is an skew-symmetric endomorphism of the tangent
space at each point. The mapping of the algebra of tensor �elds into itself given by

T ! rXrY T �rYrXT �r[X;Y ]T

is the unique derivation which extends R(X;Y ) and which commutes with all con-
tractions. Thus it is natural to write R(X;Y ) Æ T for the image of an arbitrary
tensor �eld T under this mapping. In particular, Nomizu considered the (1; 3)
tensor �eld R(X;Y ) ÆR. It acts on a pair of vector �elds U and V as follows

(R(X;Y ) ÆR)(U; V ) = [R(X;Y ); R(U; V )]�R(R(X;X)U; V )�R(U;R(X;Y )V ):

In [12], K. Nomizu studied certain hypersurfaces of Euclidean spaces which are
semi-symmetric, i.e. for which R Æ R = 0 holds, and proved they are also locally
symmetric; he then raised the question whether or not, in general, semi-symmetry
implies local symmetry. In this respect, H. Takagi was the �rst to �nd a counterex-
ample, and afer that S. Tanno, K. Sekigawa, H. Tagaki, P. Ryan, Z.I. Szabo and
others proceeded to investigate the implication of the condition R(X;Y ) Æ R = 0
for some special manifolds or submanifolds. The authors B. Smyth, T. Takahashi,
K. Nomitzu, P. Ryan, H. Tagaki, Y. Watanabe and others have been studying the
curvature conditions on complex manifolds. P. Verheyen, J. Deprez, D.E. Blair, F.
Dillen and two of the present authors obtained classi�cation theorems for some spe-
cial manifolds, in terms of the above type of conditions involving various curvature
tensors (Ricci tensor Q, Bochner curvature tensor B, Weyl conformal curvature
tensor C, projective curvature tensor P , concircular curvature tensor Z etc). In
particular, in [5] and [7], they obtained some non-trivial hypersurfaces of revolution
in Euclidean spaces satisfying such curvature conditions, amongst which we quote
the 3- and 4-dimensional hypercatenoids. The articles of the above mentioned
authors about these curvature conditions are cited in the references of [8].

The purpose of this article is to investigate the above type of curvature condi-
tions, which involve the conharmonic curvature tensor, for complex hypersurfaces
in complex space forms. More precisely, we want to �nd out whether such curva-
ture conditions give some new characterizations of the well-known classes of such
Kaehler hypersurfaces or whether eventually some new classes of such hypersur-
faces appear in this way. We will recall some basic notions from the paper [14] of
B. Smyth, who initiated the study of complex hypersurfaces.

The conharmonic curvature tensor K of a Riemannian manifoldM was intro-
duced by Y. Ishii [9]. K is invariant under the action of the conformal transforma-
tions of M which preserve, in a certain sense, real harmonic functions on M , and
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which therefore are called conharmonic transformations. These transformations
form a subgroup of the conformal transformation group. A Riemannian manifold
M is related to a Euclidean space of the same dimension by a conharmonic trans-
formation, and then is said to be conharmonically Euclidean, if and only if K = 0,
i.e. when K vanishes identically. In this respect, one has the following result.

Theorem A. ([7]) A Riemannian manifold M of dimension � 4 is conhar-
monically Euclidean if and only if M is (locally) conformally Euclidean (i.e. C = 0)
and M has zero scalar curvature.

Conditions of the form E Æ F = 0 where a curvature tensor E on a complex
hypersurface Mn of a complex space form ~Mn+1(c) acts as a derivation on a cur-
vature tensor F on Mn, were studied amongst others by P.J. Ryan [13], one of the
authors and J. Deprez and P. Verheyen [6], and two of the authors and J. Deprez
and F. Dillen [4]. Concerning curvature conditions on complex hypersurfaces, we
recall the following results.

