PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 44 (58), 1988, pp.65-75

FIXED POINT THEOREMS FOR PAIRS OF SELFMAPS ON A METRIC SPACE

S.V.R. Naidu and J. Rajendra Prasad*

Abstract. An attempt is made to find out conditions an the orbits of a pair of selfmaps on a metric space so as to ensure the existence of (common) fixed points when the maps satisfy a variety of generalized contraction conditions governed by a control function.

We obtain fixed points theorems for two selfmaps on a metric space and derive certain results of Ding [1] and Fisher [2] as corollaries.

In Section 2, we provide a number of examples to give insight into the results discussed in Section 1.

Throughout this paper:

(X, d) is a metric space;

f, g are selfmaps on X;

i, j, r, s, m, n are nonnegative integers;

for any selfmap h on X and x in X, $O_h(x) = \{h^n x \mid n = 0, 1, 2, ...\};$

for any subset A of X, $\delta(A) = \sup\{d(x, y) \mid x, y \in A\};\$

for x, y in X, $\alpha(x, y) = \delta(O_f(x) \cup O_g(y))$ and

 $\beta(x, y) = \sup\{d(f^{i}x, g^{i}y) \mid i \ge 0, \ j \ge 0\};\$

 R^+ is the set of all nonnegative real numbers; and

 $\varphi: [0,\infty] \to [0,\infty]$ as an increasing function.

Definition. A selfmap h on (X, d) is said to be orbitally continuous at $z \in X$ if hz = z, when $\{h^n x\}$ converges to z for some x in X.

Section 1. We begin with:

LEMMA 1. If $\lim_{n\to\infty} \varphi^n(t) = 0$ for every t in $(0,\infty)$, then $\varphi^2(t+) \leq \varphi(t) < t$ for every t in $(0,\infty)$ and $\varphi(0+) = 0$.

AMS Subject Classification (1980): Primary 47M10, Secondary 54H25

^{*} Research supproted by U.G.C., New Delhi

THEOREM 1. Suppose that

$$\inf_{1 \le n < \infty} \beta(f^n x, g^n y) \le \varphi(\alpha(x, y)) \tag{I}$$

for all x, y in X, where $\varphi(t+) < t$ for every t in $(0, \infty)$. Suppose also that there is an x_0 in X such that $\{d(f^n x_0, g^n x_0)\}$ converges to zero and one of the sequences $\{f^n x_0\}$ and $\{g^n x_0\}$ is bounded. Then $\{f^n x_0\}$ and $\{g^n x_0\}$ are Cauchy sequences and if one of them converges, then the other also converges to the same limit. Furthermore, if either f or g has a fixed point w, then the two sequences converge to w. Suppose that $\{f^n x_0\}$ converges to some z in X. Then z is a fixed point of f(g) if f or f^2 (g or g^2) is orbitally continuous at x.

Proof. Let $\alpha_n = \alpha(f^n x, g^n x_0) \ (n = 0, 1, 2, ...)$. Since $\{d(f^n x_0, g^n x_0)\}$ converges to zero and one of the sequences $\{f^n x_0\}$ and $\{g^n x_0\}$ is bounded, it is clear that $\alpha_0 < +\infty$. The sequence $\{\alpha_n\}$ is a decreasing sequence of nonnegative real numbers. So it converges to some nonnegative real number α . If possible, suppose that $\alpha > 0$. Then $\varphi(\alpha +) < \alpha$. Hence, there exists a real number $\beta > \alpha$ such that $\varphi(\beta) < \alpha$. Choose β^1 such that $\varphi(\beta) < \beta^1 < \alpha$. Since $\{\alpha_n\}$ decreases to α , there exists a positive integer N such that $\alpha_N < \beta$. For $x = f^N x_0$ and $y = g^N x_0$, the right-hand side of inequality (I) is $\varphi(\alpha_N)$ which is less than β^1 . Hence, from inequality (I) for $x = f^N x_0$ and $y = g^N x_0$, it follows that there exists an integer $N_1 \ge N$ such that $\beta(f^{N_1} x_0, g^{N_1} x_0) < \beta^1$. Since $\{d(f^n x_0, g^n x_0)\}$ converges to zero, there exists an integer $N_2 \ge N_1$ such that $\alpha_1 \le \beta^1 + (\alpha - \beta^1)/2 = (\alpha + \beta^1)/2$. Since $\{\alpha_n\}$ decreases to α , it now follows that $\alpha \le (\alpha + \beta^1)/2$. This is a contradiction, since $\beta^1 < \alpha$. Hence, $\alpha = 0$. Hence, $\{f^n x_0\}$ and $\{g^n x_0\}$ are Cauchy sequences and if one of them converges, then the other also converges to the same limit.

