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FIXED POINT THEOREMS FOR PAIRS OF SELFMAPS

ON A METRIC SPACE

S.V.R. Naidu and J. Rajendra Prasad�

Abstract. An attempt is made to �nd out conditions an the orbits of a pair of selfmaps
on a metric space so as to ensure the existence of (common) �xed points when the maps satisfy
a variety of generalized contraction conditions governed by a control function.

We obtain �xed points theorems for two selfmaps on a metric space and derive
certain results of Ding [1] and Fisher [2] as corollaries.

In Section 2, we provide a number of examples to give insight into the results
discussed in Section 1.

Throughout this paper:

(X; d) is a metric space;

f , g are selfmaps on X ;

i, j, r, s, m, n are nonnegative integers;

for any selfmap h on X and x in X , Oh(x) = fhnx j n = 0; 1; 2; . . .g;

for any subset A of X , Æ(A) = supfd(x; y) j x; y 2 Ag;

for x, y in X , �(x; y) = Æ(Of (x) [ Og(y)) and

�(x; y) = supfd(f ix; giy) j i � 0; j � 0g;

R+ is the set of all nonnegative real numbers; and

' : [0;1]! [0;1] as an increasing function.

De�nition. A selfmap h on (X; d) is said to be orbitally continuous at z 2 X
if hz = z, when fhnxg converges to z for some x in X .

Section 1. We begin with:

Lemma 1. If limn!1 'n(t) = 0 for every t in (0;1), then '2(t+) � '(t) < t
for every t in (0;1) and '(0+) = 0.
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Theorem 1. Suppose that

inf
1�n<1

�(fnx; gny) � '(�(x; y)) (I)

for all x, y in X, where '(t+) < t for every t in (0;1). Suppose also that there is
an x0 in X such that fd(fnx0; g

nx0)g converges to zero and one of the sequences
ffnx0g and fgnx0g is bounded. Then ffnx0g and fgnx0g are Cauchy sequences
and if one of them converges, then the other also converges to the same limit.
Furthermore, if either f or g has a �xed point w, then the two sequences converge
to w. Suppose that ffnx0g converges to some z in X. Then z is a �xed point of
f(g) if f or f2 (g or g2) is orbitally continuous at x.

Proof. Let �n = �(fnx; gnx0) (n = 0; 1; 2; . . . ). Since fd(fnx0; g
nx0)g con-

verges to zero and one of the sequences ffnx0g and fgnx0g is bounded, it is clear
that �0 < +1. The sequence f�ng is a decreasing sequence of nonnegative real
numbers. So it converges to some nonnegative real number �. If possible, suppose
that � > 0. Then '(�+) < �. Hence, there exists a real number � > � such
that '(�) < �. Choose �1 such that '(�) < �1 < �. Since f�ng decreases to �,
there exists a positive integer N such that �N < �. For x = fNx0 and y = gNx0,
the right-hand side of inequality (I) is '(�N ) which is less than �1. Hence, from
inequality (I) for x = fNx0 and y = gNx0, it follows that there exists an integer
N1 � N such that �(fN1x0; g

N1x0) < �1. Since fd(fnx0; g
nx0)g converges to zero,

there exists an integer N2 � N1 such that d(fnx0; g
nx0) < (� � �1)=2 for every

n � N2. For n > N2, it is now clear that �n � �1+(���1)=2 = (�+�1)=2. Since
f�ng decreases to �, it now follows that � � (� + �1)=2. This is a contradiction,
since �1 < �. Hence, � = 0. Hence, ffnx0g and and fgnx0g are Cauchy sequences
and if one of them converges, then the other also converges to the same limit.

Suppose now that fw = w. Let n = supfd(w; gjx0) j j � ng (n = 1; 2; . . . )
and  = inffn j n � 1g. Taking x = w and y = gnx0 in equality (I), we obtain:

 � '(fwg [ Og(g
nx0)) � '(maxfn; Æ(Og(g

nx0))g):

Since fng decreases to  and fgnx0g is Cauchy, by taking limits on both sides of
the inequality above as n!1, we obtain  � '(+). Hence  = 0. Hence fgnx0g
converges to w. In a similar manner, it can be shown that ffnx0g converges to w
if gw = w.

