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NUMERICAL SOLUTION OF INITIAL AND SINGULARLY

PERTURBED TWO-POINT BOUNDARY VALUE PROBLEMS

USING ADAPTIVE SPLINE FUNCTION APPROXIMATION

Mirjana Stojanovi�c

Abstract A special adaptive spline function which depends on arbitrary parameter q is
constructed. The form of this spline is exponential and in a limiting case when q ! 0 it reduces to
cubic spline. The schemes which have been applied to the initial and boundary value problems have
been derived by using the adaptive spline function of special form and its smoothness properties.
The approximative properties of adaptive spline function are illustrated by numerical experiments.

1. Introduction. An adaptive spline function to solve initial and boundary
value problems of ordinary and partial di�erential equation was introduced in [4].
That spline was obtained as a solution of a singularly perturbed di�erential equation
with the �rst derivative term. In a limiting case that adaptive spline function
reduces to cubic spline. The numerical method based on that function gives better
results than cubic spline or some other well known numerical methods (trapezodial
for instance).

In [5, 7] it was proved that exponentially �tted cubic spline di�erence scheme
has also better accuracy than common cubic spline.

In this paper, in the derivation of adaptive spline function, the form of sin-
gularly perturbed two-point boundary value problem lacking the �rst derivative is
used.

The schemes were constructed in the way described in [4] but for the problem
lacking the �rst derivative.

It is shown that the di�erence schemes, specially constructed using adaptive
spline function (that gives the cubic spline in a limiting case), have beter results
than cubic spline, even exponentially �tted cubic spline.

They are applicable to the initial value problems and for the singularly per-
turbed boundary value problems lacking the �rst derivative term. These schemes
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are less complex than those in [4], but they can achieve a uniform second order
accuracy in a small parameter " for the second problem mentioned above.

2. Derivation and Properties of the Adaptive Spline Function. We
consider a mesh with nodal points xj on the interval [0; 1] such that:

� : 0 = x0 < x1 < � � � < xn = 1 where h = xj � xj�1 for j = 0(1)n:

We denote a function u(xj) bu uj , and S�(xj�1; q) = uj�1; S�(xj ; q = uj as
interpalatory constraints. De�ne the adaptive spline function S�(x; q) as a solution
of di�erential equation:

�"Sn�(x; q) + pS�(x; q) = (x� xj�1)h
�1(�"Mj + puj)+

+(xj � x)h�1(�"Mi�1 + puj�1) (1)

where xj�1 � x � xj ; "; p are constants, Sn�(xj ; q) = Mj and q = (p=")1=2h. This
de�nition of adaptive spline di�ers from the de�nition given in [4] since there exists
a term with the �rst derivative but the term with the function is missing, and in
the above de�nition the term with the �rst derivative is lacking but there is the
term with the function. In the following text under adaptive spline will be always
unedrstood adaptive spline in the sense of our de�nition.

Solving (1) we obtain:

S�(x; q) = "(p shg)�1fMjsh((p=")
1=2(x � xj�1))�Mj�1sh((p=")

1=2(x� xj))g+
+x(ph)�1f"(Mj �Mj�1) + p(uj � uj�1)g+

+(ph)�1f"(xj�1Mj � xjMj�1)� p(xj�1uj � xjuj�1)g: (2)

So we propose an adaptive spline function which depends on a arbitrary
parameter to be chosen to suit a particular problem.

Introducting z = (x� xj�1)h
�1 and 1� z = (xj � x)h�1 we get

S�(z; q) = h2q�2(sh q)�1(Mjsh(qz) +Mj�1sh(q(1� z)))+

+ h2q�2(�Mjz +Mj�1(1� z)) + ujz + uj�1(1� z): (3)

In the limiting case when q ! 0, the representation (3) reduces to the well-known
cubic spline [1]
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h2
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It can be seen from (1) that for p = 0 we obtain cubic spline, and for " = 0 linear
spline. Also, if h=

p
"! 0, we obtain cubic spline as p 6= 0.

As we can see from (2) the function S�(x; q) belongs to the class C2[0; 1],
interpolates function u(x) at the mesh points xj , depends on a parameter q, and it
reduces to polynomial cubic spline as q ! 0.

Letter it was recognized that adaptive spline is a tension spline when all
tension parameters are equal, i.e. the case of uniform tension. All those splines
have the base

S(x) 2 span f1; x; e%ix; e�%ixg; xi�1 < x < xi

when %i is a tension parameter. When %i ! 0, cubic spline arise. We can say that
cubic spline is an adaptive or tension spline with uniform tension to zero.