Theorem B. ([16], [6]) For a Kaehler hypersurface Mn of dimension n � 2

in a complex space form ~Mn+1(c), the following statements are equivalent:

(1) Mn is 
at (i.e. R = 0);

(2) Mn is (locally) conformally Euclidean;

(3) Mn is Ricci 
at (i.e. Q = 0);

(4) c = 0 and Mn is totally geodesic, i.e. Mn is a complex linear hyperplane
in the complex number space Cn+1.

From Theorem A and Theorem B we have the following.

Corollary C. The only complex hypersurfaces Mn of compex space forms
~Mn+1(c) with n � 2 which are conharmonically Euclidean are the complex linear
hyperplanes in the complex number space Cn+1.

Finally, we also recall the following results.

Theorem D. ([11], [6]) A Kaehler hypersurface Mn of dimension n � 2

in a complex space form ~Mn+1(c) is Bochner 
at (i.e. B = 0), if and only if it is
totally geodesic (in particular, Mn then is itself a complex space form of constant
holomorphic sectional curvature c).

Theorem E. ([3]) A Kaehler hypersurface Mn of dimension n � 2 in a

complex space form ~Mn+1(c) is Einsteinian (i.e. Q is proportional to the identity,

or still G = 0), if and only if Mn is totally geodesic in ~Mn+1(c) or Mn is lo-
cally a complex hypersphere (or hyperquadric) Qn in the complex projective space
CPn+1(c).

Theorem F. ([6]) A complete Kaehler hypersurface Mn of dimension n � 2

in a complex space form ~Mn+1(c) satis�es the curvature condition RÆC = 0 if and

only if Mn is a complete totally geodesic hypersurface in ~Mn+1(c) or Mn is a
complex hypersphere Qn in CPn+1(c) or Mn is a complex hypercylinder Bn in
Cn+1.
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In the present paper, we will prove the following results.

Theorem 1. For a complete Kaehler hypersurface Mn with n � 2 in a
complex space form ~Mn+1(c), R ÆK = 0 if and only if Mn is a complete totally

geodesic hypersurface in ~Mn+1(c) or Mn is a complex hypersphere Qn in CPn+1(c)
or Mn is a complex hypercylinder Bn in Cn+1.

Theorem 2. For a Kaehler hypersurface Mn with n � 2 in a complex
space form ~Mn+1(c), the following assertions are equivalent: (1) G ÆK = 0; (2)
K ÆG = 0; (3) K ÆQ = 0; (4) Mn is Einsteinian.

Theorem 3. For a Kaehler hypersurface Mn with n � 2 in a complex
space form ~Mn+1(c), the following assertions are equivalent: (1) B ÆK = 0; (2)
K ÆB = 0; (3) Mn is Bochner 
at.

Theorem 4. For a Kaehler hypersurface Mn with n � 2 in a complex
space form ~Mn+1(c), the following assertions are equivalent: (1) K Æ R = 0; (2)
K Æ C = 0; (3) C ÆK = 0; (4) K Æ P = 0; (5) P ÆK = 0; (6) Q ÆK = 0; (7)
K ÆK = 0; (8) Mn is 
at.

For more results of this type, involving amongst others also the holomorphic
concircular curvature tensor and the holomorphic projective curvature tensor of the
complex hypersurfaces, we refer to [8]. Hypersurfaces of Euclidean spaces satisfying
similar curvature conditions with the tensor K are studied in [2].

2. Basic formulas. Let Mn be a connected complex manifold of complex
dimension n holomorphically immersed in Kaehler manifold ~Mn+1 of complex di-
mension n + 1, i.e. a complex hypersurface in ~Mn+1. The complex structure J
and the Kaehler metric g of ~Mn+1 induce, respectively, a complex structure and a
Kaehler metric on Mn [14]. We denote these induced objects by the same letters.
For each x0 2 Mn, we choose a smooth �eld of unit normals � de�ned in a neigh-
borhood U of x0. Denoting by ~r the Kaehlerian connection on ~Mn+1, we have, for
vector �elds tangent to Mn in U ,

~rxY = rxY + g(AX; Y )� + g(JAX; Y )J� and ~rx� = �AX + s(X)J�;

where A is a symmetric tensor �eld of type (1, 1) on U , called the second funda-
mental form, and r is induced Kaehler connection on Mn. It is easy to show that
AJ = �JA. One can look at [14] to �nd the proofs of this.