Suppose that f2 is orbitally continuous at z. Since ff2nx0g converges to
z, it follows that f2z = z. Hence, Of (z) = fz; fzg. For any nonnegative inte-
ger k, inf1�n<1 �(fnz; gn(gkx0)) = d(z; fz). Hence, from inequality (I), we have
d(z; fz) � '(�(z; gkx0)) for any nonnegative integer k. Since �(z; gkx0)! d(z; fz)
as k ! 1, it now follows that d(z; fz) � '(d(z; fz)+). Since '(t+) < t for every
t in (0;1), we must have d(z; fz) = 0. Hence fz = z. In a similar manner, it can
be shown that gz = z if g2 it orbitally continuous at z.

Corollary 1. Theorem 1 holds with inequality (II) below in the place of
inequality (I), where p and q are �xed positive integers:

d(fpx; gqy) � '(�(x; y)): (II)
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Remark 1. Theorem 1.11 of Sastry and Naidu [4] is a special case of Corollary
1 with f = g, p = q and '(t) = �t, � being a constant in [0; 1).

Corollary 2. Suppose that

d(fpx; gqy) � '(Æ(ff ix; giy j 0 � i � p; 0 � j � qg)) (III)

for all x, y in X, where p and q are �xed positive integers, '(t+) < t for every t in
(0;1) and limt!+1[t�'(t)] = +1. Suppose also that there is an x0 in X such that
fd(fnx0; g

nx0)g converges to zero. Then ffnx0g and fgnx0g are Cauchy sequences,
and if one of them converges, then the other also converges to the same limit.
Furthermore, if either f or g has a �xed point w, then both sequences converge to
w. Suppose that ffnx0g converges to some x in X. Then the following statements
hold:

1. if f or f2 is orbitally continuous at z or p = 1, then fz = z.

2. if g or g2 is orbitally continuous at z or q = 1, then gz = z.

Proof. We need only prove that z is a �xed point of f or g according as p
or q is one; the rest of the Corollary is evident from Corollary 1 and statement 3
of Lemma 3 of [5]. Suppose now that p = 1. Then for n � q, from inequality (III),
we have

d(fz; gnx0) � '(Æ(fz; fz; gjx0 j n� q � j � ng)):

Since fgnx0g converges to z, by taking limits on both sides of the inequality above
as n!1, we obtain d(fz; z) � '(d(fz; z)+). Hence, d(fz; z) = 0. Hence, fz = z.
In a similar manner, it can be shown that gz = z when q = 1.

Remark 2. Example 1 shows that in Corollary 2, the condition ''(t+) < t for
every t in (0;1)' cannot be replaced by the weaker condition 'limn!1 'n(t) = 0
for every t in (0;+1), even if (X; d) is a bounded, complete metric space, f and g
are continuous on X and p = q = 1.

Remark 3. Examples 5 and 6 of Sastry and Naidu [3] show that in Corollary
2 one cannot drop the condition 'there is an x0 in X such that fd(fnx0; g

nx0)g
converges to zero' even if X is �nite and p = q = 1.

Remark 4. Example 2 shows that the initial hypothesis of Corollary 2 (Corol-
lary 1) cannot guarantee the existence of a �xed point for either f or g, even if
(X; d) is compact, f3 and g3 are continuous on X , p = q = 2 (p = q = 1) and
'(t) = �t, � being a constant in [0; 1).

Remark 5. Example 3 shows that the initial hypothesis of Corollary 2 (Corol-
lary 1) cannot guarantee the existence of a �xed point for f , even if it is strengthened
by assuming that (X; d) is compact, f3 is continuous on X , p = 2 (p = 1), g is
continuous on X (consequently gz = z), q = 1 and '(t) = t=2.

Remark 6. In Corollary 1, the condition 'fd(fnx0; g
nx0)g converges to zero'

can be replaced by the commutativity of f and g provided ff igjx0 j i � 0; j � 0g
is bounded [5]. Example 4 shows that this is not so in the case of Theorem 1 even
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if (X; d) is a bounded complete metric space, f and g are continuous on X and
'(t) = t=2.