If q ! 1, i.e. "! 0 then (3) leads to linear interpolant S�(x) = ujz + (1�
z)uj�1. The properties of interpolatory splines in tension and convergence analysis
of the behaviour for large parameter is described in [6].

By using the condition of continuity of the �rst derivative of S�(x; q) at the
point xj we get the folowing equation:

uj+1 � 2uj + uj�1 = h2q�2[Mj�1(1� q(sh q)�1+

2Mj(�1 + qcth q) +Mj+1(1� q(sh q)�1)] (4)

We have some additional spline relations:

mj =Mj

nh
q
cth q � h

q2

o
+Mj�1

n
� h

qsh q
+

h

q2

o
=

1

h
(uj � uj�1) (5)

mj�1 =Mj

n h

qsh q
� h

q2

o
+Mj�1

n
�h
q
cth q +

h

q2

o
+

1

h
(uj � uj�1) (6)

where mj denotes the �rst derivative at the point xj , i.e. mj = S0�(xj ; q).

The second derivative of A.S.F. can be expressed by means of the �rst one

Mj=D
�1

s hq
�2f[mj(1� qcth q)]� h

�1(uj � uj�1)(1� qcth q)�mj�1(1� q(sh q)
�1+

+h�1(1� q(sh q)�1 + h
�1(1� q(sh q)�1(uj � uj�1)g (7)

Mj�1=D
�1

s hq
�2fmj�1(1� qcth q �1)� h

�1(qcth q � 1)(uj � uj�1)�mj(q(sh q)
�1�1

+h�1(q(sh q)�1 � 1)(uj � uj�1)g (8)

where

Ds = (hq�1)2qf(sh q)�1 � cth qgfqcth q + q(sh q)�1 � 2g:
From (5) and (6) we obtain (4), (7) and (8) give

q

h
th
q

2
(uj+1 � uj�1) = mj+1

�
1� q

sh q

�
+ 2mj(qcth q � 1) +mj�1

�
1� q
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�
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Remark 1. When q ! 0, (9) becomes

(uj+1 � uj�1)2
�1h�1 = (u0j+1 + 4u0j + u0j�1)6

�1

which is a well-known relation for the cubic spline.

Remark 2. When q ! 0, the relation (4) leads to the well-known result for
polynomial cubic spline concerning the second derivatives (see [11]).

Using operator notation (see [3]), (4) can be written in the form

(E � 2I +E�1)uj = (h2=q2)[E�1(1� q=sh q) + 2(�1+ qcth q) +E(1� q=sh q)]Mj ;

where Euj = uj+1; Iuj = uj . Hence,

Mj = q2=h2(E � 2I +E�1[E�1(1� q=sh q) + 2(�1+ qcth q) +E(1� q=sh q)]�1uj :

Operator E can be written as E = ehD, where E and D are the shift and the
di�erential operators respectively.

The same operator technique is applied to (9). Expanding (4) and (9) in
powers of hd, we obtain:

mj = u0j =
h2

6

h
1� 3

q
cth

q

2

�
1� q

sh q

�i
u

000

j + � � � (10)
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2
cth

q

2

�
u

00
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12

hq
2
cth

q

2
� 3cth2

q

2
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1� q

sh q

�i
uivj + � � � (10.b)

Remark 3. When q ! 0 we obtain:

mj = u0j +
h2

6

� q2
12

�
u

000

j + � � � ; Mj = u
00

j +
h2

12

� q2
20
uivj + � � � :

Di�erentiating (1) and the corresponding equation in [xj ; xj+1] and puting
x = xj we obtain:

S
000

� (x�j ; q) =q
2h�2j�1mj + h�1j�1(Mj �Mj�1 + q2h�2j�1(uj�1 � uj))

S
000

� (x+j ; q) =q
2h�2j mj + h�1j (Mj+1 �Mj + q2h�2j (uj � uj+1))

(11)

For higher derivatives we have the recursion formula:

S
(n)
� (x�j ; q) = q2h�2S

(n�1)
� (xj ; q) n � 4 (12)
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Let e(x) = u(x) � S�(x; q) be the interpolation error for the adaptive spline
function approximation. Making use of the Taylor's expansion to equations (10-12)
we can establish the error formula:

e(xj + #h) = u(xj + #h)� S�(xj + #h; q) =
#h3
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2
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sh q
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+
(#h)3

3!

h
u
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j
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1� q

1
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q

2
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q2

4h
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12

nq
2
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q

2
�
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2

�
1� q

sh q

�
� q2h

o
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When q ! 0 the truncation error of this method is o(h4"�1). When " = 1, the
error is o(h4).