Suppose now that fw = w. Let $\gamma_n = \sup\{d(w, g^j x_0) \mid j \ge n\}$ (n = 1, 2, ...)and $\gamma = \inf\{\gamma_n \mid n \ge 1\}$. Taking x = w and $y = g^n x_0$ in equality (I), we obtain:

$$\gamma \le \varphi(\{w\} \cup O_g(g^n x_0)) \le \varphi(\max\{\gamma_n, \delta(O_g(g^n x_0))\}).$$

Since $\{\gamma_n\}$ decreases to γ and $\{g^n x_0\}$ is Cauchy, by taking limits on both sides of the inequality above as $n \to \infty$, we obtain $\gamma \leq \varphi(\gamma+)$. Hence $\gamma = 0$. Hence $\{g_n x_0\}$ converges to w. In a similar manner, it can be shown that $\{f^n x_0\}$ converges to w if gw = w.

Suppose that f^2 is orbitally continuous at z. Since $\{f^{2n}x_0\}$ converges to z, it follows that $f^2z = z$. Hence, $O_f(z) = \{z, fz\}$. For any nonnegative integer k, $\inf_{1 \le n < \infty} \beta(f^n z, g^n(g^k x_0)) = d(z, fz)$. Hence, from inequality (I), we have $d(z, fz) \le \varphi(\alpha(z, g^k x_0))$ for any nonnegative integer k. Since $\alpha(z, g^k x_0) \to d(z, fz)$ as $k \to \infty$, it now follows that $d(z, fz) \le \varphi(d(z, fz)+)$. Since $\varphi(t+) < t$ for every t in $(0, \infty)$, we must have d(z, fz) = 0. Hence fz = z. In a similar manner, it can be shown that gz = z if g^2 it orbitally continuous at z.

COROLLARY 1. Theorem 1 holds with inequality (II) below in the place of inequality (I), where p and q are fixed positive integers:

$$d(f^p x, g^q y) \le \varphi(\alpha(x, y)). \tag{II}$$

Remark 1. Theorem 1.11 of Sastry and Naidu [4] is a special case of Corollary 1 with f = g, p = q and $\varphi(t) = \alpha t$, α being a constant in [0, 1).

COROLLARY 2. Suppose that

$$d(f^p x, g^q y) \le \varphi(\delta(\{f^i x, g^i y \mid 0 \le i \le p, 0 \le j \le q\}))$$
(III)

for all x, y in X, where p and q are fixed positive integers, $\varphi(t+) < t$ for every t in $(0, \infty)$ and $\lim_{t \to +\infty} [t-\varphi(t)] = +\infty$. Suppose also that there is an x_0 in X such that $\{d(f^n x_0, g^n x_0)\}$ converges to zero. Then $\{f^n x_0\}$ and $\{g^n x_0\}$ are Cauchy sequences, and if one of them converges, then the other also converges to the same limit. Furthermore, if either f or g has a fixed point w, then both sequences converge to w. Suppose that $\{f^n x_0\}$ converges to some x in X. Then the following statements hold:

1. if f or f^2 is orbitally continuous at z or p = 1, then fz = z.

2. if g or g^2 is orbitally continuous at z or q = 1, then gz = z.

Proof. We need only prove that z is a fixed point of f or g according as p or q is one; the rest of the Corollary is evident from Corollary 1 and statement 3 of Lemma 3 of [5]. Suppose now that p = 1. Then for $n \ge q$, from inequality (III), we have

$$d(fz, g^n x_0) \ge \varphi(\delta(\{z, fz, g^j x_0 \mid n - q \le j \le n\})).$$

Since $\{g^n x_0\}$ converges to z, by taking limits on both sides of the inequality above as $n \to \infty$, we obtain $d(fz, z) \le \varphi(d(fz, z)+)$. Hence, d(fz, z) = 0. Hence, fz = z. In a similar manner, it can be shown that gz = z when q = 1.

Remark 2. Example 1 shows that in Corollary 2, the condition $\varphi(t+) < t$ for every t in $(0, \infty)$ ' cannot be replaced by the weaker condition $\lim_{n\to\infty} \varphi^n(t) = 0$ for every t in $(0, +\infty)$, even if (X, d) is a bounded, complete metric space, f and gare continuous on X and p = q = 1.

Remark 3. Examples 5 and 6 of Sastry and Naidu [3] show that in Corollary 2 one cannot drop the condition 'there is an x_0 in X such that $\{d(f^n x_0, g^n x_0)\}$ converges to zero' even if X is finite and p = q = 1.

