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APPROXIMATION OF CONTINUOUS FUNCTIONS

BY MONOTONE SEQUENCES OF POLYNOMIALS

WITH RESTRICTED COEFFICIENTS

S.G. Gal

Abstract. The problem of approximation by polynomials with restricted coeÆcients, is
considered in several papers (e.g. [7{9]). In [1{6], I have proved among other things, that every
f 2 C[0;1] can be approximated uniformly by a polynomial sequence (Pn)n such that (Pn)n is

monotonically decreasing on [0; 1]. The aim of this paper is to extend the ideas of [1{6] to the
case of approximation by polynomials with restricted coe�cients.

1. Introduction

Let C0[0; 1] = ff 2 C[0;1]; f(0) = 0g and let A = fAkgk�1 be a sequence of
positive real numbers and

PA =

�
p =

nX
k=1

akxk; n 2 N; jakj � Ak
k; for all k = 1; 2; . . .

�
:

The problem of approximation in the space C0[0; 1] by polynomials Pn 2 PA,
is treated in several papers, (see e.g. [7{9]), where it is proved for example [9] that
PA is dense in C0[0; 1] i� there is a subsequence of natural numbers fkigi satisfying
the properties

1X
i=1

1=ki = +1 and lim
i!1

Aki = +1:

In several papers ([1{6]) I have proved, among other things, that every
f = C[0;1] can be approximated uniformly by a polynomial sequence (Pn)n, mono-
tonically decreasing on [0; 1].

In the present paper we will extend the ideas of [1{6] to the case of approxi-
mation in C0[0; 1] by polynomials from PA.

2. Basic Result
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Let us consider fAkgk�1 which satis�es:

1 � A1 � A2 � � � � � Ak � Ak+1 � . . . ; limAi = +1: (1)

Then, by [9], PA is dense in C0[0; 1]. Now, let us denote by

C1
0 [0; 1] = ff 2 C0[0; 1] : f 0(0) = 0g:

Theorem 2.1. For every f 2 C1
0 [0; 1], there exists a polynomial sequence

Pn 2 PA, n = 1; 2; . . . , such that Pn ! f uniformly on [0; 1] and f(0) = Pn(0),
f(x) < Pn+1(x) < Pn(x), for all x 2 (0; 1] and all n = 1; 2; . . . .

Proof. Take F (x) = f(x)=x, x 2 (0; 1], F (0) = 0. Since f 2 C1
0 [0; 1] it is

evident that F 2 C0[0; 1]. Then, PA is dense in C0[0; 1] and therefore there exists
a polynomial sequence (Rn)n, Rn 2 PA, n = 1; 2; . . . , such that jF (x) � Rn(x)j <
1=[n(n+ 1)], for all x 2 [0; 1], and n = 1; 2; . . . . Hence:

jf(x)� xRn(x)j � x=[n(n+ 1)]; for all x 2 [0; 1]; and n = 1; 2; . . . : (2)

Take Qn(x) = xRn(x) and Sn(x) = Qn(x) + 2x=n, x 2 [0; 1], n = 1; 2; . . . . From
(2) it is evident that Qn ! f uniformly and therefore Sn ! f uniformly on [0; 1].
Then by (2) we obtain:

jQn(x)�Qn+1(x)j � jQn(x)� f(x)j+ jf(x)�Qn+1(x)j �

� x=[n(n+ 1)] + x=[(n+ 1)(n+ 2)] � 2x=[n(n+ 1)];

for all x 2 [0; 1] and all n = 1; 2; . . . , and therefore

Sn(x)� Sn+1(x) = Qn(x)�Qn+1(x) + 2x=[n(n+ 1)] > 0

for all x 2 (0; 1] and Sn(0) = Sn+1(0) = f(0) for all n = 1; 2; . . . .

Now, let n 2 N be �xed and Rn(x) =
Pjn

k=1 akx
k 2 PA; therefore jakj � Ak

k,

for all k = 1; jn. Then xRn(x) =
Pjn

k=1 akx
k+1 =

Pjn+1
i=2 ai�1x

i. We have:

jai�1j � Ai�1
i�1 � Ai�1

i � Ai
i; i = 2; jn + 1;

therefore, it is evident that xRn(x) = Qn(x) 2 PA, n = 1; 2; . . . . But Sn(x) =
2
nx+

Pjn+1
i=2 ai�1x

i and it is evident 2=n � A1 for all n � 2. Hence Sn 2 PA for all
n � 2 and therefore it is evident that Pn(x) = Sn+1(x), n = 1; 2; . . . , satis�es the
conclusion of Theorem 2.1.

Remark. If in the previous proof we consider Sn(x) = Qn(x)� 2x=n, then it
is easily seen that (Sn)n is monotonically increasing on (0; 1], n = 2; 3; . . . .

