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ON CONNECTED GRAPHS WITH MAXIMAL INDEX

D. Cvetkovié and P. Rowlinson*

Abstract. Let H(n,n + k) denote the set of all connected graps having n vertices and
n+ k edges (k > 0). The graphs in #(n,n+ k) with maximal index are determined (i) for certain
small values of n and k, (ii) for arbitrary fixed k and large enough n. The results include a proof
of a conjecture of Brualdi and Solheid [1].

1. Introduction and some numerical results

We consider only finite undirected graphs without loops or multiple edges.
The largest eigenvalue of a (0, 1)-adjacency matrix of a graph G is called the index of
G. The importance of this algebraic invariant was recognized at an early stage in the
development of graph spectra: in the fundamental paper [2], for example, Collatz
and Sinogowitz studied the ordering of graphs by their indices. They established
that among trees with n vertices, the star K; ,—; has maximal index and the path
P,, has minimal index. They also raised the question of finding the most irregular
graph with a given number of vertices: here the proposed measure of irregularity
is 6 = p — d, where p denotes index and d the average depree. (Thus § > 0, with
equality precisely for regular graphs [3, Theorem 3.8].) Using their tables of spectra
of graphs with up to 5 vertices, Collatz and Sinogowitz showed that among graphs
with n vertices n < 5, the most irregular graph is K ,—1. In general, however the
most irregular graphs have not been characterized. We present some computational
results which show that stars are not always the most irregular among graphs with
a given number of vertices.

The six-vertex graphs G1 and G2 shown in Fig. 1 have indices p; = V5 and

p2 =~ 2.56 respectively. Since d = 5/3 for both graphs, the graph G2 is more
irregular than the star G.

Restricting the question to connected graphs, we find that still the star is not
necessarily the most irregular connected graph with a given number of vertices. The
following example was found using the expert system ”Graph” [5]. Let G1 = K1 24
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and let G be obtained from the complete graph Kg by adding 19 pendant edges
at a single vertex. We have p; = v244 ~ 4.8990, p» ~ 5.8837, d; = 1.92 and
dy = 2.72. Hence 6; ~ 2.9790 and 65 ~ 3.1637: in particular, d > d7.

Fig. 1

Among graphs with both a given number of vertices and a given number of
edges, the most irregular graphs are precisely those with maximal index. Following
the notation of [1], let H(n,e) denote the set of connected graphs with n vertices
and e edges. For n > 1, k > 0 let G,, 1, be the graph in H(n,n + k) which is of the
form shown in Fig. 2 with p chosen as large as possible.
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Fig. 2

Inspection of the connected graphs with up to 7 vertices leads one to speculate
that Gy, 1 (and G, 1, alone) has the largest index of any graph in H(n,n+k). (Data
from ” Graph” for the 853 connected graphs on 7 vertices are tabulated in [4]). Simi¢
[8, 9] proved that this is indeed true for unicyclic and bicyclic graphs (the cases
k =0, k = 1 respectively). Brualdy and Solheid [1] showed independently of Simi¢
that G is the unique graph of maximal index in H(n,n + h) when k = 0,1,2;
but they found counterexamples for k = 3,4, 5, namely the graphs Hff)k(k =3,4,5)

of Fig. 3. For each k € {3,4,5} the graphs H fL’)k in Fig. 3 represent an exhaustive
list of candidates for graphs in H(n,n + k) having maximal index [1, Theorem
2.1]. Note that NT(LIfk_l) = Gur (k= 3,4,5), and that H7(z2<)1 is reproduced with a
superfluous edge in [1, Figure 10]. The following results were obtained using the
system ”Graph” to carry out the calculations.

