TENSOR FIELDS AND CONNECTIONS ON CROSS-SECTIONS IN THE FRAME BUNDLE OF SECOND ORDER OF A PARALLELIZABLE MANIFOLD

Manuel De Leon, Modesto Salgado

Abstract

Let V be a field of global frames on a parallelizable manifold. Then V defines a cross-section in the frame bundle of second order $F^{2} M$ of M. The behaviour of the lifts of tensor fields and connections on M to $F^{2} M$ along this cross-section is studied.

Introduction

Let M be an n-dimensional differentiable manifold, $T M$ its tangent bundle and $T^{2} M$ its tangent bundle of order 2 . When a vector field V is gixen on M, then V defines a cross-section in $T M$ and a cross-section in $T^{2} M$. The behaviour of the lifts of tensor fields and connections on M to $T M$ and $T^{2} M$ along the corresponding cross-sections are studied in [10] and [9], respectively.

When a field of global frames V is given on a parallelizable manifold M, it defines a cross-section in the frame bundle $F M$ of M and cross-section in the frame bundle of second order $F^{2} M$ of M. The behaviour of the lifts of tensor fields and connections on M to $F M$ along this cross-section is studied in [1]. In this paper, we study the behaviour on cross-section in $F^{2} M$ of lifts of tensor fields and connections on M to $F^{2} M$.

In $\S 1$ we first recall some properties of the lifts of tensor fields and connections on M to $F^{2} M$.

In $\S 2$ and $\S 3$, we study the lifts of tensor fields on M to $F^{2} M$ along the cross-section determined by field of global frames on M.

Finally, $\S 4$ will be devoted to the study of the lifts of connections on M to $F^{2} N$ along this cross-section.

§ 1. Prolongations of tensor fields and linear connections to the frame bundle of order 2

We shall recall, for later use, some properties of the frame bundle $F^{2} M$ of order 2 over a differentiable manifold M of dimension n, and those of prolongations of tensor fields and linear connections on M to $F^{2} M$ (cf. $[\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{8}]$).

The frame bundle $F^{2} M$ of order 2 is the set of all 2-jets of diffeomorphisms of open neighbourhoods of 0 in R^{n} onto open subsets of M. Let $\pi: F^{2} \rightarrow M$ be the target projection $\pi\left(j_{0}^{2} \gamma\right)=\gamma(0)$. Then $\pi: F^{2} M \rightarrow M$ is a prinpal fibre bundle over M with the stuctural group L_{n}^{2} of all 2-jets with the source and with the target at 0 of local diffeomorphisms of R^{n}.

Let $\left(U, x^{h}\right)$ be a coordinate neighbrohood with the local coordinate system $\left(x^{h}\right)$. A system of local coordinates $\left(x^{h}, X_{\alpha}^{h}, X_{\alpha \beta}^{h}\right), X_{\alpha \beta}^{h}=X_{\beta \alpha}^{h}, 1 \leq \alpha, \beta \leq n$, can be introduced in $\pi^{-1}(U)$ in such a way that a 2 -jet $j_{0}^{2} \gamma$ with $\gamma(0) \in U$ has coordinates as

$$
\begin{equation*}
x^{h}=x^{h} \circ \gamma(0), X_{\alpha}^{h}=\frac{\partial\left(x^{h} \circ \gamma\right)}{\partial t^{\alpha}}(0), X_{\alpha \beta}^{h}=\frac{\partial^{2}\left(x^{h} \circ \gamma\right)}{\partial t^{\alpha} \partial t^{\beta}}(0) \tag{1.1}
\end{equation*}
$$

where $\left(t^{1}, \ldots, t^{n}\right)$ are the usual coordinates in R^{n}.
Let (U, x^{h}) and \bar{U}, \bar{x}^{h}) be two coordinate neighborhouods of M related by coordinate transformation $\bar{x}^{h}=\bar{x}^{h}\left(x^{h}\right)$ in $U \cap \bar{U}$. If we denote by $\left(x^{h}, X_{\alpha}^{h}, X_{\alpha \beta}^{h}\right)$ and ($\bar{x}^{h}, \bar{X}_{\alpha}^{h}, \bar{X}_{\alpha \beta}^{h}$) the induced coordinates in $\pi^{-1}(U)$ and $\pi^{-1}(\bar{U})$, respectively, the coordinate transformation in $\pi^{-1}(U) \cup \pi^{-1}(\bar{U})$ is given by