In developed form e(xj + #h) has the form:

e(xj + #h) = u
00

j

#2h2q2

24
(#� 1) + u

000

j

#h3

1!

q2

72
(1� #2) + uivj � (14)

3. Applications of Adaptive Spline Function. The applications of the
adaptive spline function relations to solve both the initial and singularly perturbed
two-point boundary value problems will be analysed.

With (9) we associated a linear operator:

L[u(xj); h] =
q

h
th
q

2
(u(xj+1)� u(xj�1)(1� (q(sh q)�1)�

�2u0(xj)(qcth q � 1)� u0(xj�1(1� q(sh q)�1 (15)

Expanding each term on the right-hand side of (15), in Taylor's series at x = xj
and collecting these terms we obtain:

L[u(xj); h] =

= u
000

j h
2
h1
3
qth

q

2
�
�
1� q

sh q

�i
+ uvjh

4
hq
6
th
q

2
� 1

12

�
1� q

sh q

�i
+ � � � (16)

We apply (9) to the test equation

u0 = �u; u(0) = 1; � < 0 (17)

Since mj = �uj and q = �h, the resulting di�erence scheme is:

uj+1fth(q=2)� (1� q(sh q)�1g+ ujf�2(qcth q � 1)g+ uj�1f�th(q=2)�
�(1� (q(sh q)�1g = 0 (18)
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The solution of (18) can be written as uj = C(g1)
j + C2(g2)

j , where

g1;2 = (qcth q � 1)� (thq=2)� q)[th(q=2)� (1� q(sh q)�1)]�1

and where C1 and C2 are arbitrary constants. So we obtain

uj = C1[(qcth q � 1 + th(q=2)� q)(th(q=2)� (1� q(sh q)�1))�1]j+

+C2[(qcth q � 1� (th(q=2)� q))(th(q=2)� (1� q(sh q)�1))�1]j

In the limiting case when q ! 0; uj ! (�1)j as j !1.

Thus all the solutions of the di�erence scheme are bounded as j !1.

A linear operator is associated to the equation which connects the second
derivatives and the spline values at three consequtive points, as follows:

L[u(xj); h] = u(xj+1)� 2u(xj) + u(xj�1)�
�h2q�2[(1� q(sh q)�1)(u

00

j+1 + u
00

j+1) + 2u
00

j (�1 + qcth q)] =

= u
00

j h
2(1� 2(qcth(q=2))�1) + u

(iv)
j h4(1=12� q�2(1� q(sh q)�1))+

+u
(vi)
j h6(1=360� (12q2)�1(1� q(sh q)�1)) + � � � (19)

When q ! 0; L = o(h4"�1), when " = 1 it has the order o(h4).

It is obvious from the form of the truncation error that we cannot increase
the order beyond four.

When we apply the di�erence scheme (4) to the test equation

"u
00

= ku; u(0) = 0; u(1) = 0 (20)

we obatin the characteristic equation given by:

uj+1(q(sh q)
�1) + uj(�2qcth q) + uj�1(q(sh q)

�1) = 0 (21)

where q = (k"�1)1=2h. Solving (21) we get

uj = A(exp(q))j +B(exp(�q))j (22)

The theoretical solution of (20) is written as

u(xj) = C1(exp(q))
j + C2(exp(�q))j (23)

Equation (22) gives the theoretical solution (23) and complete accuracy is obtained.

We may summarize the results obtained:

(a) Operator (15) with a choice of parameter q ! 0 is fourth order, with
respect to h, for " �xed, and stable when applied to the test equation (17). The
solution values at an intermediate point can be calculated using adaptive spline.
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(b) Operator (19) obtained from relation (4) when q ! 0 is fourth order if "
is �xed, and when it is applied to the test equation it gives complete accuracy.

4. Generation of Exponential Di�erence Scheme for Singular Per-
turbation Problem. The relation (4) is suitable for constructing an exponential
di�erence scheme to solve numerically two point boundary value problems lacking
the �rst derivative term. Now we discuss the solution of the di�erential equation

�"u00

+ p(x)u = f(x); p(x) > 0 0 < "� 1; (24)

x 2 [0; 1]; p(x) and f(x) being smooth enough.