We have p(H\3) < p(H}) for 7 < n < 24, while p(HY)y) > p(HL,).
Further, p(H\")) < p(H\)) < p(H)) for 8 < n < 36 and p(H)) < p(HY) <
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p(HY) < p(HY) for 9 < n < 15 while p(H)) < p(H)) < p(H{'Y) < p(HY)

n)

for 16 < n < 38. For large enough n, however, it is known that when k € {3,4,5},
Hr(:,)C is the unique graph with maximal index in H(n,n + k) [1, Theorem 3.3].
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Fig. 3 Some graphs H,E';)k in g6, nt+k) (k=3,4,5)

Now consider a star K1 ,—1 (n > 3) having vertices 1,2,... ,n, with vertex 1
as the central vertex. For 1 < k < n—3,let H,, ; be the graph obtained from K ,,_;
by joining vertex 2 to vertices 3,4,...,k+ 3. Thus H, ; = Hr(:,)C for k € {3,4,5}.
Brualdi and solheid [1] conjectured that for fixed k # 2 and for n sufficiently large,
H, 1, is the unique graph in H(n,n + k) whith maximal index. The remainder of
this paper is devoted to a proof of this conjecture.

2. Proof of the main result

Let S(n,e) denote the set of adjacency matrices of graphs with n vertices
and e edges, and let S*(n, e) be the subset of S(n,e) consisting of those matrices
A = (a;;) satisfying
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(%) if i < j and a;; = 1 then apr =1 whenever h < k < j and h <.

A matrix which lies in §*(n,e) for some n,e is called a stepwise matrix. Brualdi
and Solheid [1] show that a graph in #H(n,e) with maximal index has an adjacency
matrix A € S(n,e): note that A = (a;;) where a2 = --- = a1, = 1. In A has
spectral radius p then, from the theory of irreducible non-negative matrices [6,
Chapter XIIT], there exists a unique positive unit eigenvector x such that Az = pz.
Moreover it is straightforward to check that, since A is a stepwise matrix, z =
(z1,...,7,)T where 2y > zy > -+ > x,, [7, Lemma 1], a fact which will be used
implicitly in what follows.

Note that H, ; has a stepwise adjacency matrix. The same is true of the
graph F,, s (n > s > 2) defined as follows: F), s is obtained from the complete
graph K by adding n — s vertices adjacent to a single vertex of K. We start by
showing that for fixed s and large enough n, the index of F}, ; is less then /n.

LEMMA. Ifn > s?(s —2)? then p(Fps) < \/n.

Proof. Let A be a stepwise adjacency matrix of F,, s, let p = p(F s) and let
(x1,22,... ,7,)7 be an eigenvector of A corresponding to p. Then zy = - -+ = x4,
Tsp1 = -+ = xp and we have

pr1 = (s — D)zg + (n — s)zy,
pra =x1 + (s — 2)x2, prp =21

It follows that p is the largest root of h(zx), where h(z) = 2° — (s —2)x?>—(n— 1)z +
(n — s)(s — 2). It is straightforward to check that when n > s?(s — 2)? we have
h(v/n) >0, b (\/n) > 0 and h"(x) > 0 for all z > y/n. Hence if n > s2(s — 2)%, we
have h(z) > 0 for all z > \/n and the result follows.

THEOREM. For k > 2 there exists N (k) such that for n > N(k), Hp, is the
unique graph in H(n,n + k) with mazimal index.

Proof. Let H, ; have adjacency matrix A" € $*(n,n+k) and let A = (a;;) be
any matrix other than A" in §*(n,n+k) with a;» = --- = a1, = 1. Let ¢ be maximal
such that as; = 1. Note that ¢ may take any valug between ty and k + 2 inclusive,
where (%) <k+1< (*;"). Let r = k+3 —t and let p, p' be the spectral radii
of A, A’ respectively. In view of [1, Theorem 2.1] it suffices to prove that p’ > p
for large enough n. In order to apply the Lemma with s = k 4+ 3 we assume that
n > (k+ 3)%(k + 1)%: then p < \/n and p’ < /n since each of A and A’ is the

adjacency matrix of a spanning subgraph of F), y+3. Let z, ' be the unique positive

