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TENSOR FIELDS AND CONNECTIONS ON CROSS-SECTIONS

IN THE FRAME BUNDLE OF SECOND ORDER

OF A PARALLELIZABLE MANIFOLD

Manuel De Leon, Modesto Salgado

Abstract. Let V be a �eld of global frames on a parallelizable manifold. Then V de�nes a
cross-section in the frame bundle of second order F 2M of M . The behaviour of the lifts of tensor
�elds and connections on M to F 2M along this cross-section is studied.

.
Introduction

Let M be an n-dimensional di�erentiable manifold, TM its tangent bundle
and T 2M its tangent bundle of order 2. When a vector �eld V is gixen on M , then
V de�nes a cross-section in TM and a cross-section in T 2M . The behaviour of the
lifts of tensor �elds and connections onM to TM and T 2M along the corresponding
cross-sections are studied in [10] and [9], respectively.

When a �eld of global frames V is given on a parallelizable manifold M , it
de�nes a cross-section in the frame bundle FM ofM and cross-section in the frame
bundle of second order F 2M of M . The behaviour of the lifts of tensor �elds and
connections onM to FM along this cross-section is studied in [1]. In this paper, we
study the behaviour on cross-section in F 2M of lifts of tensor �elds and connections
on M to F 2M .

In x 1 we �rst recall some properties of the lifts of tensor �elds and connections
on M to F 2M .

In x 2 and x 3, we study the lifts of tensor �elds on M to F 2M along the
cross-section determined by �eld of global frames on M .

Finally, x 4 will be devoted to the study of the lifts of connections on M to
F 2N along this cross-section.
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x 1. Prolongations of tensor �elds and linear connections
to the frame bundle of order 2

We shall recall, for later use, some properties of the frame bundle F 2M of
order 2 over a di�erentiable manifoldM of dimension n, and those of prolongations
of tensor �elds and linear connections on M to F 2M (cf. [2, 3, 4, 5, 8]).

The frame bundle F 2M of order 2 is the set of all 2-jets of di�eomorphisms of
open neighbourhoods of 0 in Rn onto open subsets of M . Let � : F 2 ! M be the
target projection �(j20
) = 
(0). Then � : F 2M !M is a prinpal �bre bundle over
M with the stuctural group L2n of all 2-jets with the source and with the target at
0 of local di�eomorphisms of Rn.

Let (U; xh) be a coordinate neighbrohood with the local coordinate system
(xh). A system of local coordinates (xh; Xh

�; X
h
��); X

h
�� = Xh

��; 1 � �; � � n,

can be introduced in ��1(U) in such a way that a 2-jet j20
 with 
(0) 2 U has
coordinates as

(1.1) xh = xh Æ 
(0); Xh
� =

@(xh Æ 
)

@t�
(0); Xh

�� =
@2(xh Æ 
)

@t�@t�
(0);

where (t1; . . . ; tn) are the usual coordinates in Rn.

Let (U; xh) and U; �xh) be two coordinate neighborhouods of M related by
coordinate transformation �xh = �xh(xh) in U \ U . If we denote by (xh; Xh

�; X
h
��)

and (�xh; X
h

�; X
h

��) the induced coordinates in ��1(U) and ��1(U), respectively,

the coordinate transformation in ��1(U) [ ��1(U) is given by

(1.2) �xh = �xh(xh); X
�

h =
@�xh

@xk
Xk
�; X

h

�� =
@�xh

@xr@xs
Xr
�X

s
� +

@�xh

@xr
Xr
��

We shall denote by Irs (M) (resp., Irs (F
2M)) the space of all tensor �elds of

type (r; s) on M (resp., F 2M).

1.1 Lifts of tensor �elds. For any element f 2 I00 (M), its lifts f0; f (�);

f (�;�); f (�;�) = f (�;�); 1 � �; � � n, to F 2M are elements of I00 (F
2M) given by

the following local expressions:

(1.3) f0 : f(xh); f (�) : X i
�@if(x

h); f (�;�) : X i
�X

j
�@i@jf(x

h) +X i
��@if(x

h)

in the induced coordinate system (xi; X i
�; X

i
��); f(x

h) being the local expression of

f in (xh), where @i = @=@xi.