Remark 4. Example 2 shows that the initial hypothesis of Corollary 2 (Corollary 1) cannot guarantee the existence of a fixed point for either f or g, even if (X, d) is compact, f^3 and g^3 are continuous on X, p = q = 2 (p = q = 1) and $\varphi(t) = \alpha t$, α being a constant in [0, 1).

Remark 5. Example 3 shows that the initial hypothesis of Corollary 2 (Corollary 1) cannot guarantee the existence of a fixed point for f, even if it is strengthened by assuming that (X, d) is compact, f^3 is continuous on X, p = 2 (p = 1), g is continuous on X (consequently gz = z), q = 1 and $\varphi(t) = t/2$.

Remark 6. In Corollary 1, the condition $\{d(f^n x_0, g^n x_0)\}$ converges to zero' can be replaced by the commutativity of f and g provided $\{f^i g^j x_0 \mid i \ge 0, j \ge 0\}$ is bounded [5]. Example 4 shows that this is not so in the case of Theorem 1 even

if (X, d) is a bounded complete metric space, f and g are continuous on X and $\varphi(t) = t/2$.

It is possible to drop the condition $\{d(f^n x_0, g^n x_0)\}$ converges to zero' from Theorem 1 by suitably strengthening inequality (I).

THEOREM 2. Suppose that

$$\inf_{1 \le n < \infty} \alpha(f^n x, g^n y) \le \varphi(\alpha(x, y))$$
(IV)

for all x, y in X, where $\varphi(t+) < t$ for every t, in $(0, \infty)$. Suppose also that there is an x_0 in X such that $\alpha(x_0, x_0) < +\infty$. Then $\{f^n x_0\}$ and $\{g^n x_0\}$ are Cauchy sequences and $\{d(f^n x_0, g^n x_0)\}$ converges to zero. In fact, $\{f^n x\}$ and $\{g^n y\}$ are Cauchy sequences and $\{d(f^n x, g^n y)\}$ converges to zero, whenever $\alpha(x, y) < +\infty$. In particular, each of f and g has at most one fixed point and if either f or ghas a fixed point w, then both $\{f^n x_0\}$ and $\{g^n x_0\}$ converges to w. Suppose that $\{f^n x_0\}$ converges to some z in X. Then z is fixed point of f(g) if $f^k(g^k)$ is orbitally continuous at z for some positive integer k.

Proof. Let x, y be elements of X such that $\alpha(x, y) < +\infty$. Let $\alpha_n = \alpha(f^n x, g^n y)$ (n = 0, 1, 2, ...) and $\alpha = \inf \{\alpha_n \mid n \ge 1\}$. Then $\{\alpha_n\}$ is a decreasing sequence of nonnegative real numbers decreasing to the nonnegative real number α . Taking $f^m x$ in the place of x and $g^m y$ in the place of y in inequality (IV), we obtain $\alpha \le \varphi(\alpha_m)$ (m = 0, 1, 2, ...). Hence, $\alpha \le \varphi(\alpha+)$. Hence, $\alpha = 0$. Hence $\{f^n x\}$ and $\{g^n y\}$ are Cauchy sequences and $\{d(f^n x, g^n y)\}$ converges to zero. The theorem is now evident.

COROLLARY 3. Suppose that

$$\alpha(f^{p(x)}x, g^{q(y)}y) \le \varphi(\alpha(x, y)) \tag{V}$$

for all x, y in X where $\lim_{n\to\infty} \varphi^n(t) = 0$ for every t in $(0,\infty)$ and p and q are functions from X into the set of all positive integers. Suppose also that there is an x_0 in X such that $\alpha(x_0, x_0) < +\infty$. Then $\{f^n x_0\}$ and $\{g^n x_0\}$ are Cauchy sequences and $\{d(f^n x_0, g^n x_0)\}$ converges to zero. In fact, $\{f^n x\}$ and $\{g^n y\}$ are Cauchy sequences and $\{d(f^n x, g^n y)\}$ converges to zero, whenever $\alpha(x, y) < +\infty$. In particular, aech of f and g has at most one fixed point and if either f or g has a fixed point w then both $\{f^n x_0\}$ and $\{g^n x_0\}$ converge to w. Suppose that $\{f^n x_0\}$ converges to z for some z in X. Then the following statements hold:

- 1. if $f^k(g^k)$ is orbitally continuous at z for some positive integer k, then fz = z(gz = z);
- 2. if p(z) = 1 and $\{f^n z\}$ is bounded, then f z = z;
- 3. if q(z) = 1 and $\{g^n z\}$ is bounded, then gz = z.

