A REMARK ON SUBSETS OF FREE BOOLEAN ALGEBRAS

Žikica Perović

Abstract. We prove that every subalgebra of cardinality k, cf $k > \omega$, of a given free Boolean algebra contains an independent set of the same cardinality. As a corollary of this theorem we get, using the Stone duality, some well known results about Cantor spaces.

A Boolean algebra (BA) is a structure of the form $(A, \land, \lor, ', 0, 1)$. T will denote the theory of Boolean algebras. Terms in the language of Boolean algebras are called Boolean terms. A set X of elements of a given BA A is independent if for every finite subset Y of X and every mapping $f: Y \to \{0,1\}, \land \{a^{f(a)} \mid a \in Y\} \neq 0$, where $a^0 = a'$ and $a^1 = a$. BA generated by an independent subset is a free BA. Obviously, it has the same cardinality as the set of generators. For a Boolean term $\varphi(x_0, \ldots, x_{n-1})$ we will say that it is a canonical form if $\varphi(x_0, \ldots, x_{n-1}) =$ $\lor \{\land \{x_i^{f(i)} \mid 0 \leq i < n\} \mid f \in S_{\varphi}\}$ where $S_{\varphi} \subset^n \{0,1\}$, and there is no proper subset $\{y_0, \ldots, y_{n-1}\}$ of $\{x_0, \ldots, x_{n+1}\}$ and Boolean term $\psi(y_0, \ldots, y_{n-1})$ such that $T \models$ $y \leftrightarrow \psi$. If $\varphi(x_0, \ldots, x_{n-1})$ is a canonical form then its complementary form is $\varphi'(x_0, \ldots, x_{n-1}) = \lor \{\land \{x_i^{f(i)} (0 \leq i < n\} \mid f \in^n \{0,1) \backslash S_{\varphi}\}$ and $S_{\varphi'} =^n \{0,1\} \backslash S_{\varphi}$. Obviously, $T \models \varphi \land \varphi' = 0$ & $\varphi \lor \varphi' = 1$.

LEMMA 1. Let $\varphi(x_0, \ldots, x_{n-1})$ be a canonical form, $\varphi'(x_0, \ldots, x_{n-1})$ its complementary from and m < n. Then there is an $f \in S_{\varphi}$ and a $g \in S_{\varphi}$ such that $f \uparrow m = g \uparrow m$.

Proof. Suppose, to the contrary, that for every $f \in S_{\varphi}$, $g \in S'_{\varphi}$ we have $f \uparrow m \neq g \uparrow m$. Then for every $f \in S_{\varphi}$ all $g \in^n \{0, 1\}$ such that $f \uparrow m = g \uparrow m$ belong to S_{φ} . Let $S_{\varphi}^* = \{f \uparrow m \mid f \in S_{\varphi}\}$. Then

$$T \models \varphi(x_0, \dots, x_{n-1}) = \lor \{ \land \{x_i^{f(i)} \mid 0 \le i < n\} \mid f \uparrow m = g, \ g \in S_y^* \}$$
$$T \models \varphi(x_0, \dots, x_{n-1}) = \lor \{ \land \{x_i^{f(i)} \mid 0 \le i < n\} \mid g \in S_y^* \}$$

contrary to our assumption that $\varphi(x_0, \ldots, x_{n-1})$ is a canonical form.

AMS Subject Classification (1980): Primary 06E05, 06E15.

A family \mathcal{B} is a Δ -system if $\exists \rho \forall x \in \mathcal{B} \forall y \in \mathcal{B} \ (x \neq y \Rightarrow x \land y = \rho); \ \rho$ is the root of the Δ -system \mathcal{B} .

PROPOSITION 2. Let θ be a regular cardinal, χ infinite and $\theta > \chi$, $\alpha^{<\chi} < \theta$ for $\alpha < \theta$. Let $|\mathcal{A}| \ge \theta$ and $\forall x \in \mathcal{A}(|x| < \chi)$. Then there exists a $\mathcal{B} \subset \mathcal{A}$ such that $|\mathcal{B}| = \theta$ and \mathcal{B} forms a Δ -system.

