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APPROXIMATION OF CONTINUOUS FUNCTIONS
BY MONOTONE SEQUENCES OF POLYNOMIALS
WITH RESTRICTED COEFFICIENTS

S.G. Gal

Abstract. The problem of approximation by polynomials with restricted coefficients, is
considered in several papers (e.g. [7-9]). In [1-6], I have proved among other things, that every
f € Cjo,1] can be approximated uniformly by a polynomial sequence (Py)n such that (Pn). is
monotonically decreasing on [0,1]. The aim of this paper is to extend the ideas of [1-6] to the
case of approximation by polynomials with restricted coeficients.

1. Introduction

Let Co[0,1] = {f € Clo,1); f(0) =0} and let A = {Ay}r>1 be a sequence of
positive real numbers and

n
Py = {pZZaka:k; n €N, |ag| < Ak, for all k:1,2,...}.
k=1

The problem of approximation in the space Cy[0, 1] by polynomials P, € Py,
is treated in several papers, (see e.g. [7-9]), where it is proved for example [9] that
P, is dense in Cp[0, 1] iff there is a subsequence of natural numbers {k;}; satisfying
the properties

[ee]

Z 1/k; = 400 and lim Ay; = +o0.
11— 00

i=1

In several papers ([1-6]) I have proved, among other things, that every
f = Cjo,1) can be approximated uniformly by a polynomial sequence (P,),, mono-
tonically decreasing on [0, 1].

In the present paper we will extend the ideas of [1-6] to the case of approxi-
mation in Cy[0,1] by polynomials from Py.

2. Basic Result
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Let us consider {Ay}1>1 which satisfies:
1<A4; <Ay < < Ap < Apyr <100, lim A4y = o0, (1)
Then, by [9], P4 is dense in Cy[0,1]. Now, let us denote by
C5[0,1] = {f € Go[0,1] : f'(0) = 0}.
THEOREM 2.1. For every f € C}[0,1], there exists a polynomial sequence

P, € Py,n =1, 2 ., such that P, — f uniformly on [0, 1] and f(0) = P,(0),
f(x) < Ppyi(z) < (:r) for all x € (0,1] and alln =1,2,.

Proof. Take F(z) = f(z)/z, x € (0,1], F(0) = 0. Since f € C3§[0,1] it is
evident that F' € Cy[0, 1]. Then, P4 is dense in Cy[0, 1] and therefore there exists

a polynomial sequence (Ry)n, R, € P4, n=1,2,..., such that |F(z) — R,(z)| <
1/[n(n+1)], for all € [0,1], and n = 1,2,.... Hence:
|f(z) — 2R, (x)| < z/[n(n+1)], forall z€0,1], and n=1,2,.... (2)

Take Q,(z) = xR, (z) and S, (z) = Qn(z) + 22/n, z € [0,1], n = 1,2,.... From
(2) it is evident that @),, — f uniformly and therefore S,, — f uniformly on [0, 1].
Then by (2) we obtain:

|@n(z) — Qni1(2)] < |Qn(z) — f(2)] + [f(2) = Qniar(2)] <
<z/[n(n+ 1] +z/[(n+1)(n+2)] <2z/[n(n+1)],
for all z € [0,1] and all n = 1,2,..., and therefore
Sp(x) — Spt1(x) = Qn(z) — Qni1(z) + 22/[n(n+1)] >0

for all x € (0,1] and S,,(0) = Sp+1(0) = £(0) for alln=1,2,.

Now, let n € N be fixed and R, (z) = Y 3>, apz® € PA, therefore lar| < Ak
for all k =1, j,. Then zR, (z) = fc" L apzhtl = Z]"H a;_1z*. We have:

|aim1| S AT S AT <AL i =20, + 1

therefore, it is evident that xR, (z) = Qn(z) € Pa, n = 1,2,.... But Sy(z) =
%a: + ZZ;;I a;_12° and it is evident 2/n < A; for all n > 2. Hence S,, € P4 for all

n > 2 and therefore it is evident that P,(z) = Sp+1(z), n = 1,2,..., satisfies the
conclusion of Theorem 2.1.