The Riemann-Christo�el curvature tensor R ofMn is expressed by the Gauss
equation

(1) R(X;Y ) = ~R(X;Y ) +AX ^ AY + JAX ^ JAY

where ~R is the curvature tensor of ~Mn+1(c), X;Y 2 Tp ~M , p 2 ~M and where
the symbol ^ is used in the following sense: X ^ Y is the skew-symmetric linear
transformation de�ned by:

(X ^ Y )Z = g(Z; Y )X � g(Z;X)Y:
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Although A depends on our choice �, it is not diÆcult to show that A2 is inde-
pendent of this choice and so is de�ned on all of Mn as a tensor �eld of type
(1; 1).

A two-dimensional subspace II of the (real) tangent space is called a holo-
morphic plane if there is a unit vector X such that X and JX span II. A Kaehler
manifold ~M is said to have constant holomorphic sectional curvature c if the number

K(�) = g( ~R(X; JX)JX;X)

is equal to c for every holomorphic plane � at every point of Mn. It is well known
that this is true if and only if

(2) ~R(X;X) = c(X ^ Y + JX ^ JY + 2g(X; JY )J)=4

holds for all tangent vectors X and Y (see [10]).

For any x 2Mn, the tangent space toMn at x is a 2n-dimensional real vector
space with inner product g and complex structure J . The facts that g(JX; JY )
and AJ = �JA lead to the existence of an orthonormal basis of eigenvectors of A
which takes the form fei; Jeig

n
i=1. For details, see Lemma 1 of [14]. We will use

the notation Jei = e1� ; . . . ; Jen = en� . We also may choose the ordering so that,
for 1 � i � n, Ai = �iei� and Aei� = ��iei� , �i � 0. It can be shown (like in [15])
that the number of distinct eigenvalues is constant, that the multiplicities of the
eigenvalues are constant and that the eigenvalue functions are di�erentiable.

The Ricci endomorphism Q of Mn is given by

(3) Q = ((n+ 1)cI)=2� 2A2;

where I denotes the identity operator, and the scalar curvature � is given by

(4) � = n(n+ 1)c� 2Tr(A2) = n(n+ 1)� 4

nX

i=1

�2i :

In the sequel, we will mostly identify the Ricci tensor S with the Ricci endomor-
phism Q, having S(X;Y ) = g(QX; Y ) = g(X;QY ).

The Einstein tensor G of Mn is de�ned by

(5) G(X;Y ) = S(X;Y )� �g(X;Y )=2n:

We also note, that we will mostly use the same notation G for the Einstein ten-
sor G and for the corresponding Einstein endomorphism E, having G(X;Y ) =
g(EX; Y ) = g(X;EY ).

The Weyl conformal curvature tensor C is given by

(6) C(X;Y ) = R(X;Y )�
1

2(n� 1)
(QX^Y +X^QY )+

�

2(n� 1)(2n� 1)
(X^Y );

the Weyl projective curvature tensor P by

(7) P (X;Y ) = R(X;Y )� (X ^ Y )Q=(2n� 1);
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the conharmonic curvature tensor K by

(8) K(X;Y ) = R(X;Y )� (QX ^ Y +X ^QY )=2(n� 1);

and the Bochner curvature tensor B by

(9)

B(X;Y ) = R(X;Y )