It is possible to drop the condition 'fd(fnx0; g
nx0)g converges to zero' from

Theorem 1 by suitably strengthening inequality (I).

Theorem 2. Suppose that

inf
1�n<1

�(fnx; gny) � '(�(x; y)) (IV)

for all x, y in X, where '(t+) < t for every t, in (0;1). Suppose also that there
is an x0 in X such that �(x0; x0) < +1. Then ffnx0g and fgnx0g are Cauchy
sequences and fd(fnx0; g

nx0)g converges to zero. In fact, ffnxg and fgnyg are
Cauchy sequences and fd(fnx; gny)g converges to zero, whenever �(x; y) < +1.
In particular, each of f and g has at most one �xed point and if either f or g
has a �xed point w, then both ffnx0g and fgnx0g converges to w. Suppose that
ffnx0g converges to some z in X. Then z is �xed point of f(g) if fk(gk) is orbitally
continuous at z for some positive integer k.

Proof. Let x, y be elements of X such that �(x; y) < +1. Let �n =
�(fnx; gny) (n = 0; 1; 2; . . . ) and � = inff�n j n � 1g. Then f�ng is a decreasing
sequence of nonnegative real numbers decreasing to the nonnegative real number
�. Taking fmx in the place of x and gmy in the place of y in inequality (IV), we
obtain � � '(�m) (m = 0; 1; 2; . . . ). Hence, � � '(�+). Hence, � = 0. Hence
ffnxg and fgnyg are Cauchy sequences and fd(fnx; gny)g converges to zero. The
theorem is now evident.

Corollary 3. Suppose that

�(fp(x)x; gq(y)y) � '(�(x; y)) (V)

for all x, y in X where limn!1 'n(t) = 0 for every t in (0;1) and p and q are
functions from X into the set of all positive integers. Suppose also that there is
an x0 in X such that �(x0; x0) < +1. Then ffnx0g and fgnx0g are Cauchy
sequences and fd(fnx0; g

nx0)g converges to zero. In fact, ffnxg and fgnyg are
Cauchy sequences and fd(fnx; gny)g converges to zero, whenever �(x; y) < +1.
In particular, aech of f and g has at most one �xed point and if either f or g has
a �xed point w then both ffnx0g and fgnx0g converge to w. Suppose that ffnx0g
converges to z for some z in X. Then the following statements hold:

1. if fk(gk) is orbitally continuous at z for some positive integer k, then fz = z
(gz = z);

2. if p(z) = 1 and ffnzg is bounded, then fz = z;

3. if q(z) = 1 and fgnzg is bounded, then gz = z.

Proof. For x, y in X , let x1 = fp(x)x, y1 = gq(y)y, ~p(x) = p(x) + p(x1) and
~q(y) = q(y) + q(y1). Then, from inequality (V), we have

�(f ~p(x)x; g~q(x)y) = �(fp(x1)x1; g
q(y1)y1) � '(�(x1; y1)) � '2(�(x; y))
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for all x, y in X . Hence, inequality (IV) holds for all x, y in X with '2 in the place
of '. From Lemma 1 we have '2(t+) < t for every t in (0;1). Now we need only
prove statements 2 and 3, since the rest of the Corollary is evident from Theorem
2.

2. Suppose that p(z) = 1 and ffn(z)g is bounded. Let �(z) = Æ(Of (z)).

Then 0 � �(z) < +1. Let xk = gq(xk�1)xk�1 and k = supfd(z; gnxk) j u =
0; 1; 2; . . .g (k = 1; 2; 3; . . . ). Since fxkg is a subsequence of fgnx0g and the latter
converges to z, it is clear that f�(fz; xk)g and f�(z; xk)g converge to �(z) and
fkg converges to zero. Since p(z) = 1, for k � 2, from inequality (V), we have

�(fz; xk) � '(�(z; xk�1)) � '(maxf�(fz; xk�1); �(z); k�1g)

� '(maxf'(�(z; xk�2)); �(z); k�1g):

Hence, �(fz; xk) � maxf'2(�(z; xk�2)); '(�(z)); k�1g for k � 2. Taking
limits on both sides of the inequality above as k ! 1, we obtain �(z) �
maxf'2(�(z)+); '(�(z))g. Now from Lemma 1 it follows that �(z) = 0. Hence,
fz = z.