For any element X 2 I10 (M), its prolongations X0; X(�); X(�;�)X(�;�) =
X(�;�); 1 � �; � � n, are elements of I10 (F

2M) and have the following properties:

(1.4)

X0f0 = (Xf)0; X0f (�) = (Xf)(�); X0f (�;�) = (Xf)(�;�);

X(�)f0 = 0; X(�)f (�) = Æ��(Xf)0; X(�)f (�;�) = Æ��(Xf)(�) +Æ��(Xf)(�)

X(�;�)f0 = 0; X(�;�)f (�) = 0; X(�;�)f (�;�) = Æ��Æ��(Xf)0
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f being an arbitrary element of I00 (M); 1 � �; � � n.

For any element � of I01 (M), its prolongations �0; � (�); � (�;�); �(�; �) =
� (�;�); 1 � �; � � n, are elements of �01 (F

2M) and have the following proper-
ties:

(1.5)

�0X0 = (�X)0; �0(X(�)) = 0; �0(X(�;�)) = 0

� (�)X0 = (�X)(�); � (�)(X(�)) = Æ��(�X)0; � (�;�)(X(�;�)) = 0

� (�;�)X0 = (�X)(�;�); � (�;�)(X(�)) = Æ��(�X)(�) + Æ��(�X)(�);

� (�;�)(X(�;�)) = Æ��Æ��(�X)0;

X being an arbitrary element of I10 (M); 1 � �; � � n.

For any element K of I0q (M) (resp., I1q (M)); q � 1, its prolongations

K0;K(�);K(�;�);K(�;�) = K(�;�); 1 � �; � � n, are elements of I0q (F
2(M))

(resp., J 1
q (F

2(M)) and are characterized by the following identities (cf. [3]):

(1.6)

K0(X0
1 ; . . . ; X

0
q ) = (K(X1; . . . ; Xq))

0

K(�)(X0
1 ; . . . ; X

0
q ) = (K(X1; . . . ; Xq))

�

K(�;�)(X0
1 ; . . . ; X

0
q ) = (K(X1; . . . ; Xq))

(�;�)

for any vector �elds X1; . . . ; Xq on M .

1.2. Lifts of linear connections. Let there be given a linear connection r
on M . Then there exists a unique linear connection r0 on F 2M characterized by
the following identities:

(1.7)

r0
X0Y 0 = (rXY )

0; r0
X0Y (�) = r0

X(�)Y
0 = (rXY )

(�);

r0
X0Y (�;�) = r0

X(�;�)Y
0 = (rXY )

(�;�)

r0
X(�)Y

(�) = (rXY )
(�;�) + (rXY )

(�;�);

r0
X(�)Y

(�;
) = r0
X(�;�)Y

(
) = r0
X(�;�)Y

(
�) = 0;

for any vector �elds X;Y; Z on M; 1 � �; �; 
; � � n.

If T and R denote the torsion and curvature tensors of r, then the torsion
and curvature tensors of r0 are T 0 and R0, respectively.

Remark . Observe that F 2M is an open subset of the tangent bundle of n2-
velocities T 2M over M (cf. [3]). Then the linear connection r0 is nothing but the
resctriction to F 2M of the 0-prolongation of r to T 2

nM de�ned by Morimoto [8].

x 2. Lifts of tensor �elds on a cross-section determined by
a �eld of global frames

Let there be given a �eld of global frames V = (V1; . . . ; Vn) on M , that is,
at each point x 2M; (V1(x); . . . ; Vn(x)) is a linear frame at x. Then each V� is a
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vector �eld globally de�ned on M . Assume that V� has local components V h
� (x)

with respect to a coordinate system (U; xh) in M , that is, V� = V h
� @h in U .

If, moreover,r is a torsion-free linear connection onM with local components
�hij , then we can de�ne a cross-section 
r of F 2M locally given by

(2.1) 
r(x
h) = (xh; V h

� ; ��
h
ijV

i
�V

j
� ):

Now, let r be the 
at linear connection associated to the absolute parallelism
V = (V1; . . . ; Vn), that is,

(2.2) rXY =

nX
�=1

X(Y �)V�; X; Y 2 I10 (M); Y = Y �V�

As it is well known [7], there exist a unique torsion-free linear connection r
with the same geodesics of r, namely, rXY = rXY � T (X � Y )=2; T being the
torsion of �r. From (2.2), one easily deduces that local components of r are

(2.3) �hij = �1=2 � f��
j @iV

h
� +��

i @jV
h
� g;

(��
j ) being the inverse matrix of (V i

�).