�
1

2(n+ 2)
(QX ^ Y +X ^QY +QJX ^ JY + JX ^QJY � 2g(QJX; Y )J

� 2g(JX; Y )QJ) +
�

4(n+ 1)(n+ 2)
(X ^ Y + JX ^ JY + 2g(X; JY )J);

for all vectors X and Y tangent to Mn at the same point. It is easy to check that
these curvature tensors satisfy the following relations:

R(X;Y ) = R(JX; JY ); R(X;Y )J = JR(X;Y ); QJ = JQ; GJ = JG;

C(JX; JY ) = �JC(X;Y )J; P (JX; JY ) = �JP (X;Y )J;

K(JX; JY ) = �JK(X;Y )J; B(JX; JY ) = B(X;Y ); B(X;Y )J = JB(X;Y ):

Then, with respect to an orthonormal basis fe1; . . . ; en; e1� ; . . . ; en�g of the
tangent space Tp(M

n), we have the following formulas:

Qei = �iei; Qei� = �iei� ; where �i = (n+ 1)c=2� 2�i;

Gei = giei; Gei� = giei� ; where gi = �i � �=2n;

R(ei; ej) = �ij(ei ^ ej + ei� ^ ej�) (i 6= j);

R(ei; ej�) = ��ij(ei ^ ej� � ei� ^ ej)� cÆijJ=2;

where �ij = c=2 + �i�j and ��ij = c=2� �i�j ;

C(ei; ej) = (�ij + �ij)ei ^ ej + �ijei� ^ ej� (i 6= j);

C(ei; ej�) = (��ij + �ij)ei ^ ej� � ��ijei� ^ ej �
c

2
ÆijJ;

where �ij =
�

2(n� 1)(2n� 1)
�

1

2(n� 1)
(�i + �j);

P (ei; ej)ek = (�ij � �k=(2n� 1))(Ækjei � Ækiej);

P (ei; ej)ek� = �ij(Ækjei� � Ækiej�);

P (ei; ej�)ek = �(��ij � �k=(2n� 1)Æikej� � ��ijÆjkei� � cÆijek�=2;

P (ei; ej�)ek� = (��ij � �k=(2n� 1)Æjkei + ��ijÆikej + cÆijek=2;

K(ei; ej) = (�ij + kij)ei ^ ej + �ijei� ^ ej� ; (i 6= j);

K(ei; ej�) = (��ij + kij)ei ^ ej� � ��ijei� ^ ej � cÆijJ=2;

where kij = �(�i + �j)=2(n� 1);

B(ei; ej) = �ij(ei ^ ej + ei� ^ ej�); (i 6= j);

B(ei; ej�) = ��ij(ei ^ ej� � ei� ^ ej) + Æij(ki +Q=(n+ 2))J;
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where

�ij = �ij �
1

2(n+ 2)
(�i + �j) +

�

4(n+ 1)(n+ 2)
;

��ij = ��ij �
1

2(n+ 2)
(�i + �j) +

�

4(n+ 1)(n+ 2)
;

ki = �
c

2
�

�

2(n+ 1)(n+ 2)
+

1

n+ 2
�i

for all i; j 2 f1; . . . ; ng.

From [6] we quote the following result.

Lemma A. Let Mn be a complex hypersurface of ~Mn+1(c). If for all indices
i; j 2 f1; . . . ; ng we have

(�) �i�j(�
2
i � �2j ) = 0;

then there exists a number k in f0; . . . ; ng such that

�1 = � � � = �k = � 2 R+
0 ; �k+1 = � � � = �n = 0:

The case k = 0, i.e. �1 = � � � = 0, means that Mn is totally geodesic; the
case k = n implies c > 0 and �2 = c=4 and means that Mn is locally a hypersphere
in CPn+1(c), while the case c = 0 and k = 1 means that Mn is a hypercylinder in
Cn+1.