3. The proof of statement 3 is analogous to the proof of statement 2.

Remark 7. Example 5 shows that none of the conclusions of the �rst part of
Theorem 6 (or Corollary 3) of Ding [1] is true even if (X; d) is a bounded (complete)
metric space, '(t) = t=2 and the functions m and n (mentioned in the results of
Ding) take the constant value one troughout X . Corollary 3 is an improvement
over the second part of Theorem 6 of Ding [1].

Theorem 3. Theorem 2 holds with the following inequality in the place of
inequality (IV):

inf
1�n<1

�(fnx; gny) � '(�(x; y)):

Proof. Let x, y be elements of X such that �(x; y) < +1. Proceeding as
in the proof of Theorem 2, it can be shown that inff�(fnx; gny) j n = 1; 2; 3; . . .g
is zero. Hence, f�(fnx; gny)g converges to zero. In particular, fd(fnx; gny)g con-
verges to zero. Since d(fnx; fmx) � d(fnx; gny) + d(fmx; gny) � 2�(fnx; gny) for
all m � n, it is clear that ffnxg is Cauchy. Similarly it can be shown that fgnyg
is Cauchy. The theorem is now evident.

Remark 8. Example 6 shows that either in Theorem 1 or in Theorem 2 or in
Theorem 3, the condition ''(t+) < t for every t in (0;1)' cannot be replaced by
the weaker condition 'limn!1 'n(t) = 0 for every t in (0;1)', even if (X; d) is a
bounded, complete metric space, f = g and f is continuous on X .

Corollary 4. Corollary 3 holds with inequality (VI) below in the place of
inequality (V):

�(fp(x)x; gq(y)y) � '(�(x; y)): (VI)

Proof. Corollary 4 can be proved along the lines of the proof of Corollary
3 with obvious modi�cations, such as the replacement of � with � except in the
de�nition of �(z) which is to be de�ned here as supfd(z; fnz) j n = 1; 2; 3; . . .g.
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Remark 9. Example 7 shows that the initial hypothesis of Corollary 3 or 4
does not guarantee the existence of a �xed point for f even if (X; d) is compact,
g is continuous on X (consequently, g has a �xed point), p takes the value one
troughout X , except at a single point where it takes the value 2, q(y) = 1 for all y
in X and '(t) = t=2. It also shows that the condition 'p(z) = 1' cannot be dropped
from statement 2 of Corollary 3 or 4 even if p(x) = 1 for all x in X n fzg.

Corollary 5. Corollary 4 holds with inequality (VII) below in the place of
inequality (VI), the statement 'p and q are �xed positive integers' in the place of
the statement 'p and q are functions from X into the set of all positive integers', p
in the place of p(z) and q in the place of q(z):

d(fpx; gqy) � '(�(x; y)): (VII)

Proof. The validity of inequality (VII) for all x, y in X implies that of
inequality (VI) with p(x) = p and q(y) = q for all x, y in X .

Remark 10. Example 8 shows that in statement 2 of Corollary 3, or 4, or
5, one cannot drop the condition 'ffnzg is bounded' even if (X; d) is complete,
p = q = 1 and '(t) = t=2. In fact, the example shows that the remark is true
whether g is continuous on X (and therefore g has a �xed point) or f = g.

Corollary 6. Suppose that

d(fpx; gqy) � 'maxfd(f ix; gjy) j 0 � i � p; 0 � j � qg) (VIII)

for all x, y in X, where p and q are �xed positive integers, limn!1 'n(t) = 0 for
every t in (0;1) and limt!+1[t�'(t)] = +1. Then for all x, y in X, ffnxg and
fgnyg are Cauchy sequences and fd(fnx; gny)g converges to zero. In particular,
each of f and g has at most one �xed point. Suppose that there is an x0 in X such
that ffnx0g converges to z for some z in X. Then for all x in X, ffnxg and fgnxg
converge to z. Furthermore, the following statements hold:

1. if either p = 1 or fk is orbitally continuous at z for some positive integer k,
then fz = z;

2. if either q = 1 or fk is orbitally continuous at z for some positive integer k,
then gz = z.