Remark. If in the previous proof we consider S, (z) = Qn(z) — 22/n, then it
is easily seen that (S,,), is monotonically increasing on (0,1], n = 2,3,....
3. Some Extensions

Let us consider m, rp € N, k = 1,m and the numbers Dl(k) € R,i=0,rg,
k =1, m satisfying

S D =0, STID| >0 for all k =T,m. (3)
=0

i=0



Approximation of continuous functions by monotone sequences of polynomials 47

Also, let A = {Ay}r>1 satisfy (1). We will prove result analogous to Thereom 1.2
of [4]:

THEOREM 3.1. If there is a sequence (u)n, an € R, an \( 0 satisfying
Tk —
Zng)anJrrk_i >0 forall k=1,m and n € N (4)
i=0

then for every f € CL[0,1], there exists a polynomial sequence P, € Pa, n =
1,2,..., such that P, — f uniformly on [0,1] and

T

Zng)PnJrrk,i(a:) >0, forall z € (0,1], k=1,m, n€ N 5)
i=0

P,(0) = f(0), forall n=1,2,...

Proof. By Lemma 1.1 of [4] we can write:

Tk rp—1

& k
E DZ( )an-‘er—i = E Cz( )(an-‘ﬂ‘k—i - an+"k_i_1)
i=0 =0

i
with €Y =YDV i =Ty =1, k=T,m.
7=0

Then, as in the proof of Theorem 1.2 of [4], take:

kal
an = min{ Z Ci(k)(arH-rk—i — Qpipp—im1); k= lam}a
i=0

kal

D:max{z |C’i(k)|; k= 1,m} >0, Ym =a,/(2D), n € N

i=0

and let us consider 3, < yp, n € N, 3, \, 0. Now, for F(z) = f(z)/z, z € (0,1],
F(0) = 0, F € (y[0,1], there exists a polynomial (Ry),, R, € P4 such that
|F(z)—Ryn(z)| < Bp, forallz € [0,1],and alln = 1,2,.... Hence |f(z)—zR,(z)| <
xfp, forall z € [0,1] and all n =1,2,....

Take Qn(z) = zR,(z) and P,(z) = Qn(r) + zay,. Then, reasoning exactly
as in the proof of Theorem 1.2 of [4], (5) follows immediately. Also, as in the proof
of Theorem 2.1 (because there is an ng € N such that a, < Ay, for all n > nyg),
P, € P, for all n > ngy and therefore the sequence P, 1,,(x), n =1,2,..., satisfies
the conclusion of Theorem 3.1.

As in immediate corollary (analogous to Corollary 1.3 of [4]) we obtain the
following;:

COROLLARY 3.2.  For any f € C3[0,1] and any ro € N, there exists a
polynomial sequence P, € P4, n = 1,2,..., uniformly convergent to f on [0,1]
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which satisfies
(1—)™ Z(—l)i<zk>Pn+rki(a:) >0, forall x € (0,1], n € N,
=0
re €N, 1, <ro, k=1,m and P,(0) = f(0) forall n=1,2,...

Remark. (1) If ro = 2, from the previous inequality we obtain that P,y (z) <
P(z) and Ppy2(x) — 2Py y1(x) + Py(x) > 0, (namely (P,), is ”convex” on [0, 1]),
and P,(0) = f(0) for alln =1,2,....

Added in proof. (2) These results do not remain valid for all f € Cy[0, 1].
One such example is the following. Let us denote D(f;z) = [f(z) — f(0)]/z,
(D*f)(0) = limsup,; D(f;z) and let f : [0,1] — R be defined by f(0) = 0,
f(z) = =1/Inz if x € (0,1/2] and f(z) = 1/In2 if z € (1/2,1], where In(z)
represents the hyperbolic logarithm of z. We have: lim, o f(z) = -1/ —0c0 =0
and lim,41 /2 f(z) = 1/1n2 wich implies f € Cy[0, 1], but f does not satisfy Theorem
2.1.

Indeed, if Theorem 2.1 held for the function f so defined, it would follow
that there exists a sequence P, € P4, n € N such that P, — f uniformly on
[0,1] and 0 = f(0) = P,(0), f(z) < Ppy1(z) < Py(z), Yz € (0,1], Yn € N.
Hence we would obtain D(f;z) = f(z)/z < Py(x)/x = D(P,;z) Vz € (0,1],
therefore (D* f)(0) < (D*P,)(0) = P,(0),n =1,2,.... But D(f;2) = —1/[z-1nx]
Vz € (0,1/2) which immediately implies (D f)(0) = +oo choosing for example
Tm N\ 0, T, = ™™, m € N) contradicting the inequalities (DT f)(0) < P/ (0),
n€N.
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