$$
\begin{equation*}
\bar{x}^{h}=\bar{x}^{h}\left(x^{h}\right), \bar{X}_{h}^{\alpha}=\frac{\partial \bar{x}^{h}}{\partial x^{k}} X_{\alpha}^{k}, \bar{X}_{\alpha \beta}^{h}=\frac{\partial \bar{x}^{h}}{\partial x^{r} \partial x^{s}} X_{\alpha}^{r} X_{\beta}^{s}+\frac{\partial \bar{x}^{h}}{\partial x^{r}} X_{\alpha \beta}^{r} \tag{1.2}
\end{equation*}
$$

We shall denote by $\mathcal{I}_{s}^{r}(M)$ (resp., $\mathcal{I}_{s}^{r}\left(F^{2} M\right)$) the space of all tensor fields of type (r, s) on M (resp., $F^{2} M$).
1.1 Lifts of tensor fields. For any element $f \in \mathcal{I}_{0}^{0}(M)$, its lifts $f^{0}, f^{(\alpha)}$, $f^{(\alpha, \beta)}, f^{(\alpha, \beta)}=f^{(\beta, \alpha)}, 1 \leq \alpha, \beta \leq n$, to $F^{2} M$ are elements of $\mathcal{I}_{0}^{0}\left(F^{2} M\right)$ given by the following local expressions:

$$
\begin{equation*}
f^{0}: f\left(x^{h}\right), f^{(\alpha)}: X_{\alpha}^{i} \partial_{i} f\left(x^{h}\right), f^{(\alpha, \beta)}: X_{\alpha}^{i} X_{\beta}^{j} \partial_{i} \partial_{j} f\left(x^{h}\right)+X_{\alpha \beta}^{i} \partial_{i} f\left(x^{h}\right) \tag{1.3}
\end{equation*}
$$

in the induced coordinate system $\left(x^{i}, X_{\alpha}^{i}, X_{\alpha \beta}^{i}\right), f\left(x^{h}\right)$ being the local expression of f in $\left(x^{h}\right)$, where $\partial_{i}=\partial / \partial x^{i}$.

For any element $X \in \mathcal{I}_{0}^{1}(M)$, its prolongations $X^{0}, X^{(\alpha)}, X^{(\alpha, \beta)} X^{(\alpha, \beta)}=$ $X^{(\beta, \alpha)}, 1 \leq \alpha, \beta \leq n$, are elements of $\mathcal{I}_{0}^{1}\left(F^{2} M\right)$ and have the following properties:

$$
\begin{aligned}
& X^{0} f^{0}=(X f)^{0}, X^{0} f^{(\alpha)}=(X f)^{(\alpha)}, X^{0} f^{(\alpha, \beta)}=(X f)^{(\alpha, \beta)} \\
& X^{(\alpha)} f^{0}=0, X^{(\alpha)} f^{(\lambda)}=\delta^{\alpha \lambda}(X f)^{0}, X^{(\alpha)} f^{(\lambda, \mu)}=\delta^{\alpha \lambda}(X f)^{(\mu)}+\delta^{\alpha \mu}(X f)^{(\lambda)} \\
& X^{(\alpha, \beta)} f^{0}=0, X^{(\alpha, \beta)} f^{(\lambda)}=0, X^{(\alpha, \beta)} f^{(\lambda, \mu)}=\delta^{\alpha \lambda} \delta^{\beta \mu}(X f)^{0}
\end{aligned}
$$