unit eigenvectors of A, A’ corresponding to p, p' respectively, say x = (z1,... ,2,)7
and z' = (z},...,2'))T. Then 272’ > 0 and 272'(p' — p) = 2T (A’ — A)2’ = a - 3
where o = z2(2y, ) ++ -+ T 5) +25(Te11 +- -+ Tpy3) and B is the sum of r terms
mla:; + zjx; for which 3 <4 < j. Since 23 = -~ = 2} 5 and 2441 = - = z,, We

have a = r(z225 + xhxy,), while 8 < r(zsz) + zhzs) = roh(zs + z4). Consequently
it suffices to prove that

(x%) Thr, > x5(r3 + x4 — 22) for large enough n.
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We now distinguish two cases: (4) t < k+ 2, (B) t = k + 2. We first
prove (xx) in case (A) by showing that x4z, > x4z, for large enough n. Since
(P + Db =x) +azb+---+ 23 and (p' + 1)z§ = 2} + z), + 2%, we have

kxl k k

5
zh +a:’1+a:’2+a:’3 +p'+1 +\/ﬁ+1

On the other hand, since pry = 1 + 23 + --- + 7 and pz, = 1 we have 7> <

1+ (t —2)72. Accordinagly it suffices to show that \/rf_—i-l > (t —2)2 for large

enough n. The number of non-zero entries in rows 2, ... ,t of Ais (t—1)+2(k+1)
and so p(r2 + 3 + -+ + ) < (2k + ¢+ 1)z1. Hence

xl_m1+---+xn_1 (n—t)xy n—t
Ty witeta plaitotx) T pH2k+t+1
n—t

>l4—
= +\/ﬁ+2k+t+1

+2k+t41 : k +2k+t+1
Therefore, i—f < m and it suffices to prove that Tatt > (t— 2)%

for large enough n. This last inequality has the form (k+ 2 —t)n > A(k,t)\/n +
B(k,t) and so there exists M (k,t) such that p' > p whenever n > M(k,t).

Turning now to case (B), we note that here there is just one possibility for A
and we have 3 = x4, 5 = -+ = Tp42, Tpt3 =+ = Tp. Moreover,
pr1 = + a2+ 23+ (k—2)xs + (n — k — 2)xz,,
pra =x1 + +2x3+ (k—2)zs5,
pr3 =1 + T2+ 3,
pTs = T1 + T2,
PTp = T1.

In order to prove (xx) we show that x} /x5 > (225 — 2)/z, for large enough n. As
before, x4 /xzf > 1+ k/(y/n +1). Now

203 — 22 2(x1 + w2 +x3) — 71 — 203 — (K — 2)25 _1+2w2—(k—2)w5

Tp T T

and

2T — (k — 2)5[75 . 2x1 + 4x3 + 2(k — 2)375 — (k‘ — 2)(371 + .772)
T pr1
< 41 + 4z — (k — 2)(z1 + 22)(1 — 2/p)

pT1

By [1, Theorem 3.3] the Theorem holds for £ < 5 and so we assume that k > 6.
Then 2”_(;61_2)“ < Satrs) ;—2. Now p > v/n — 1 because A is the adjacency

p2z1
matrix of a graph with a star as a proper spanning subgraph, and so it suffices
to prove that k/(yv/n+ 1) > 16/(n — 1) for large enough n. This is clear: indeed

the inequality holds for all n» under consideration, namely when & > 6 and n >
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(k + 3)%(k + 1)%. Let M(k,k+2) = (k + 3)?(k + 1)2. The theorem is now proved,
with N(k) = max M(k,t) when k > 6.

to<t<k+2

Remark. Following [1], let H*(n, e) denote the set of of all graphs in H(n, e)

which have a stepwise adjacency matrix. The foregoing arguments show that for
k > 2, there exists N (k) such that whenever n > N(k) we have v/n — 1 < p(G) <
V/n for all graphs G € H*(n,n + k).
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