Proof. [Ku].

PROPOSITION 3. Let $|\mathcal{A}| \geq \theta$, $cf\theta \geq \omega$ and $\forall x \in \mathcal{A}(|x| < \omega)$. There exists a $\mathcal{B} \subset \mathcal{A}$ such that \mathcal{B} is a Δ -system and $|\mathcal{B}| = \theta$.

Proof. Using the same ideas as in the proof of Proposition 2, or presenting θ sa a sum of cf θ many regular cardinals and using Proposition 1.

If χ is an infinite cardinal, $\mathcal{A} \subseteq \mathcal{P}(\chi)$ is an almost disjoint family in χ if $\forall x \in \mathcal{A} \forall y \in \mathcal{A} (x \neq y \Rightarrow |x| = \chi \& |x \cap y| < \chi).$

PROPOSITION 4. Let $\chi \geq \omega$ be a regular cardinal. There exists a maximal almost disjoint family $\mathcal{B} \subset \mathcal{P}(\chi)$ of cardinality $\geq \chi^+$.

Proof. [Ku].

We will prove now the main theorem

THEOREM 5. Let F be a free Boolean algebra and $A \subset F$ such that $|A| = \chi$, $cf \chi > \omega$. There exists a $B \subset A$ such that $|B| = \chi$ and B is an independent set.

Proof. Let $C = \{c_{\alpha} \mid \alpha < \chi\}$ be the set of generators of F which occur in A. If $\varphi(x_0, \ldots, x_{n-1})$ is a canonical form such that $a = \varphi[C_{\alpha(0)}, \ldots, C_{\alpha(n-1)}]$ for a strictly increasing function $\alpha \in^n \chi$, we will say that $\varphi[C_{\alpha(0)}, \ldots, C_{\alpha(n-1)}]$ is the canonical representation for $a, \varphi(x_0, \ldots, x_{n-1})$ the canonical form for a and $\alpha = \alpha_a$ the canonical choice for a. For any given $a \in A$ they do exist and they are obviously unique. Since there are countably many different canonical forms and $cf \chi > \omega$, there exists a $B \subset A$ such that $|B| = \chi$ and all the elements from B have the same canonical form e.g. $\varphi(x_0, \ldots, x_{n-1})$. For the family $B = \{\alpha_a \mid a \subset B\}$ there exists, according to Proposition 3, a subset of the same cardinality χ which is a Δ -system. Without loss of generality we can suppose that it is the whole of B and there exists an m < n such that the first m elements are in the root i.e. $\forall a \in B \ \forall b \in B (\alpha_a \uparrow m = \alpha_b \uparrow m \ \& \ \forall i, j \ge m(\alpha_a(i) \ne \alpha_b(j)))$. We claim that B is an independent family. Let $a_1, \ldots, a_l, b_1, \ldots, b_s \in D$. We will prove that $a_1 \land \cdots \land a_l \land b'_1 \land \cdots \land b'_s \ne 0$.

$$a_{j} = \vee \{ \vee \{ C_{\alpha j(i)}^{f(i)} \mid 1 \le j \le l \} \mid f \in S_{\varphi} \}, \quad b_{k}' = \vee \{ \wedge \{ C_{\beta k(i)}^{g(i)} \mid 1 \le k \le S \} \mid g \in S_{\varphi}' \}$$

According to Lemma there exists $f \in S_{\varphi}$ and a $g \in S'_{\varphi}$ such that $f \uparrow m = g \uparrow m$. Then,

$$\begin{split} &\wedge \{a_j \mid 1 \le j \le l\} \wedge \wedge \{b'_k \mid 1 \le k \le s\} \ge \wedge \{C^{f(i)}_{\alpha j(i)} \mid 0 \le i < n, \ 1 \le j \le b\} \\ &\wedge \{C^{g(i)}_{\beta k(i)} \mid 0 \le i \le n, \ 1 \le k \le s\} \ge \wedge \{C^{f(i)}_{\alpha j(i)} \mid 0 \le i \le m\} \\ &\wedge \{C^{f(i)}_{\alpha j(i)} \mid 1 \le j \le l, \ m \le i < n\} \wedge \wedge \{C^{g(i)}_{\beta k(i)} \mid 1 \le k \le s, \ m \le i < n\} \end{split}$$

which is nonempty by the definition of independent set.