3. Some Extensions

Let us consider m; rk 2 N , k = 1;m and the numbers D
(k)
i 2 R, i = 0; rk,

k = 1;m satisfying

rkX
i=0

D
(k)
i = 0;

rkX
i=0

jD
(k)
i j > 0 for all k = 1;m: (3)
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Also, let A = fAkgk�1 satisfy (1). We will prove result analogous to Thereom 1.2
of [4]:

Theorem 3.1. If there is a sequence (�n)n, �n 2 R, �n & 0 satisfying

rkX
i=0

D
(k)
i �n+rk�i > 0 for all k = 1;m and n 2 N (4)

then for every f 2 C1
0 [0; 1], there exists a polynomial sequence Pn 2 PA, n =

1; 2; . . . , such that Pn ! f uniformly on [0; 1] and

rkX
i=0

D
(k)
i Pn+rk�i(x) > 0; for all x 2 (0; 1]; k = 1;m; n 2 N

Pn(0) = f(0); for all n = 1; 2; . . .

(5)

Proof. By Lemma 1.1 of [4] we can write:

rkX
i=0

D
(k)
i �n+rk�i =

rk�1X
i=0

C
(k)
i (�n+rk�i � �n+rk�i�1)

with C
(k)
i =

iX
j=0

D
(k)
j ; i = 1; rk � 1; k = 1;m:

Then, as in the proof of Theorem 1.2 of [4], take:

an = min

�rk�1X
i=0

C
(k)
i (�n+rk�i � �n+rk�i�1); k = 1;m

�
;

D = max

�rk�1X
i=0

jC
(k)
i j; k = 1;m

�
> 0; m = an=(2D); n 2 N

and let us consider �n < n, n 2 N , �n & 0. Now, for F (x) = f(x)=x, x 2 (0; 1],
F (0) = 0, F 2 C0[0; 1], there exists a polynomial (Rn)n, Rn 2 PA such that
jF (x)�Rn(x)j < �n, for all x 2 [0; 1], and all n = 1; 2; . . . . Hence jf(x)�xRn(x)j �
x�n, for all x 2 [0; 1] and all n = 1; 2; . . . .

Take Qn(x) = xRn(x) and Pn(x) = Qn(x) + x�n. Then, reasoning exactly
as in the proof of Theorem 1.2 of [4], (5) follows immediately. Also, as in the proof
of Theorem 2.1 (because there is an n0 2 N such that �n � A1, for all n � n0),
Pn 2 P , for all n � n0 and therefore the sequence Pn+n0(x), n = 1; 2; . . . , satis�es
the conclusion of Theorem 3.1.

As in immediate corollary (analogous to Corollary 1.3 of [4]) we obtain the
following:

Corollary 3.2. For any f 2 C1
0 [0; 1] and any r0 2 N , there exists a

polynomial sequence Pn 2 PA, n = 1; 2; . . . , uniformly convergent to f on [0; 1]
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which satis�es

(1�)rk
rkX
i=0

(�1)i
�
rk
i

�
Pn+rk�i(x) > 0; for all x 2 (0; 1]; n 2 N;

rk 2 N; rk � r0; k = 1;m and Pn(0) = f(0) for all n = 1; 2; . . .

Remark. (1) If r0 = 2, from the previous inequality we obtain that Pn+1(x) <
P (x) and Pn+2(x) � 2Pn+1(x) + Pn(x) > 0, (namely (Pn)n is "convex" on [0; 1]),
and Pn(0) = f(0) for all n = 1; 2; . . . .

Added in proof. (2) These results do not remain valid for all f 2 C0[0; 1].
One such example is the following. Let us denote D(f ;x) = [f(x) � f(0)]=x,
(D�f)(0) = lim supx#1D(f ;x) and let f : [0; 1] ! R be de�ned by f(0) = 0,
f(x) = �1= lnx if x 2 (0; 1=2] and f(x) = 1= ln 2 if x 2 (1=2; 1], where ln(x)
represents the hyperbolic logarithm of x. We have: limx#0 f(x) = �1= �1 = 0
and limx"1=2 f(x) = 1= ln 2 wich implies f 2 C0[0; 1], but f does not satisfy Theorem
2.1.

Indeed, if Theorem 2.1 held for the function f so de�ned, it would follow
that there exists a sequence Pn 2 PA, n 2 N such that Pn ! f uniformly on
[0; 1] and 0 = f(0) = Pn(0), f(x) < Pn+1(x) < Pn(x), 8x 2 (0; 1], 8n 2 N .
Hence we would obtain D(f ;x) = f(x)=x < Pn(x)=x = D(Pn;x) 8x 2 (0; 1],
therefore (D�f)(0) � (D+Pn)(0) = P 0n(0), n = 1; 2; . . . . But D(f ;x) = �1=[x � lnx]
8x 2 (0; 1=2) which immediately implies (D+f)(0) = +1 choosing for example
xm & 0, xm = e�m, m 2 N) contradicting the inequalities (D+f)(0) � P 0n(0),
n 2 N .
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