f being an arbitrary element of $\mathcal{I}_{0}^{0}(M), 1 \leq \lambda, \mu \leq n$.
For any element τ of $\mathcal{I}_{1}^{0}(M)$, its prolongations $\tau^{0}, \tau^{(\alpha)}, \tau^{(\alpha, \beta)}, \tau(\alpha, \beta)=$ $\tau^{(\beta, \alpha)}, 1 \leq \alpha, \beta \leq n$, are elements of $\tau_{1}^{0}\left(F^{2} M\right)$ and have the following properties:

$$
\begin{align*}
& \tau^{0} X^{0}=(\tau X)^{0}, \tau^{0}\left(X^{(\lambda)}\right)=0, \tau^{0}\left(X^{(\lambda, \mu)}\right)=0 \\
& \tau^{(\alpha)} X^{0}=(\tau X)^{(\alpha)}, \tau^{(\alpha)}\left(X^{(\lambda)}\right)=\delta^{\alpha \lambda}(\tau X)^{0}, \tau^{(\alpha, \beta)}\left(X^{(\lambda, \mu)}\right)=0 \\
& \tau^{(\alpha, \beta)} X^{0}=(\tau X)^{(\alpha, \beta)}, \tau^{(\alpha, \beta)}\left(X^{(\lambda)}\right)=\delta^{\alpha \lambda}(\tau X)^{(\beta)}+\delta^{\beta \lambda}(\tau X)^{(\alpha)} \tag{1.5}\\
& \tau^{(\alpha, \beta)}\left(X^{(\lambda, \mu)}\right)=\delta^{\alpha \lambda} \delta^{\beta \mu}(\tau X)^{0}
\end{align*}
$$

X being an arbitrary element of $\mathcal{I}_{0}^{1}(M), \quad 1 \leq \alpha, \beta \leq n$.
For any element K of $\mathcal{I}_{q}^{0}(M)$ (resp., $\left.\mathcal{I}_{q}^{1}(M)\right), q \geq 1$, its prolongations $K^{0}, K^{(\alpha)}, K^{(\alpha, \beta)}, K^{(\alpha, \beta)}=K^{(\beta, \alpha)}, 1 \leq \alpha, \beta \leq n$, are elements of $\mathcal{I}_{q}^{0}\left(F^{2}(M)\right)$ (resp., $\mathcal{J}_{q}^{1}\left(F^{2}(M)\right)$ and are characterized by the following identities (cf. [3]):

$$
\begin{align*}
& K^{0}\left(X_{1}^{0}, \ldots, X_{q}^{0}\right)=\left(K\left(X_{1}, \ldots, X_{q}\right)\right)^{0} \\
& K^{(\alpha)}\left(X_{1}^{0}, \ldots, X_{q}^{0}\right)=\left(K\left(X_{1}, \ldots, X_{q}\right)\right)^{\alpha} \tag{1.6}\\
& K^{(\alpha, \beta)}\left(X_{1}^{0}, \ldots, X_{q}^{0}\right)=\left(K\left(X_{1}, \ldots, X_{q}\right)\right)^{(\alpha, \beta)}
\end{align*}
$$

for any vector fields X_{1}, \ldots, X_{q} on M.
1.2. Lifts of linear connections. Let there be given a linear connection ∇ on M. Then there exists a unique linear connection ∇^{0} on $F^{2} M$ characterized by the following identities:

$$
\begin{align*}
& \nabla_{X^{0}}^{0} Y^{0}=\left(\nabla_{X} Y\right)^{0}, \nabla_{X^{0}}^{0} Y^{(\alpha)}=\nabla_{X(\alpha)}^{0} Y^{0}=\left(\nabla_{X} Y\right)^{(\alpha)} \\
& \nabla_{X^{0}}^{0} Y^{(\alpha, \beta)}=\nabla_{X^{(\alpha, \beta)}}^{0} Y^{0}=\left(\nabla_{X} Y\right)^{(\alpha, \beta)} \\
& \nabla_{X^{(\alpha)}}^{0} Y^{(\beta)}=\left(\nabla_{X} Y\right)^{(\alpha, \beta)}+\left(\nabla_{X} Y\right)^{(\beta, \alpha)} \tag{1.7}\\
& \nabla_{X^{(\alpha)}}^{0} Y^{(\beta, \gamma)}=\nabla_{X^{(\alpha, \beta)}}^{0} Y^{(\gamma)}=\nabla_{X^{(\alpha, \beta)}}^{0} Y^{(\gamma \mu)}=0
\end{align*}
$$