Concerning the notations R ÆK, Q ÆK, P ÆK, . . . in the introduction we
recall that in these cases R, Q, P , . . . act as derivations on the algebra of tensor
�elds on Mn which commute with contractions. For instance:

(R(X;Y ) ÆK)(U; V )W = R(X;Y )(K(U; V )W )�K(R(X;Y )U; V )W

�K(U;R(X;Y )V )W �K(U; V )(R(X;Y )W );

(Q ÆK)(X;Y )U = Q(K(X;Y )U)�K(QX; Y )U �K(X;QY )U �K(X;Y )(QU);

(K(X;Y ) ÆQ)U = K(X;Y )(QU)�Q(K(X;Y )U);

for all X , Y , U , V , W tangent to Mn.

We will also mention the following lemmas which can be veri�ed by a straight-
forward computation.

Lemma B. If T is a fourth order curvature tensor, then T ÆM = 0 where
M(X;Y ) = X ^ Y .

Lemma C. If T is a fourth order curvature tensor, then T ÆG = T ÆQ.

Lemma D. If T is a fourth order curvature tensor, then the following con-
ditions are equivalent: T Æ P = 0, T ÆR = 0.
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These results enable us to reduce the proofs of theorems in the next section.
Since each of the tensors R, P , C and K can play the role of the tensor T in
Lemma B, we obtain the following identities: R ÆK = R Æ C, C ÆK = C Æ C and
K ÆK = K Æ C. It also follows from Lemma D, that the condition K Æ P = 0 is
equivalent to condition K ÆR = 0.

3. Proofs of Theorems. Proof of Theorem 1. Using the Lemma B we
conclude that R ÆK = R ÆC and from Theorem 1 [6] we immediately get the proof
of Theorem 1.

Proof of Theorem 2. If Mn is Einstain hypersurface, then obviously condi-
tions (1) and (2) are satis�ed. Using Lemma C we get that the condition (3) is also
satis�ed.

Assume G ÆK = 0 and let i, j be distinct indices. Then we have

(10) (�ij + kij)gi = 0; (11) �ijgi = 0; (12) ��ijgi = 0;

since (G ÆK)(ei; ej)ei = (G ÆK)(ei; ej)ei� = (G ÆK)(ei; ej�)ei� = 0. Contrary to
the statement, suppose that G 6= 0. Adding relationns (11) and (12) we get

(13) cgi = 0;

whence c = 0 since G 6= 0. Hence, relation (11) becomes

(14) �i�jgi = 0 (i 6= j):

Substracting relations (10) and (11) we get

(15) kijgi = 0; (i 6= j):

Interchanging indices i, j in (14) and subtracting, we get relation (�) from Lemma
A. Since G 6= 0, we get 0 < k < n, where k is the number existing in Lemma A.
Since then g1 = 2(n�k)�2=n 6= 0 and k1n = �(�1+�n)=2(n�1) = �2=(n�1) 6= 0,
relation (15) with indices i = 1, j = n gives a contradiction. Now, assume that
K ÆQ = 0, G 6= 0 and let i, j be distinct indices. Then we have

(16) �ij(�i ��j) = 0; (17) ��ij(�i��j) = 0; (18) (�ij + kij)(�i� �j) = 0;

since (K(ei; ej) Æ Q)ei� = (K(ei; ej�) Æ Q)ei� = (K(ei; ej) Æ Q)ei = 0. Adding
relations (16) and (17) we get

(19) c(�i � �j) = 0 (i 6= j);

which since G 6= 0 gives c = 0. Hence, relation (16) becomes relation (�). Since
G 6= 0 we also get 0 < k < n. But then, relation (18) with �1 = � > 0 and �n = 0
for i = 1 and j = n, gives a contradiction.
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As we know from Lemma C, K ÆG = K ÆQ and this completes the proof of
Theorem 2.

Proof of Theorem 3. Using Theorem D it is suÆcient to prove that Mn is a
totally geodesic hypersurface. The proof of B ÆK = 0,Mn is a totally geodesic
hypersurface, is identical to the corresponding proof for B Æ C = 0 in [6].