COROLLARY 6. Let F be a free Boolean algebra and A a subalgebra of F such that $|A| = \chi$, $cf\chi > \omega$. A contains a free Boolean algebra of the same cardinality.

COROLLARY 7. $\mathcal{P}(\omega)$ can not be embedded in a free Boolean algebra.

Proof. Suppose, to the contrary that $\mathcal{P}(\omega)$ can be embedded in a free Boolean algebra. According to Proposition 4 we can find a subfamily \mathcal{A} of $\mathcal{P}(\omega)$ such that $|\mathcal{A}| = \omega_1 \ \forall a, b \in \mathcal{A} \ (a \neq b \Rightarrow |a| = \omega \& |a \cap b| < \omega)$. Then, according to Theorem 5, we can find an independent subfamily $\mathcal{B} \subset \mathcal{A}$ such that $|\mathcal{B}| = \omega_1$. We will construct now a sequence $B_n \in \mathcal{B}, n \in \omega$ in the following way:

Let $B_0 B_1$ be any two different elements from \mathcal{B} . We choose B_2 so that $|B_0 \cap B_1 \cap B_2| < |B_0 \cap B_1|$, if such an element exists, and so on.

Since $B_0 \cap B_1$ is finite, there exists an $n \in \omega$ at which we must stop our construction i.e. $B_0 \cap \cdots \cap B_{n-1} \cap B = B_0 \cap \cdots \cap B_{n-1}$ for every $B \in \mathcal{B}$. Choose $B_n \in \mathcal{B} \setminus \{B_0, \ldots, B_{n-1}\}$. But then we have that $B_0 \cap \cdots \cap B_{n-1} \cap B'_n$ is empty which contradicts our assumption that \mathcal{B} is an independent family.

COROLLARY 8. An interval algebra of cardinality χ , $cf\chi > \omega$ can not be embedded into a free Boolean algebra.

Proof. A direct consequence of Theorem 5 and Theorem 5.5 from [Ru].

Using the Stone duality we will get topological duals of the last three results.

COROLLARY 9. Let X be a topological space of weight χ , $cf\chi > \omega$. If X is a continuous image of a Cantor space, then the Cantor space $\mathcal{D} = \{0,1\}^{\chi}$ is a continuous image of X.

CORROLARY 10. $\beta \omega$, the Stone-Čech compactification of the discrete space ω , is not a continuous image of any Cantor space.

CORROLARY 11. An interval topological space of weight χ , $cf\chi > \omega$, is not a continuous image of any Cantor space.

Remark. Special case of Theorem 5 for $\chi = \omega_1$ was proved in [Ef] and [Mo].

I am very gratefull to Professor Karel Prikry from the University of Minnesota for a number of ideas concerning this problem.

Perović

REFERENCES

- [DMR] E. van Douwen, J.D. Monk and M. Rubin, Some questions about Boolean algebras, Algebra Universalis 11 (1980), 220-243.
 - [Ef] B. Efimov, Mappings and embeddings of dyadic spaces, Mat. Sb. 103 (1977), 52-68.
 - [Ku] K. Kunen, Set Theory, North Holand, Amsterdam, 1980.
 - [Mo] J.D. Monk, Independent subsets of subsets of free BA, Notices Amer. Math. Soc. 25 (1987).
 - [Ru] M. Rubin, A Boolean algebra with few subalgebras, interval Boolean algebras and retractivness. Trans. Amer. Math. Soc. 278 (1983), 65-89.
 - [Si] R. Sikorsky, Boolean Algebras, Springer-Verlag, 1964.

Grupa za matematiku Filozofski fakultet 18000 Niš Jugoslavija (Received 23 10 1987)