The equation is subject to the boundary conditions

�1u(0) + �1u
0(0) = 
1 �1�1 � 0

�2u(1) + �2u
0(1) = 
2 �2�2 � 0

(25)

The solution of this problem displays the boundary layers at the end points
x = 0 and x = 1 for \small" ". In the boundary layers the solution of (24){
(25) has an exponential form. The exponential functions should be better suited
than polynomials to follow the rapid variations that are typically found in the
singular perturbation problems. So we have constructed an exponential basis for
the adaptive splines and used it to obtain the collocation equation.

If we regard Mj as he spline second derivatives, the equation (24) becomes

�"Mj + pjuj = fj ; pj = p(xj); fj = f(xj):

By substituting Mj from the last equation into the scheme (4) we obtain:
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From (25) we obtain the �rst and last equation:
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5. Numerical Experiments and Conclusions. The algorythm for solving
two point boundary value problems in this section was written in Fortran IV plus
and executed on the Delta 340 (PDP-11/34). A double precission mode with 16
signi�cant �gures has been used.

In Table 1 is given the between real and approximate solution of he problem

�"u00

+ u = � cos2 �x� 2"�2 cos 2�x

with boundary conditions u(0) = u(1) = 0, taken from [2].

This problem has the exact solution:

u(x) = (exp(�(1� x)=
p
") + exp(�x=p"))=(1 + exp(�1=p"))� cos2 �x:

The scheme (26{27) is applied to this problem on the equidistant grid with
N subintervals in the interval [0; 1], for di�erent ":(q = 1

p
").

Table 1

"

/
N 32 64 128 256 512 1024

1/64 0.159E{02 0.401E{03 0.100E{03 0.251E{04 0.627E{05 0.157E{05
1/1000 0.775E{02 0.297E{03 0.915E{03 0.254E{04 0.624E{05 0.157E{05

These results compare favourably with results obtained by using cubic spline
exponentially �tted (see [5]). We can conclude that adaptive splines give better
results. Exponential basis of adaptive spline is more suited to the problem (24{25)
than exponential spline which is obtained when polynomial spline is applied to the
di�erential equation exponentially �tted.

In Table 2 it is computationally shown thas the scheme (26{27) achieves a
second order convergence of uniform accuracy over the uniform mesh.

Table 2

"
/
k 1 2 3 4 5 Py

20 2.00 2.00 2.00 2.00 2.00 2.00
2�1 2.00 2.00 2.00 2.00 2.00 2.00
2�2 2.00 2.00 2.00 2.00 2.00 2.00
2�3 1.99 1.99 2.00 2.00 2.00 2.00
2�4 1.96 1.99 2.00 2.00 2.00 1.99
2�5 1.95 1.98 2.00 2.00 2.00 1.99
2�6 1.92 1.97 1.99 2.00 2.00 1.98
2�7 1.85 1.96 2.00 2.00 2.00 1.96
2�8 1.73 1.93 1.98 1.99 2.00 1.93
2�9 1.52 1.86 1.96 1.99 2.00 1.87
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Here is given the test of uniform convergence when the scheme (26{27) is
applied to the problem

�"u00

+ (1 + x)2u = (4x2 � 14x+ 4)(1 + x)2

with boundary conditions u(0)� u0(0) = 0; u(1) = 0.

This example and notation is taken from [2]. The errors zs and the rates pi
of uniform convergence is based on double mesh principle (see [2]).

If N is a number of subintervals of interval [0; 1] we de�ne

zs0 = max
0�i�n

j uNi � u2N2i j and pi = (ln zs�1 � ln zs)= ln 2;

zs and zs0 correspond to maximum error between two consequtive meshes (for
h = 1=N and h = 1=2N respectively).

For parameter q in (26{27) we used the variable parameter qi = (pi=")
1=2h,

where pi = p(xi).

Table 3 contains the maximmum error zs for the example

�"u00

+ (2x3 � 3x2 + 6)u = 4(3x2 � 3x+ 2)((x� 0:5)2 + 2);

taken from [2] too, with boundary conditions u(0) = �1; u(1) = 0.

Table 3

"
/
k 1 2 3 4 5

20 0.310E{03 0.774E{03 0.194E{04 0.484E{05 0.121E{05
2�1 0.452E{03 0.113E{03 0.283E{04 0.706E{05 0.177E{05
2�9 0.861E{03 0.224E{03 0.566E{04 0.142E{04 0.355E{05
2�10 0.851E{03 0.231E{03 0.592E{04 0.149E{04 0.373E{05
10�2 0.853E{03 0.231E{03 0.591E{04 0.149E{04 0.372E{05
10�5 0.175E{03 0.901E{04 0.415E{04 0.146E{04 0.413E{05
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