Then we have a cross-section 
V of F 2M , which will be said to be associated
with V . According to (2.1) and (2.3), 
V is the n-submanifold of F 2M locally
expresed in ��1(U) by

(2.4) xh = xh; XH
� = V h

� (x
s); Xh

�� = 1=2 � fV i
�(x

s)@iV
h
� (x

s) + V i
�(x

s)@iV
h
� (x

s)g:

From (1.3) and (2.4), we have along 
V (M) the equations

(2.5) f0 � f0; f (�) = LV�f; f
(�;�) = 1=2 � f(LV�V� + LV�V�)fg;

for f 2 I00 (M), where LV�f denotes the Lie derivative with respect to V and
LV�V� = LV�LV� .

From (2.4) one easily deduces that the n vector �elds given with respect to
the induced coorinates in F 2M by

(2.6) Bi = @i + (@iV
h
� )@h�+

+ 1=2 � (@iV
s
�@sV

h
� + V s

�@s@iV
h
� + @iV

s
� @sV

h
� + V s

� @s@iV
h
� )@h��

are tangent to 
V (M), where @h� = @=@Xh
� and @h�� = @=@Xh

��. For any element

X of I10 (M) with local components X i we denote by BX the vector �eld on F 2M
given in ��1(U) by

(2.7) BX = X iBi:

Obviously, BX is tangent to 
V (M) and the correspondence X ! BX determines
a mapping B : J 1

0 (M)! I10 (
V (M)) which is in fact the di�erential of 
V : M !
F 2M and so an isomorphism of I10 (M) onto I10 (
V (M)).
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From (2.6) and (2.7), one easily obtains, for any X;Y 2 I10 (M),

(2.8) [BX;BY ] = B[X;Y ]:

Let U be a coordinate neighbourhood in M ; then the local vector �elds

Bi; Ci� ; Di�� ; Di�� = Di�� given by

(2.9) Bi = B(@i); Ci� = @i� + (@iV
k
� )@h�� + (@iV

k
� )@h�� ; Di�� = @i��

form a local family of frames along 
V (M) which will be called the adapted frame
of 
V (M) in ��1(U).

For each vector �eld X onM with local components X i in U , we shall denote
by C�(X); D��(X); D��(X) = D��(X); 1 � �; � � n, the vector �elds

(2.10) C�(X) = X iCi� ; D��(X) = X iDi�� :

From (1.4), (2.9) and (2.10), we have along 
V (M)

(2.11)

X0 = BX +

nX
�=1

C�(LV �X) +
1

2

nX
�;�=1

D��(LV�V�X + LV�V�X);

X(�) = C�(X) +
nX

��1

fD��(LV �X +D�;�(LV�X)g;

X�� = D��(X);

for X 2 I10 (M), and, therefore

(2.12)

BX = X0 �
nX

�=1

(LV �X)(�) �
1

2

nX
�;�=1

(LV�V�X + LV �V �X)(�;�);

C�(X) = X(�) �

nX
��1

n
(LV �X)(�;�) + (LV �X)(�;�)

o
;

D��(X) = X(�;�):

Then we have

Proposition 2.1. X0 is tangent to 
V (M) if only if the Lie derivative of X
with respect to V� vanishes, that is, LV �X = 0, for every � = 1; . . . ; n.

The adapted coframe of 
V (M) in F 2M dual to the adapted frame

fBi; Ci�; Di��g is easily shown to be given along 
V (M) by

(2.13)

�i =dxi; �i� = �(@hV
i
�)dx

h + dX i
�

�i�� =1=2 � f@hV
t
�@tV

i
� + @hV

t
�@tV

i
� � V t

�@t@hV
t
� � V t

�@t@hV
i
�gdx

h

�f@hV
i
�Æ

�� + @hV
i
�Æ

��gdXh
� + dX i

�� :
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Let � be an element of I01 (M) with local components �i. Then its lifts
�0; � (�); � (�;�) have the components of the form

(2.14)
�0 = (�h; 0; 0); � (�) = ((LV ��)h; Æ

���h; 0)

� (�;�) = (1=2 � fLV�V� � + LV�V��gh; Æ
��(LV��)h + Æ��(LV� �)h; Æ

��Æ���h)

respectively, in the adapted coframe.

Then we have

Proposition 2.2. (i) A necessary and suÆcient condition for the (�)-lift
� (�) of a 1-form � on M to F 2(M) to be zero for all vector �elds tangent to 
V (M)
is that the Lie derivative of � with respect to the vector �eld V� vanishes, that is,
LV �� = 0

(ii) A necessary and suÆcient condition for the (�; �)-lift of a 1-form � on
M to F 2M to be zero for all vector �elds tangent to 
V (M) is that LV�V� � =
�LV �V �� . A suÆcient condition is that the Lie derivatives of � with respect to V�
and V� vanish, that is, LV �� = LV� � = 0.