Proof. Let x in X . Let M = maxfd(gsx; gqx) j 0 � s � qg and n =
maxfd(frx; gqx) j 0 � r � ng (n = 0; 1; 2; . . . ). For p � i � n, from inequality
(VIII), we have

d(f ix; gqx) � '(maxfd(frx; gsx) j i� p � r � i; 0 � s � qg) � '(n +M):

Hence, n � '(n +M) + p (n = 1; 2; 3; . . . ). Hence (n +M) � '(n +M) �
M + p (n = 1; 2; 3; . . . ). Since limt!+1[t� '(t)] = +1, it now follows that fng
is bounded. Hence ffnxg is bounded for each x in X . Similarly it can be shown
that fgnxg is bounded for each x in X . Hence �(x; y) < +1 for all x, y in X .
Now the corollary is evident from Corollary 5.
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Remark 11. Theorem 2 of Fisher [2] is a special case of Corollary 6 with
'(t) = �t, � being a constant in [0; 1). Example 9 shows that Corollary 6 is a
proper generalization of Fisher's theorem.

Remark 12. Example 10 shows that in Corollary 6 one cannot conclude that
the sequence ffnxg is bounded (and therefore Cauchy) even if (X; d) is complete,
f = g and p = q = 1 if the condition `limt!+1[t� '(t)] = +1' is dropped. From
the example it is also evident that a similar remark holds in the case of Corollary 2.

Remark 13. Example 11 shows that, when p = q = 2, the initaial hypothesis
of Corollary 6 (and therefore that of Corollary 5) does not guarantee the existence
of a �xed point for f even if (X; d) is compact, f = g and '(t) = t=2.

Remark 14. Example 12 shows that when p = 2, the initial hypothesis of
Corollary 6 cannot ensure the existence of a �xed point for f even if (X; d) is
compact, g has a �xed point and '(t) = t=2.

Remark 15. Example 13 shows that in Corollary 6 it is not possible to take
p and q even as bounded functions from X into the set of all positive integers and
replace p with p(x) and q with q(y) in inequality (VIII) even if (X; d) is a bounded,
complete metric space, f = g and '(t) = t=2. In fact, the example shows that it
is not possible to take even p alone as a bounded function and q = 1. It is evident
that similar remarks hold also in the case of Corollaries 1, 2 and 5.

2. Examples. 1. Let X be the set of all integers with a metric d de�ned
on it by d(m;�m) = 1=m if m > 0, d(0;m) = 1 if m > 0, d(0;�m) = 1 + 1=m if
m > 0, d(m;n) = d(�m;�n) = 1 + 1=n if 0 < m < n and d(m;�n) = 1 if m > 0,
n > 0 and m 6= n. De�ne f; g : X ! X by:

fx =

8><
>:

�x if x < 0;

1 + x if x � 0;

gy =

8><
>:

0 if y > 1;

�2 if y = 1;

y � 1 if y � 0:

De�ne ' : R+ ! R+ by '(t) =

�
1 if t > 1;

0 if t � 1:
Then (X; d) is bounded, complete

metric space; f and g are continuous on X ; ' is increasing on R+, '2(t) = 0 for
every t in R+, and

d(fx; gy) � '(Æfx; fx; y; gyg)

for all x, y in X . The sequence fd(fn0; gn0)g converges to zero. But there is no x
in X for which either ffnxg or fgnxg is Cauchy. In particular, neither f nor g has
a �xed point.