for any vector fields X, Y, Z on $M, 1 \leq \alpha, \beta, \gamma, \mu \leq n$.
If T and R denote the torsion and curvature tensors of ∇, then the torsion and curvature tensors of ∇^{0} are T^{0} and R^{0}, respectively.

Remark. Observe that $F^{2} M$ is an open subset of the tangent bundle of n^{2} velocities $T^{2} M$ over M (cf. [3]). Then the linear connection ∇^{0} is nothing but the resctriction to $F^{2} M$ of the 0 -prolongation of ∇ to $T_{n}^{2} M$ defined by Morimoto [8].

§ 2. Lifts of tensor fields on a cross-section determined by a field of global frames

Let there be given a field of global frames $V=\left(V_{1}, \ldots, V_{n}\right)$ on M, that is, at each point $x \in M,\left(V_{1}(x), \ldots, V_{n}(x)\right)$ is a linear frame at x. Then each V_{α} is a
vector field globally defined on M. Assume that V_{α} has local components $V_{\alpha}^{h}(x)$ with respect to a coordinate system $\left(U, x^{h}\right)$ in M, that is, $V_{\alpha}=V_{\alpha}^{h} \partial_{h}$ in U.

If, moreover, ∇ is a torsion-free linear connection on M with local components $\Gamma_{i j}^{h}$, then we can define a cross-section γ_{∇} of $F^{2} M$ locally given by

$$
\begin{equation*}
\gamma_{\nabla}\left(x^{h}\right)=\left(x^{h}, V_{\alpha}^{h},-\Gamma_{i j}^{h} V_{\alpha}^{i} V_{\beta}^{j}\right) \tag{2.1}
\end{equation*}
$$

Now, let $\bar{\nabla}$ be the flat linear connection associated to the absolute parallelism $V=\left(V_{1}, \ldots, V_{n}\right)$, that is,

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\sum_{\alpha=1}^{n} X\left(Y^{\alpha}\right) V_{\alpha}, \quad X, Y \in \mathcal{I}_{0}^{1}(M), Y=Y^{\alpha} V_{\alpha} \tag{2.2}
\end{equation*}
$$

As it is well known [7], there exist a unique torsion-free linear connection ∇ with the same geodesics of $\bar{\nabla}$, namely, $\nabla_{X} Y=\bar{\nabla}_{X} Y-\bar{T}(X-Y) / 2, \bar{T}$ being the torsion of $\bar{\nabla}$. From (2.2), one easily deduces that local components of ∇ are

$$
\begin{equation*}
\Gamma_{i j}^{h}=-1 / 2 \cdot\left\{\Lambda_{j}^{\alpha} \partial_{i} V_{\alpha}^{h}+\Lambda_{i}^{\alpha} \partial_{j} V_{\alpha}^{h}\right\} \tag{2.3}
\end{equation*}
$$

$\left(\Lambda_{j}^{\alpha}\right)$ being the inverse matrix of $\left(V_{\alpha}^{i}\right)$.
Then we have a cross-section γ_{V} of $F^{2} M$, which will be said to be associated with V. According to (2.1) and (2.3), γ_{V} is the n-submanifold of $F^{2} M$ locally expresed in $\pi^{-1}(U)$ by

$$
\begin{equation*}
x^{h}=x^{h}, X_{\alpha}^{H}=V_{\alpha}^{h}\left(x^{s}\right), X_{\alpha \beta}^{h}=1 / 2 \cdot\left\{V_{\alpha}^{i}\left(x^{s}\right) \partial_{i} V_{\beta}^{h}\left(x^{s}\right)+V_{\beta}^{i}\left(x^{s}\right) \partial_{i} V_{\alpha}^{h}\left(x^{s}\right)\right\} \tag{2.4}
\end{equation*}
$$