Using (1.6), (2.9), (2.11), (2.12) and (2.13), we can �nd components of 0-lift,
(�)-lift and (�; �)-lift of any tensor �eld on M of type (0; q) or (1; q); q � 1, with
respect to the adapted frame. For instance, for an element G 2 I02 (M) we have

G0 =

0
@Gij 0 0

0 0 0
0 0 0

1
A G(�) =

0
@ (LV�G)ij Æ��Gij 0

Æ��Gij 0 0
0 0 0

1
A

(2.15)

G(�;�)=

0
@ 1=2 � (LV�V�G+LV�V�G)ij Æ��(LV�G)ij+Æ

��(LV�G)ij Æ��Æ�
Gij

Æ��(LV�G)ij + Æ��(LV�G)ij Æ��Æ��Gij + Æ��Æ��Gij 0

Æ��Æ��Gij 0 0

1
A

Gij being the local components of G.

For an element F of J 1
1 (M) we obtain

(2.16)

F 0=

0
@ Fij 0 0

Æ��(LV�F )
i
j Æ��F i

j 0

1=2 � Æ��Æ��(LV�V�F+LV�V�F )
i
j Æ��(LV �F )

i
j+Æ

��(LV�F )
i
j Æ��Æ�
F i

j

1
A

F (�) =

0
@ 0 0 0

Æ��F i
j 0 0

Æ��(LV�F )
i
j + Æ��(LV�F )

i
j Æ��Æ��F i

j + Æ��Æ��F i
j 0

1
A

F (�;�) =

0
@ 0 0 0

0 0 0
Æ��Æ��F i

j 0 0

1
A

F i
j being the local components of F .
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For an element of S of I12 (M), we have

(2.17)

(S0)ijk = Sijk ; (S
0)i�jk = (LV�S)

i
jk ; (S

0)
i��
jk = 1=2 � (LV�V�S + LV�V�S)

i
jk

(S0)i�j�k = (S0)i�jk� = Æ��Sijk

(S0)
i��
j�k

= (S0)
i��
jk�

= Æ��(LV�S)
i
jk + Æ��(LV�S)

i
jk

(S0)
i��
j�k


= Æ��Æ�
Sijk + Æ�
Æ��Sijk; (S0)
i��
j�
k

= (S0)
i��
jk�


= Æ��Æ�
Sijk

and the rest of the components are equal to zero, Sijk being the local componenets
of S.

x 3. Lifts of tensor �elds of type (1, 1) and of type (0, 2) on a cross-section

3.1. Lifts of tensor �elds of type (1, 1). Let F 2 I11 with local compo-
nents F i

j . Then, from (2.11) and (2.16), we have along 
V (M) that

(3.1)

F 0(BX) =B(FX)+

nX
�=1

C�

�
(LV�F )X

�
+ 1=2

nX
�=1

D��((LV �v�F+LV�V�F )X)

F (�)(BX) = C�(FX) +

nX
�;�=1

D��(Æ
��(LV �F )X + Æ��(LV�F )X)

F (�;�)(BX) = D��(FX)

for any vector �eld X on M .

When F 0(BX) is tangent to 
V (M) for any vector �eld X on M;F 0 is said
to leave 
V (M) invariant. Thus we have from (3.1).

Proposition 3.1. F 0 leaves 
V (M) invariant if and only if LV �F = 0 for

every � = 1; . . . ; n. The lifts F� and F (�;�); 1 � �; � � n, do not have 
V (M)
invariants unless F = 0.

Now, assume F 0 leaves 
V (M) invariantr. Then we can de�ne an element
(F 0)# 2 I11 (
V (M)) by

(3.2) (F 0)#(BX) = F 0(BX) = B(FX)

for arbitrary X 2 I10 (M); (F 0)# is called the tensor �eld induced on 
V (M) from
F 0.

Let us now recall from [3] that if F is a polynomial structure of rank r and
structural polynomial P (t) (i. e., rank F = r and P (F ) = 0) then its 0-lift F 0 to
F 2M de�nes on F 2M a polynomial structure with the same structural polynomial
and with rank F 0 = r(1 + n + n(n + 1)=2). Moreover, if NF and NF 0 denote the
Nijenhuis tensor of F and F 0, respectively, then (NF )

0 = NF 0

So, if F de�nes on M a polynomial structure of rank r and P (F ) = 0, and
if F 0 leaves 
V (M) invariant, then (F 0)# satis�es P ((F 0)#) = 0 and the rank of
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(F 0)# = r, and hence, (F 0)# de�nes on 
V (M) a polynomial structure of the same
type.