Proof. For x, y in X, let $x_1 = f^{p(x)}x$, $y_1 = g^{q(y)}y$, $\tilde{p}(x) = p(x) + p(x_1)$ and $\tilde{q}(y) = q(y) + q(y_1)$. Then, from inequality (V), we have

$$\alpha(f^{\bar{p}(x)}x, g^{\bar{q}(x)}y) = \alpha(f^{p(x_1)}x_1, g^{q(y_1)}y_1) \le \varphi(\alpha(x_1, y_1)) \le \varphi^2(\alpha(x, y))$$

68

for all x, y in X. Hence, inequality (IV) holds for all x, y in X with φ^2 in the place of φ . From Lemma 1 we have $\varphi^2(t+) < t$ for every t in $(0, \infty)$. Now we need only prove statements 2 and 3, since the rest of the Corollary is evident from Theorem 2.

2. Suppose that p(z) = 1 and $\{f^n(z)\}$ is bounded. Let $\alpha(z) = \delta(O_f(z))$. Then $0 \leq \alpha(z) < +\infty$. Let $x_k = g^{q(x_{k-1})}x_{k-1}$ and $\gamma_k = \sup\{d(z, g^n x_k) \mid u = 0, 1, 2, \ldots\}$ $(k = 1, 2, 3, \ldots)$. Since $\{x_k\}$ is a subsequence of $\{g^n x_0\}$ and the latter converges to z, it is clear that $\{\alpha(fz, x_k)\}$ and $\{\alpha(z, x_k)\}$ converge to $\alpha(z)$ and $\{\gamma_k\}$ converges to zero. Since p(z) = 1, for $k \geq 2$, from inequality (V), we have

$$\alpha(fz, x_k) \le \varphi(\alpha(z, x_{k-1})) \le \varphi(\max\{\alpha(fz, x_{k-1}), \alpha(z), \gamma_{k-1}\})$$
$$\le \varphi(\max\{\varphi(\alpha(z, x_{k-2})), \alpha(z), \gamma_{k-1}\}).$$

Hence, $\alpha(fz, x_k) \leq \max\{\varphi^2(\alpha(z, x_{k-2})), \varphi(\alpha(z)), \gamma_{k-1}\}$ for $k \geq 2$. Taking limits on both sides of the inequality above as $k \to \infty$, we obtain $\alpha(z) \leq \max\{\varphi^2(\alpha(z)+), \varphi(\alpha(z))\}$. Now from Lemma 1 it follows that $\alpha(z) = 0$. Hence, fz = z.

3. The proof of statement 3 is analogous to the proof of statement 2.

Remark 7. Example 5 shows that none of the conclusions of the first part of Theorem 6 (or Corollary 3) of Ding [1] is true even if (X, d) is a bounded (complete) metric space, $\varphi(t) = t/2$ and the functions m and n (mentioned in the results of Ding) take the constant value one troughout X. Corollary 3 is an improvement over the second part of Theorem 6 of Ding [1].

THEOREM 3. Theorem 2 holds with the following inequality in the place of inequality (IV):

$$\inf_{1 \le n < \infty} \beta(f^n x, g^n y) \le \varphi(\beta(x, y)).$$

Proof. Let x, y be elements of X such that $\beta(x, y) < +\infty$. Proceeding as in the proof of Theorem 2, it can be shown that $\inf \{\beta(f^nx, g^ny) \mid n = 1, 2, 3, ...\}$ is zero. Hence, $\{\beta(f^nx, g^ny)\}$ converges to zero. In particular, $\{d(f^nx, g^ny)\}$ converges to zero. Since $d(f^nx, f^mx) \leq d(f^nx, g^ny) + d(f^mx, g^ny) \leq 2\beta(f^nx, g^ny)$ for all $m \geq n$, it is clear that $\{f^nx\}$ is Cauchy. Similarly it can be shown that $\{g^ny\}$ is Cauchy. The theorem is now evident.

Remark 8. Example 6 shows that either in Theorem 1 or in Theorem 2 or in Theorem 3, the condition $\varphi(t+) < t$ for every t in $(0,\infty)$ ' cannot be replaced by the weaker condition $\lim_{n\to\infty} \varphi^n(t) = 0$ for every t in $(0,\infty)$ ', even if (X,d) is a bounded, complete metric space, f = g and f is continuous on X.

COROLLARY 4. Corollary 3 holds with inequality (VI) below in the place of inequality (V):

$$\beta(f^{p(x)}x, g^{q(y)}y) \le \varphi(\beta(x, y)).$$
(VI)

Proof. Corollary 4 can be proved along the lines of the proof of Corollary 3 with obvious modifications, such as the replacement of α with β except in the definition of $\alpha(z)$ which is to be defined here as $\sup\{d(z, f^n z) \mid n = 1, 2, 3, ...\}$.