From (1.3) and (2.4), we have along $\gamma_{V}(M)$ the equations

$$
\begin{equation*}
f^{0}-f^{0}, f^{(\alpha)}=\mathcal{L}_{V_{\alpha}} f, f^{(\alpha, \beta)}=1 / 2 \cdot\left\{\left(\mathcal{L}_{V_{\alpha} V_{\beta}}+\mathcal{L}_{V_{\beta} V_{\alpha}}\right) f\right\} \tag{2.5}
\end{equation*}
$$

for $f \in \mathcal{I}_{0}^{0}(M)$, where $\mathcal{L}_{V_{\alpha}} f$ denotes the Lie derivative with respect to V and $\mathcal{L}_{V_{\alpha} V_{\beta}}=\mathcal{L}_{V_{\alpha}} \mathcal{L}_{V_{\beta}}$.

From (2.4) one easily deduces that the n vector fields given with respect to the induced coorinates in $F^{2} M$ by

$$
\begin{align*}
B_{i}=\partial_{i}+ & \left(\partial_{i} V_{\alpha}^{h}\right) \partial_{h \alpha}+ \tag{2.6}\\
& +1 / 2 \cdot\left(\partial_{i} V_{\alpha}^{s} \partial_{s} V_{\beta}^{h}+V_{\alpha}^{s} \partial_{s} \partial_{i} V_{\beta}^{h}+\partial_{i} V_{\beta}^{s} \partial_{s} V_{\alpha}^{h}+V_{\beta}^{s} \partial_{s} \partial_{i} V_{\alpha}^{h}\right) \partial h_{\alpha \beta}
\end{align*}
$$

are tangent to $\gamma_{V}(M)$, where $\partial_{h_{\alpha}}=\partial / \partial X_{\alpha}^{h}$ and $\partial h_{\alpha \beta}=\partial / \partial X_{\alpha \beta}^{h}$. For any element X of $\mathcal{I}_{0}^{1}(M)$ with local components X^{i} we denote by $B X$ the vector field on $F^{2} M$ given in $\pi^{-1}(U)$ by

$$
\begin{equation*}
B X=X^{i} B_{i} \tag{2.7}
\end{equation*}
$$

Obviously, $B X$ is tangent to $\gamma_{V}(M)$ and the correspondence $X \rightarrow B X$ determines a mapping $B: \mathcal{J}_{0}^{1}(M) \rightarrow \mathcal{I}_{0}^{1}\left(\gamma_{V}(M)\right)$ which is in fact the differential of $\gamma_{V}: M \rightarrow$ $F^{2} M$ and so an isomorphism of $\mathcal{I}_{0}^{1}(M)$ onto $\mathcal{I}_{0}^{1}\left(\gamma_{V}(M)\right)$.

From (2.6) and (2.7), one easily obtains, for any $X, Y \in \mathcal{I}_{0}^{1}(M)$,

$$
\begin{equation*}
[B X, B Y]=B[X, Y] \tag{2.8}
\end{equation*}
$$

Let U be a coordinate neighbourhood in M; then the local vector fields $B_{i}, C_{i_{\alpha}}, D_{i_{\alpha \beta}}, D_{i_{\alpha \beta}}=D_{i_{\beta \alpha}}$ given by

$$
\begin{equation*}
B_{i}=B\left(\partial_{i}\right), C_{i_{\alpha}}=\partial_{i_{\alpha}}+\left(\partial_{i} V_{\beta}^{k}\right) \partial_{h_{\alpha \beta}}+\left(\partial_{i} V_{\beta}^{k}\right) \partial_{h_{\beta \alpha}}, D_{i_{\alpha \beta}}=\partial_{i_{\alpha} \beta} \tag{2.9}
\end{equation*}
$$

form a local family of frames along $\gamma_{V}(M)$ which will be called the adapted frame of $\gamma_{V}(M)$ in $\pi^{-1}(U)$.