Taking into account (2.11) and (2.17), one obtains

(3.3)

(NF )
0(BX;BY ) =B(NF (X;Y )) +

nX
�=n

C�((LV�NF )(X;Y ))+

+
1

2

nX
�;�=1

D��((LV�V�NF + LV�V�NF )(X;Y ))

along 
V (M), for any X;Y 2 I10 (M). Thus

Propositions 3.2. NF 0(BX;BY ) is tangent to 
V (M) for arbitrary ele-
ments X;Y 2 I10 (M) if and only if LV�NF = 0 for every � = 1; . . . ; n.

Now, we assume that F 0 leaves 
V (M) invariant. Then from (2.8) and (3.2)
we obtain

NF 0(BX;BY ) = N(F 0)#(BX;BY )

for arbitrary X;Y 2 I10 (M). Then, since LV�F = 0 implies LV�NF = 0, from (3.3)
we have

Proposition 3.3. Suppose that the 0-lift of F 0 of F to F 2M leaves 
V (M)
invariant. Then N(F 0)# = 0 if and only if NF = 0.

Next, let us suppose that F 2 Iii (M) de�nes an almost complex structure on
M , i.e. F 2 = �I . Then, F 0 de�nes an almost complex structure on F 2M . Recall
that a submanifold in an almost complex manifold with structure F is said to be
invariant or almost analytic when F leaves the submanifold invariant. Thus, from
the previous propositions, we deduce

Proposition 3.4. 
V (M) is almost analytic in the almost complex manifold
F 2M with structure F 0 if and only if each vector �eld V� is almost analytic, that
is, LV�F = 0. In this case, 
V (M) is an almost complex manifold with structure
tensor F 0)#; moreover N(F 0)# = 0, that is, (F 0)# is complex analytic, if and only
if F is complex analytic, that is, NF = 0.

Let X 2 I10 (M) and F 2 I11 (M) such that F 0 leaves 
V (M) invariant. Then,
(LBX (F

0)#)(BY ) = B((LXF )Y ) for any Y 2 I10 (M). Therefore,

Proposition 3.5. Let F be an almost complex structure on M such that
F 0 leaves 
V (M) invariant. Then, for any X 2 I10 (M); BX is almost analytic in

V (M) if and only if X is almost analytic in M .

3.2. Lifts of tensor �elds of type (0, 2).. Let G be a tensor �eld of type
(0, 2) on M . Then, from (2.15) we have along 
V (M).

(3.4)

G0(BX;BY ) = (G(X;Y ))0

G(�)(BX;BY ) = f(LV�G)(X;Y )g
0

G(�;�)(BX;BY ) = f1=2(LV�V�G+ LV�V�G)(X;Y )g
0
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for all vector �elds X;Y on M; 1 � �; � � n. Then, putting

(G0)#(BX;BY ) = G0(BX;BY ); (G(�))#(BX;BY ) = G(�)(BX;BY )

(G(�;�))#(BX;BY ) = G(�;�)(BX;BY )

we have elements (G0)#; (G(�))#; (G(�;�))# 2 I02 (
V (M)).

If G is a Riemann metric on M , then from (3.4) we deduce

Proposition 3.6. 
V (M) is a Riemann manifold with metric (G0)# and the
projection � : F 2M !M is an isometry.

Next, assume that G 2 I20 (M) is a 2-form; then, (G0)# is a 2-form on 
V (M),
and a straightforward computation shows the identity

d(G0)#(BX;BY �BZ) = (dG(X;Y; Z))0

along 
V (M), for every X;Y; Z 2 I10 (M). Therefore,

Proposition 3.7. (G0)# is closed along 
V (M) if and only if G is closed.

Since rank (G0)# along 
V (M) is equal to rank G on M , we easily deduce.

Corollary 3.8. 
V (M) is a symplectic manifold with respect to (G0)# if
and only if M is a symplectic manifold with respect to G.