Remark 9. Example 7 shows that the initial hypothesis of Corollary 3 or 4 does not guarantee the existence of a fixed point for f even if (X,d) is compact, g is continuous on X (consequently, g has a fixed point), p takes the value one troughout X, except at a single point where it takes the value 2, q(y) = 1 for all y in X and $\varphi(t) = t/2$. It also shows that the condition p(z) = 1 cannot be dropped from statement 2 of Corollary 3 or 4 even if p(x) = 1 for all x in $X \setminus \{z\}$.

COROLLARY 5. Corollary 4 holds with inequality (VII) below in the place of inequality (VI), the statement 'p and q are fixed positive integers' in the place of the statement 'p and q are functions from X into the set of all positive integers', p in the place of p(z) and q in the place of q(z):

$$d(f^p x, g^q y) \le \varphi(\beta(x, y)). \tag{VII}$$

Proof. The validity of inequality (VII) for all x, y in X implies that of inequality (VI) with p(x) = p and q(y) = q for all x, y in X.

Remark 10. Example 8 shows that in statement 2 of Corollary 3, or 4, or 5, one cannot drop the condition $\{f^n z\}$ is bounded' even if (X, d) is complete, p = q = 1 and $\varphi(t) = t/2$. In fact, the example shows that the remark is true whether g is continuous on X (and therefore g has a fixed point) or f = g.

COROLLARY 6. Suppose that

$$d(f^p x, g^q y) \le \varphi \max\{d(f^i x, g^j y) \mid 0 \le i \le p, \ 0 \le j \le q\})$$
(VIII)

for all x, y in X, where p and q are fixed positive integers, $\lim_{n\to\infty} \varphi^n(t) = 0$ for every t in $(0,\infty)$ and $\lim_{t\to+\infty} [t-\varphi(t)] = +\infty$. Then for all x, y in X, $\{f^nx\}$ and $\{g^ny\}$ are Cauchy sequences and $\{d(f^nx, g^ny)\}$ converges to zero. In particular, each of f and g has at most one fixed point. Suppose that there is an x_0 in X such that $\{f^nx_0\}$ converges to z for some z in X. Then for all x in X, $\{f^nx\}$ and $\{g^nx\}$ converge to z. Furthermore, the following statements hold:

- 1. if either p = 1 or f^k is orbitally continuous at z for some positive integer k, then fz = z;
- 2. if either q = 1 or f^k is orbitally continuous at z for some positive integer k, then gz = z.

Proof. Let x in X. Let $M = \max\{d(g^s x, g^q x) \mid 0 \le s \le q\}$ and $\gamma_n = \max\{d(f^r x, g^q x) \mid 0 \le r \le n\}$ (n = 0, 1, 2, ...). For $p \le i \le n$, from inequality (VIII), we have

$$d(f^{i}x, g^{q}x) \leq \varphi(\max\{d(f^{r}x, g^{s}x) \mid i - p \leq r \leq i, \ 0 \leq s \leq q\}) \leq \varphi(\gamma_{n} + M).$$

Hence, $\gamma_n \leq \varphi(\gamma_n + M) + \gamma_p \ (n = 1, 2, 3, ...)$. Hence $(\gamma_n + M) - \varphi(\gamma_n + M) \leq M + \gamma_p \ (n = 1, 2, 3, ...)$. Since $\lim_{t \to +\infty} [t - \varphi(t)] = +\infty$, it now follows that $\{\gamma_n\}$ is bounded. Hence $\{f^n x\}$ is bounded for each x in X. Similarly it can be shown that $\{g^n x\}$ is bounded for each x in X. Hence $\beta(x, y) < +\infty$ for all x, y in X. Now the corollary is evident from Corollary 5.

Remark 11. Theorem 2 of Fisher [2] is a special case of Corollary 6 with $\varphi(t) = \alpha t$, α being a constant in [0,1). Example 9 shows that Corollary 6 is a proper generalization of Fisher's theorem.

Remark 12. Example 10 shows that in Corollary 6 one cannot conclude that the sequence $\{f^n x\}$ is bounded (and therefore Cauchy) even if (X, d) is complete, f = g and p = q = 1 if the condition $\lim_{t \to +\infty} [t - \varphi(t)] = +\infty$ is dropped. From the example it is also evident that a similar remark holds in the case of Corollary 2.

Remark 13. Example 11 shows that, when p = q = 2, the initial hypothesis of Corollary 6 (and therefore that of Corollary 5) does not guarantee the existence of a fixed point for f even if (X, d) is compact, f = g and $\varphi(t) = t/2$.

Remark 14. Example 12 shows that when p = 2, the initial hypothesis of Corollary 6 cannot ensure the existence of a fixed point for f even if (X, d) is compact, g has a fixed point and $\varphi(t) = t/2$.