When K Æ B = 0 it follows from (K(ei; ej) Æ B)(ei; ej�)ei = 0, (K(ej ; ei) Æ
B)(ej ; ei�)ei = 0, (K(ei; ej�) Æ B)(ei; ej)ei = 0, and (K(ej ; ei�) Æ B)(ej ; ei)ei = 0,
for distinct i and j that

�ij [2( ��ii � ��ij) + ki � kj ] + kij(kj + �i=(n+ 2)� ��ij) = 0(20)

�ij [2( ��ii � ��ij) + kj � ki] + kij(2 ��ii � ��ij � ki � �i=(n+ 2)) = 0(21)

��ij [2( ��ii � �i) + kj � ki] + kij(kj + �i=(n+ 2)� �ij) = 0(22)

��ij [2( ��ii � �ij) + kj � ki] + kij(2 ��ii � �ij � ki � �i=(n+ 2)) = 0:(23)

Addition of (20) and (21) implies

(24) (2�ij + kij)(�j � �i)(n�i � 2�j) = 0:

Interchanging i and j in (24) and adding, we get

(25) (2�ij + kij)(�i � �j)
2 = 0:

Subtracting (20) and (21) we get

(26) kij(2�i=(n+ 2) + ki + kj � 2��ii) = 0:

Interchanging i and j in (26) and subtracting we get

(27) kij(�i � �j)(�i + �j)(n� 2) = 0:

Addition of (22) and (23) gives

(28) (2��ij + kij)(�i + �j)(n�i + 2�j) = 0:

Inerchanging i and j in (28) and adding, we get

(29) (2��ij + kij)(�i + �j)
2 = 0:

Multiplying (25) by (�i + �j)
2 and (29) by (�i � �j)

2 and subtracting obtained
relations we get the relation (�).

Let us consider the case k = n. From the condition �2 = c=4 we get that
��ij = 0 and hence from (29) it follows kij = 0. Then it follows that c = 0, i.e.
� = 0 which is a contradiction. If k = 0 then Mn is a totally geodesic hypersurface.
Finally, we consider the case 0 < k < n. If we put i = �, j = x in (27), we obtain

(30) k�x(n� 2)�2 = 0:
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Now, we have two possibilities: k�x = 0 or n = 2. If k�x = 0 it follows that
�2 = (n+1)c=2. In this case, relation (25) gives the contradiction c = 0, i.e. � = 0.
If n = 2, i.e. �1 = � 6= 0 and �2 = 0, we obtain that �2 = c from the relation (25).
Using these results, from relation (20) we get c = 0, i.e. � = 0, which is the desired
contradiction.

The implication (3) ) (2) of course is trivial.

Proof of Theorem 4. Each 
at hypersurface Mn obviously satis�es each of
the conditions (1) { (7).

Next, assume K ÆR = 0. Let i, j be distinct indices; then we have

(31) �i�j(2��ii + kii) = 0;

(32) (c=2 + ��ij)(�ij + kij) + (��ij � c=2� 2��ij)�ij = 0;

since (K(ei; ei�) ÆR)(ei; ej)ei = (K(ei; ej) Æ R)(ei� ; ej)ei = 0. Besides, we have by
contraction that K Æ Q = 0, whence by Theorem 2 it follows that G = 0, i.e. we
have relation (�) with k = 0 or k = n. If k = n we get �2 = c=4 and relation
(31) immediately gives the contradiction c = 0. If k = 0, then by relation (32) we
immediately get that c = 0. Hence, Mn is a totally geodesic hypersurface in Cn+1,
thus Mn is 
at.