2. Let X = f0g [ f2�n; �2�n j n = 0; 1; 2; . . .g with the usual metric.
De�ne f; g : X ! X by f0 = 1, f1 = �1, f(�1) = 0, fx = x=2 if x = 2�n and
n is odd or x = �2�n, n is even and n 6= 0, fx = �x=2 if x = 2�n n is even
and n 6= 0 or x = �2�n and n is odd, g0 = 2�1, g1 = g(�1) = g(�2�1) = 0,
g(2�1) = �2�1 and gx = fx for all x in X n f0; 1;�1;�2�1g. Then f3 and g3

are continuous on X ; f30 = g30 = 0 = limn!1 gnx = limn!1 fnx for all x in
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f2�k; �2�k j k = 2; 3; . . .g and jfx�gyj � (4=5)maxfÆfx; fx; f2xg; Æfy; gy; g2ygg,
jf2x� g2yj � (3=4)maxfÆfx; fx; f2xg; Æfy; gy; g2ygg for all x, y in X . In fact, for
all integers p; q � 2, we have

jfpx� gqyj � (3=4)maxfÆfx; fx; f2xg; Æfy; gy; g2ygg

for all x, y in X . But neither f nor g has a �xed point.

3. Let X = f�1; 0; 1g [ f2�n j n = 1; 2; . . .g with the usual metric. De�ne
f; g : X ! X by f(�1) = 0, f0 = 1, f1 = �1, f(2�n) = 2�n�1(n = 1; 2; . . . ) and
gx = 0 for all x in X . Then f3 and g are continuous on X , limn!1 fnx = 0 =
g(0) = limn!1 gnx for all x in f2�k j k = 1; 2; . . .g and

jfx� gyj � Æfx; fx; f2x; gyg=2;

jf2x� gyj � Æfx; fx; f2x; gyg=2

for all x, y in X . In fact, for all positive integers p, q, we have

jfpx� gqyj � 2�1maxfÆfx; fx; f2xg; d(x; gy)g

for all x, y in X . But f has no �xed point.

4. Let X be the set of all positive integers with a metric d de�ned on it by
d(x; x+1) = 2 for all x in X and d(x; y) = 1 if x and y are distinct nonconsecutive
positive integers. De�ne f : X ! X as fx = x + 1 for all x in X . Let g be
the identity map on X . Then (X; d) is a bounded, complete metric space with no
accumulation points, and

inf
1�n<1

�(fnx; gny) = 2�1d(x; fx) = 2�1�(x; y)

for all x, y in X . But, for no x in X , ffnxg is Cauchy.

5. Let X = f3; 4; 5; . . .g with a metric d de�ned on it as in Example 4.
De�ne f; g : X ! X by

f(n) =

8><
>:

n+ 1 if n is even;

2n + 3 if n is odd;

g(n) =

8><
>:

2n if n is even;

n+ 1 if n is odd:

Then (X; d) is a bounded, complete metric space with no accumulation points and

Æ(Of (fx) [ Og(gx)) = 2�1maxfd(x; fx); d(x; gx)g = 2�1Æ(Of (x) [Og(x))

for all x in X . But there is no x in X for which either ffnxg or fgnxg is Cauchy.
In particular, neither f nor g has a �xed point in X .

6. Let X be the set of all positive integers with a metric d de�ned on it by
d(x; y) = 1+ 1=y if x < y. De�ne f : X ! X by fx = x+1. De�ne ' : R+ ! R+

by '(t) = 1 if t > 1 and '(t) = 0 if t � 1. Then (X; d) is a bounded, complete
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metric space with no accumulation points, ' is increasing on R+, '2(t) = 0 for
every t in R+ and

inf
1�n<1

Æ(Of (f
nx) [ Of (f

ny)) � '(minfmaxfd(x; y); d(fx; y)g;

maxfd(x; y); d(x; fy)g; maxfd(fx; y); d(x; fy)gg)

for all x, y in X . But, for no x in X , the sequence ffnxg is Cauchy. Clearly, f has
no �xed point.

7. Let X = f0g [ f2�n j n = 0; 1; 2; . . .g with the usual metric. De�ne
f; g : X ! X by f0 = 1, fx = x=2 for x 6= 0 and gx = x=2 for all x in X . Then
X is compact, g is continuous on X , g0 = 0, ffnxg and fgnxg converge to zero for
each x in X ,

�(fx; gy) � 2�1�(x; y)

for all x in X n f0g and for all y in X , and

�(f20; gy) � 2�1�(0; y)

for all y in X . But f has no �xed point.