Remark 15. Example 13 shows that in Corollary 6 it is not possible to take p and q even as bounded functions from X into the set of all positive integers and replace p with p(x) and q with q(y) in inequality (VIII) even if (X, d) is a bounded, complete metric space, f = g and $\varphi(t) = t/2$. In fact, the example shows that it is not possible to take even p alone as a bounded function and q = 1. It is evident that similar remarks hold also in the case of Corollaries 1, 2 and 5.

2. Examples. 1. Let X be the set of all integers with a metric d defined on it by d(m, -m) = 1/m if m > 0, d(0, m) = 1 if m > 0, d(0, -m) = 1 + 1/m if m > 0, d(m, n) = d(-m, -n) = 1 + 1/n if 0 < m < n and d(m, -n) = 1 if m > 0, n > 0 and $m \neq n$. Define $f, g: X \to X$ by:

$$fx = \begin{cases} -x & \text{if } x < 0, \\ & & \\ 1 + x & \text{if } x \ge 0, \end{cases} \qquad gy = \begin{cases} 0 & \text{if } y > 1, \\ -2 & \text{if } y = 1, \\ y - 1 & \text{if } y \le 0. \end{cases}$$

Define $\varphi : R^+ \to R^+$ by $\varphi(t) = \begin{cases} 1 & \text{if } t > 1, \\ 0 & \text{if } t \leq 1. \end{cases}$ Then (X, d) is bounded, complete metric space; f and g are continuous on X; φ is increasing on R^+ , $\varphi^2(t) = 0$ for every t in R^+ , and

$$d(fx, gy) \le \varphi(\delta\{x, fx, y, gy\})$$

for all x, y in X. The sequence $\{d(f^n 0, g^n 0)\}$ converges to zero. But there is no x in X for which either $\{f^n x\}$ or $\{g^n x\}$ is Cauchy. In particular, neither f nor g has a fixed point.

2. Let $X = \{0\} \cup \{2^{-n}, -2^{-n} \mid n = 0, 1, 2, ...\}$ with the usual metric. Define $f, g: X \to X$ by f 0 = 1, f 1 = -1, f(-1) = 0, f x = x/2 if $x = 2^{-n}$ and n is odd or $x = -2^{-n}$, n is even and $n \neq 0$, f x = -x/2 if $x = 2^{-n}$ n is even and $n \neq 0$ or $x = -2^{-n}$ and n is odd, $g 0 = 2^{-1}$, $g 1 = g(-1) = g(-2^{-1}) = 0$, $g(2^{-1}) = -2^{-1}$ and g x = f x for all x in $X \setminus \{0, 1, -1, -2^{-1}\}$. Then f^3 and g^3 are continuous on X; $f^3 0 = g^3 0 = 0 = \lim_{n \to \infty} g^n x = \lim_{n \to \infty} f^n x$ for all x in $\{2^{-k}, -2^{-k} \mid k = 2, 3, ...\}$ and $|fx-gy| \le (4/5) \max\{\delta\{x, fx, f^2x\}, \delta\{y, gy, g^2y\}\}$, $|f^2x - g^2y| \le (3/4) \max\{\delta\{x, fx, f^2x\}, \delta\{y, gy, g^2y\}\}$ for all x, y in X. In fact, for all integers $p, q \ge 2$, we have

$$|f^{p}x - g^{q}y| \le (3/4) \max\{\delta\{x, fx, f^{2}x\}, \ \delta\{y, gy, g^{2}y\}\}$$

for all x, y in X. But neither f nor g has a fixed point.

3. Let $X = \{-1, 0, 1\} \cup \{2^{-n} \mid n = 1, 2, ...\}$ with the usual metric. Define $f, g: X \to X$ by f(-1) = 0, f0 = 1, f1 = -1, $f(2^{-n}) = 2^{-n-1}(n = 1, 2, ...)$ and gx = 0 for all x in X. Then f^3 and g are continuous on X, $\lim_{n\to\infty} f^n x = 0 = g(0) = \lim_{n\to\infty} g^n x$ for all x in $\{2^{-k} \mid k = 1, 2, ...\}$ and

$$|fx - gy| \le \delta\{x, fx, f^2x, gy\}/2, |f^2x - gy| \le \delta\{x, fx, f^2x, gy\}/2$$

for all x, y in X. In fact, for all positive integers p, q, we have

$$|f^{p}x - g^{q}y| \le 2^{-1} \max\{\delta\{x, fx, f^{2}x\}, d(x, gy)\}$$

for all x, y in X. But f has no fixed point.