For an arbitrary G 2 I02 (M), we have along 
V (M)(LBX (G
0)#)(BY;BZ) =

((LXG)(Y; Z))
0 for any X;Y;X 2 I10 (M). Therefore

Corollary 3.9. i) Under the hypothesis of Proposition 3:6, a vector �eld X
on M is Killing for the metric G on M if and only if BX is Killing for the metric
(G0)# on 
V (M).

ii) Under the hypothesis of Corollary 3:8, a vector �eld X on M is an in�n-
itesimal symplectic authomorphism with respect to G on M if and only if BX is
such an automorphism with respect to (G0)# on M .

x 4. Linear connections induced on 
V (M)

Let M be a manifold with a linear connection r. Then the frame bundle of
second order F 2(M) of M is a manifold with linear connection r0. We now study
the linear connection r0, induced from r0 on 
V (M).

From (1.7) and (2.11) trough a direct computation we get along 
V (M)

(4.1)

r0
Bi
Bj = �hijBh+

nX
�=1

(Lv�r)
h
ijCh� +

1

2

nX
�;�=1

(LV�V�r+ LV�V�r)
h
ijDh��

r0
Bi
Cj� =�hijCh� +

nX
�=1

f(LV�r)
h
ijDh�� + (LV�r)

h
ijDh��g

r0
Bi
Dj�� = �hijDh��
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where �hij are the components of r. Therefore

r0

Bi
Bj = �hijBh

de�nes the induced linear connection r0 on 
V (M), and

r0
Bi
Bj = r0

Bi
Bj +

nX
�=1

(LV�r)
h
ijCh� +

1

2

nX
�;�=1

(LV�V�r+ LV�V�r)
h
ijDh��

is the Gauss formula for 
V (M).

Proposition 4.1. 
V (M) is autoparallel with respect to r0 if and only if each
V�; 1 � � � n, is an in�nitesimal aÆne transformation on M , i.e. LV�r = 0, for
any � = 1; . . . ; n.

Now we recall that if R is the curvature tensor of r, then the cutvature tensor
of r0 is R0. Using (1.7), (2.11) and (2.12) we obtain along 
V (M).

R0(BX;BY )BZ = B(R(X;Y )Z) +

nX
�=1

C�((LV�R)(X;Y; Z))

+
1

2

nX
�;�=1

D��((LV�V�R+ LV�V�R)(X;Y; Z))

for all vector �elds X;Y; Z on M .

Then we have

Proposition 4.2. Let R be the curvature tensor of a linear connection r on

M . Then, for all vector �elds eX; eY ; eZ tangent to 
V (M), R0( eX; eY ; eZ is tangent to

V (M) if and only if LV�R = 0, for � = 1; . . . ; n.

Let F 2 I10 (M) be such that F 0 leaves 
V (M) invariant. Then, along 
V (M)
we obtain r0

BX (F
0)#(BY ) = B((rXF )Y ), for any X;Y 2 I10 (M). Therefore

Proposition 4.3. Let F 2 I11 (M) be such that F 0 leaves 
V (M) invariant.
Then r0(F 0)# = 0 if and only if r0(F 0)# = 0.

Let G 2 I02 (M). Then we obtain along 
V (M).

(r0

BX(G
0)#)(BY;BZ) = f(rXG)(Y; Z)g

0 for any X;Y; Z 2 I10 (M):

Therefore, using Propositions 3.6. and 3.7 and Corollary 3.9, we deduce

Proposition 4.4. i) Let G be a Riemann metric on M and r its Riemann
connection. Then, the connection r0, induced on 
V (M) from r0, is the Riemann
connection constructed from the metric (G0)# induced on 
V (M) from G0.

ii) Let G be an almost symplectic (resp., symplectic) 2-form on M and r
an adapted connection, i.e. rG = 0. Then, the linear connection r0, induced on

V (M) from r0, is adapted with respect to the almost symplectic (resp., symplectic)
from (G0)# induced from G0 on 
V (M).
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Now, let F 2 I11 (M) and G 2 I02 (M) such that F 0 leaves 
V (M) invariant.
Then, along 
V (M).

(G0)#((F 0)#(BX); (F 0)#(BY )) = (G0)#(B(FX); B(FY )) = fG(FX;FY )g0;

for all vector �elds Y; Y on M .

If a Riemann metric G and a complex structure F onM satisfy the conditions
G(FX;FY ) = G(X;Y ); rXF = 0, for all vector �elds X;Y;r being the Riemann
connection determined by G, then (F;G) is a Kahlerian structure. Thus, taking
into accound the previous results, we have

Proposition 4.5. Let (F;G) be a Kahlerian structure on M such that
F 0 leaves 
V (M) invariant. Then ((F 0)#); (G0)#) is a Kahlerian structure on

V (M).
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