8. Let X = f2�n j n = 0; 1; 2; . . .g [ f0;�1;�2;�3; . . .g with the usual
metric. De�ne f : X ! X by fx = x� 1 if x 2 f0;�1;�2;�3; . . .g and fx = x=2
if x 2 f2�n j n = 0; 1; 2; . . .g. Let g be the constant map zero on X . Then

�(fx; gy) � 2�1Æ(Of (x)) = 2�1�(x; y);

Æ(Of (fx) [ Of (fy)) � 2�1 supfjf ix� f jyj j i � 0; j � 0g

for all x, y in X . For x > 0, ffnxg and fgnxg converge to zero. But ffn0g is
unbounded. Clearly, f has no �xed point.

9. Let X = f0; 1; 1=2; 1=3; . . .g with the usual metric. De�ne f : X ! X as
f0 = 0, f(1=n) = 1=(n+1) (n = 1; 2; . . . ). De�ne ' : R+ ! R+ by '(t) = t=(1+t).
Then ' is an increasing function on R+, '(t) < t for every t > 0,

lim
t!+1

[t� '(t)] = +1 and jfx� fyj � '(maxfjx� fyj; jfx� yjg)

for all x, y in X . But there is no constant � in [0; 1) such that

jfx� fyj � �maxfjx� yj; jfx� yj; jx� fyjg

for all x, y in X .

10. Let X = [1;1) with the usual metric. De�ne f : X ! X by fx = 2x
and ' : R+ ! R+ as '(t) = 2t2=(1 + 2t). Then ' is an increasing continuous
function on R+, '(t) < t for every t > 0, limt!+1[t� '(t)] = 1=2,

jfx� fyj � '(maxfjx� yj; jfx� yj; jx� fyjg)

for all x, y in X , and, for each x in X , fnx! +1 as n!1.
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11. Let X = f�1; 0; 1g[f2�n j n = 1; 2; 3; . . .g with the usual metric. De�ne
f : X ! X by f(�1) = 2�1, f(0) = �1, f(2�n) = 2�n�1(n = 0; 1; 2; . . . ). Then

jf2x� f2yj � 2�1maxfjx� yj; jx� fyj; jfx� yjg

for all x, y in X . But f has no �xed point.

12. Let X = f�1; 0; 1g[f2�n j n = 1; 2; 3; . . .g with the usual metric. De�ne
f; g : X ! X by f(�1) = g(�1) = 2�1, f(0) = �1, g(0) = 0, f(2�n) = g(2�n) =
2�n�1(n = 0; 1; 2; . . . ). Then

jf2x� gyj � 2�1maxfjx� yj; jfx� yjg

for all x, y in X . Then g has a unique �xed point, namely, zero. But f has no �xed
point.

13. Let X = f0g [ f2; 3; 4; . . .g [ f�1=n j n = 2; 3; 4; . . .g. De�ne a metric d

on X by d(x; y) =

�
jx� yj if jx� yj � 2;

2 if jx� yj > 2:
De�ne f; g : X ! X by g(x) = 0 for

all x in X and

f(x) =

8><
>:
�1=2 if x = 0;

�1=(x+ 1) if x 2 f2; 3; 4; . . .g;

�1=x if x 2 f�1=n j n = 2; 3; 4; . . .g:

De�ne p : X ! f1; 2; 3g by p(0) = 3, p(x) = 1 if x 2 f2; 3; 4; . . .g and p(x) = 2 if
x 2 f�1=n j n = 2; 3; 4; . . .g. Then (X; d) is a bounded, complete metric space and

d(fp(x)x; gy) � 2�1d(fp(x)�1x; gy);

d(fp(x)x; fp(y)y) � 2�1d(fp(x)�1x; fp(y)�1y)

for all x, y in X . But, for no x in X , the sequence ffnxg is Cauchy. In particular,
f has no �xed point. Furthermore, (X; j � j) is an unbounded complete metric space
and

jfp(x)x� gyj � 2�1jfp(x)�1x� gyj;

jfp(x)x� fp(y)yj � 2�1jfp(x)�1x� fp(y)�1yj

for all x, y in X , where j � j denotes the modulus function. For any x in X , ffnxg
is unbounded in (X; j � j).
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