4. Let X be the set of all positive integers with a metric d defined on it by d(x, x + 1) = 2 for all x in X and d(x, y) = 1 if x and y are distinct nonconsecutive positive integers. Define $f : X \to X$ as fx = x + 1 for all x in X. Let g be the identity map on X. Then (X, d) is a bounded, complete metric space with no accumulation points, and

$$\inf_{1\leq n<\infty}\beta(f^nx,g^ny)=2^{-1}d(x,fx)=2^{-1}\alpha(x,y)$$

for all x, y in X. But, for no x in X, $\{f^nx\}$ is Cauchy.

5. Let $X = \{3, 4, 5, ...\}$ with a metric d defined on it as in Example 4. Define $f, g: X \to X$ by

$$f(n) = \begin{cases} n+1 & \text{if } n \text{ is even,} \\ & g(n) = \begin{cases} 2^n & \text{if } n \text{ is even,} \\ \\ n+1 & \text{if } n \text{ is odd.} \end{cases}$$

Then (X, d) is a bounded, complete metric space with no accumulation points and

$$\delta(O_f(fx) \cup O_g(gx)) = 2^{-1} \max\{d(x, fx), \ d(x, gx)\} = 2^{-1} \delta(O_f(x) \cup O_g(x))$$

for all x in X. But there is no x in X for which either $\{f^n x\}$ or $\{g^n x\}$ is Cauchy. In particular, neither f nor g has a fixed point in X.

6. Let X be the set of all positive integers with a metric d defined on it by d(x,y) = 1 + 1/y if x < y. Define $f: X \to X$ by fx = x + 1. Define $\varphi: R^+ \to R^+$ by $\varphi(t) = 1$ if t > 1 and $\varphi(t) = 0$ if $t \leq 1$. Then (X, d) is a bounded, complete

metric space with no accumulation points, φ is increasing on R^+ , $\varphi^2(t) = 0$ for every t in R^+ and

$$\inf_{1 \le n < \infty} \delta(O_f(f^n x) \cup O_f(f^n y)) \le \varphi(\min\{\max\{d(x, y), d(fx, y)\}, \max\{d(x, y), d(x, fy)\}, \max\{d(fx, y), d(x, fy)\}\})$$

for all x, y in X. But, for no x in X, the sequence $\{f^n x\}$ is Cauchy. Clearly, f has no fixed point.

7. Let $X = \{0\} \cup \{2^{-n} \mid n = 0, 1, 2, ...\}$ with the usual metric. Define $f, g: X \to X$ by f0 = 1, fx = x/2 for $x \neq 0$ and gx = x/2 for all x in X. Then X is compact, g is continuous on $X, g0 = 0, \{f^nx\}$ and $\{g^nx\}$ converge to zero for each x in X,

$$\alpha(fx, gy) \le 2^{-1}\beta(x, y)$$

for all x in $X \setminus \{0\}$ and for all y in X, and

$$\alpha(f^2 0, gy) \le 2^{-1}\beta(0, y)$$

for all y in X. But f has no fixed point.

8. Let $X = \{2^{-n} \mid n = 0, 1, 2, ...\} \cup \{0, -1, -2, -3, ...\}$ with the usual metric. Define $f: X \to X$ by fx = x - 1 if $x \in \{0, -1, -2, -3, ...\}$ and fx = x/2 if $x \in \{2^{-n} \mid n = 0, 1, 2, ...\}$. Let g be the constant map zero on X. Then

$$\begin{aligned} \alpha(fx, gy) &\leq 2^{-1} \delta(O_f(x)) = 2^{-1} \beta(x, y), \\ \delta(O_f(fx) \cup O_f(fy)) &\leq 2^{-1} \sup\{ |f^i x - f^j y| \mid i \ge 0, \ j \ge 0 \} \end{aligned}$$

for all x, y in X. For x > 0, $\{f^n x\}$ and $\{g^n x\}$ converge to zero. But $\{f^n 0\}$ is unbounded. Clearly, f has no fixed point.

9. Let $X = \{0, 1, 1/2, 1/3, ...\}$ with the usual metric. Define $f : X \to X$ as f0 = 0, f(1/n) = 1/(n+1) (n = 1, 2, ...). Define $\varphi : R^+ \to R^+$ by $\varphi(t) = t/(1+t)$. Then φ is an increasing function on R^+ , $\varphi(t) < t$ for every t > 0,

$$\lim_{t \to +\infty} [t - \varphi(t)] = +\infty \text{ and } |fx - fy| \le \varphi(\max\{|x - fy|, |fx - y|\})$$

for all x, y in X. But there is no constant α in [0, 1) such that

$$|fx - fy| \le \alpha \max\{|x - y|, |fx - y|, |x - fy|\}$$

for all x, y in X.