Now, assume Q ÆK = 0 and suppose that Mn is not 
at, i.e. Q 6= 0. Then,
for distinct indices i and j, we have

(33) (�ij + kij)�i = 0; (34) �ij�i = 0; (35) ��ij�i = 0;

since (Q Æ K)(ei; ej)ei = (Q Æ K)(ei; ej)ei� = (Q Æ K)(ei; ej�)ei� = 0. Adding
relations (34) and (35), we get

(36) c�i = 0;

which since Q 6= 0 gives c = 0. Hence, relation (34) gives

(37) �i�j = 0; (i 6= j):

Thus we get relation (�) with k = 0 or k = 1. Since Q 6= 0, we get k 6= 0. Hence,
necessarily k = 1. Since then �1 = �2�2 and �n = 0, relation (33) with i = 1,
j = n gives the contradiction � = 0. Therefore (6) ) (8).

Next, assume that K Æ C = 0. Let i, j be distinct indices; then, we get from
the conditions (K(ei; ej) Æ C)(ei; ei�)ei = 0, (K(ei; ej) Æ C)(ei; ei�)ej = 0, that

(38) �ij [2(��ii � ��ij) + �ii � �ij ]� kij(c=2 + ��ij) = 0;

(39) �ij [2(��ii � ��ij) + �ii � �ij ] + kij(2��ii � ��ij + �ii � �ij + c=2) = 0
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Addition of these formulas implies

(40) (2�ij + kij)(�i � �j) = 0;

whereas subtraction yields

(41) kij [3(n� 1)c� 2(2n� 3)�2i � 2�2j ] = 0:

For mutually distinct indices i and j we obtain

(42) ��ij [2(��ii � �ii) + �ii � �ij ]� kij(c=2 + �ij) = 0;

(43) ��ij [2(��ii � �ij) + �ii � �ij ] + kij(2��ii � ��ij + �ii � �ij + c=2) = 0

since (K(ei; ej�) ÆC)(ei; ei�)ej = 0 and (K(ei� ; ej) ÆC)(ei; ei�)ej = 0. Adding (42)
and (43) gives

(44) (2��ij + kij)(�i + �j) = 0:

Multiplying (40) by �i+�j and (44) by �i��j and subtracting obtained relations,
we get the relation (�). If k = 0 then relation (41) immediately gives c = 0, thus
Mn is a 
at hypersurface. If k = n, then �1 = � � � = �n = � > 0 where �2 = c=4
and relation (41) gives the contradiction c = 0. In case 0 < k < n we put i = 1,
j = n in (38). This implies that �2 = 3(n + 1)c=4n, (c 6= 0). Substituting this
result into (41), we get c = 0, which is again a contradiction. This shows that the
unique possible case is that Mn is 
at and therefore (2) ) (8).

Next, assume that P ÆK = 0. Let i, j be distinct indices; then we have

�i�j(2��ii � ��i) = 0; (� = 1=(2n� 1));(45)

(2��ij � 2��ii + kij � kii)�ij � ��i(��ij + c=2) = 0;(46)

(47) (2��ij � 2��ii + kij � kii)�ij � ��i(��ij + kij) + ��j(2��ii + kii + c=2) = 0;

since (P (ei; ei�)ÆK)(ei; ej)ei = (P (ei; ej)ÆK)(ei� ; ei)ei = (P (ei; ej)ÆK)(ei� ; ei)ej =
0. Interchanging in relation (45) indices i, j and subtracting, we get relation (�).
Interchanging in relation (46) indices i, j and subtracting, we get

(48) (�2i � �2j )[(2n� 1)(n� 2)�ij + (n� 1)c=2 + (n� 1)��ij ] = 0; (i 6= j):

Assume that k = 0. Then relation (46) gives c = 0, thus Mn is 
at. Assume that
k = n. Then relation (45) gives �2 = (n�2)c=8(n�1) whence as before we have the
contradiction � = 0. Finally, assume that 0 < k < n. Then, taking in relation (48)
i = x and j = �, (�x = 0, �� = � > 0), we have c = 0. Subtracting relations (46)
and (47) when we put i = x, j = � and c = 0, we get � = 0, i.e. a contradiction.
This completes the proof of (5) ) (8).
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