10. Let $X = [1, \infty)$ with the usual metric. Define $f: X \to X$ by fx = 2xand $\varphi: R^+ \to R^+$ as $\varphi(t) = 2t^2/(1+2t)$. Then φ is an increasing continuous function on R^+ , $\varphi(t) < t$ for every t > 0, $\lim_{t \to +\infty} [t - \varphi(t)] = 1/2$,

$$|fx - fy| \le \varphi(\max\{|x - y|, |fx - y|, |x - fy|\})$$

for all x, y in X, and, for each x in X, $f^n x \to +\infty$ as $n \to \infty$.

11. Let $X = \{-1, 0, 1\} \cup \{2^{-n} \mid n = 1, 2, 3, ...\}$ with the usual metric. Define $f: X \to X$ by $f(-1) = 2^{-1}$, f(0) = -1, $f(2^{-n}) = 2^{-n-1}(n = 0, 1, 2, ...)$. Then

$$|f^2x - f^2y| \le 2^{-1} \max\{|x - y|, |x - fy|, |fx - y|\}$$

for all x, y in X. But f has no fixed point.

12. Let $X = \{-1, 0, 1\} \cup \{2^{-n} \mid n = 1, 2, 3, ...\}$ with the usual metric. Define $f, g: X \to X$ by $f(-1) = g(-1) = 2^{-1}, f(0) = -1, g(0) = 0, f(2^{-n}) = g(2^{-n}) = 2^{-n-1}(n = 0, 1, 2, ...)$. Then

$$|f^{2}x - gy| \le 2^{-1} \max\{|x - y|, |fx - y|\}$$

for all x, y in X. Then g has a unique fixed point, namely, zero. But f has no fixed point.

13. Let $X = \{0\} \cup \{2, 3, 4, ...\} \cup \{-1/n \mid n = 2, 3, 4, ...\}$. Define a metric d on X by $d(x, y) = \begin{cases} |x - y| & \text{if } |x - y| \le 2, \\ 2 & \text{if } |x - y| > 2. \end{cases}$ Define $f, g : X \to X$ by g(x) = 0 for all x in X and

$$f(x) = \begin{cases} -1/2 & \text{if } x = 0, \\ -1/(x+1) & \text{if } x \in \{2, 3, 4, \dots\}, \\ -1/x & \text{if } x \in \{-1/n \mid n = 2, 3, 4, \dots\}. \end{cases}$$

Define $p: X \to \{1, 2, 3\}$ by p(0) = 3, p(x) = 1 if $x \in \{2, 3, 4, ...\}$ and p(x) = 2 if $x \in \{-1/n \mid n = 2, 3, 4, ...\}$. Then (X, d) is a bounded, complete metric space and

$$\begin{split} &d(f^{p(x)}x,gy) \leq 2^{-1}d(f^{p(x)-1}x,gy), \\ &d(f^{p(x)}x,f^{p(y)}y) \leq 2^{-1}d(f^{p(x)-1}x,f^{p(y)-1}y) \end{split}$$

for all x, y in X. But, for no x in X, the sequence $\{f^n x\}$ is Cauchy. In particular, f has no fixed point. Furthermore, $(X, |\cdot|)$ is an unbounded complete metric space and

$$\begin{split} |f^{p(x)}x - gy| &\leq 2^{-1} |f^{p(x)-1}x - gy|, \\ |f^{p(x)}x - f^{p(y)}y| &\leq 2^{-1} |f^{p(x)-1}x - f^{p(y)-1}y| \end{split}$$

for all x, y in X, where $|\cdot|$ denotes the modulus function. For any x in X, $\{f^nx\}$ is unbounded in $(X, |\cdot|)$.

Acknowledgements. The authors wish to express their deep sense of gratitude to Prof. D.R.K. Sangameswara Rao and Dr. K.P.R. Sastry for their ivaluable help in the preparation of this paper.

REFERENCES

- [1] Ding Xieping, Some results on fixed points, Chin. Ann. Math. 4B(4) (1983), 413-423.
- [2] B. Fisher, Results on common fixed points on complete metric spaces, Glasgow Math. J. 21 (1980), 165–167.
- [3] K.P.R. Sastry and S.V.R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Math. J. 28 (1980), 15-29.
- [4] K.P.R. Sastry and S.V.R. Naidu, Some fixed point theorems in metric spaces, J. India Math. Soc. 47 (1983), 111-121.
- [5] S.V.R. Naidu and J. Rajendra Prasad, Fixed point theorems for commuting selfmaps on a metric space.

Department of Applied Mathematics	(Received 19 11 1985)
A.U.P.G. Extension Centre	(Revised 13 04 1988)
Nuzvid, 521 201	
India	