For each vector field X on M with local components X^{i} in U, we shall denote by $C_{\alpha}(X), D_{\alpha \beta}(X), D_{\alpha \beta}(X)=D_{\beta \alpha}(X), 1 \leq \alpha, \beta \leq n$, the vector fields

$$
\begin{equation*}
C_{\alpha}(X)=X^{i} C_{i_{\alpha}}, D_{\alpha \beta}(X)=X^{i} D_{i_{\alpha \beta}} \tag{2.10}
\end{equation*}
$$

From (1.4), (2.9) and (2.10), we have along $\gamma_{V}(M)$

$$
\begin{align*}
& X^{0}=B X+\sum_{\alpha=1}^{n} C_{\alpha}\left(\mathcal{L}_{V \alpha} X\right)+\frac{1}{2} \sum_{\alpha, \beta=1}^{n} D_{\alpha \beta}\left(\mathcal{L}_{V_{\alpha} V_{\beta}} X+\mathcal{L}_{V_{\beta} V_{\alpha}} X\right) \\
& X^{(\alpha)}= \tag{2.11}\\
& X_{\alpha}(X)+\sum_{\beta-1}^{n}\left\{D_{\alpha \beta}\left(\mathcal{L}_{V \alpha} X+D_{\beta, \alpha}\left(\mathcal{L}_{V_{\beta}} X\right)\right\}\right. \\
& X^{\alpha \beta} D_{\alpha \beta}(X)
\end{align*}
$$

for $X \in \mathcal{I}_{0}^{1}(M)$, and, therefore

$$
\begin{align*}
B X & =X^{0}-\sum_{\alpha=1}^{n}\left(\mathcal{L}_{V \alpha} X\right)^{(\alpha)}-\frac{1}{2} \sum_{\alpha, \beta=1}^{n}\left(\mathcal{L}_{V_{\alpha} V_{\beta}} X+\mathcal{L}_{V \beta V \alpha} X\right)^{(\alpha, \beta)}, \\
C_{\alpha}(X) & =\quad X^{(\alpha)}-\sum_{\beta-1}^{n}\left\{\left(\mathcal{L}_{V \alpha} X\right)^{(\alpha, \beta)}+\left(\mathcal{L}_{V \alpha} X\right)^{(\beta, \alpha)}\right\} \tag{2.12}\\
D_{\alpha \beta}(X) & = \\
& X^{(\alpha, \beta)}
\end{align*}
$$

Then we have
Proposition 2.1. X^{0} is tangent to $\gamma_{V}(M)$ if only if the Lie derivative of X with respect to V_{α} vanishes, that is, $\mathcal{L}_{V \alpha} X=0$, for every $\alpha=1, \ldots, n$.

The adapted coframe of $\gamma_{V}(M)$ in $F^{2} M$ dual to the adapted frame $\left\{B_{i}, C_{i \alpha}, D_{i \alpha \beta}\right\}$ is easily shown to be given along $\gamma_{V}(M)$ by

$$
\begin{align*}
\eta^{i} & =d x^{i}, \eta^{i_{\alpha}}=-\left(\partial_{h} V_{\alpha}^{i}\right) d x^{h}+d X_{\alpha}^{i} \\
\eta_{\alpha \beta}^{i} & =1 / 2 \cdot\left\{\partial_{h} V_{\alpha}^{t} \partial_{t} V_{\beta}^{i}+\partial_{h} V_{\beta}^{t} \partial_{t} V_{\alpha}^{i}-V_{\alpha}^{t} \partial_{t} \partial_{h} V_{\beta}^{t}-V_{\beta}^{t} \partial_{t} \partial_{h} V_{\alpha}^{i}\right\} d x^{h} \tag{2.13}\\
& -\left\{\partial_{h} V_{\beta}^{i} \delta^{\lambda \alpha}+\partial_{h} V_{\alpha}^{i} \delta^{\lambda \beta}\right\} d X_{\lambda}^{h}+d X_{\alpha \beta}^{i}
\end{align*}
$$

Let τ be an element of $\mathcal{I}_{1}^{0}(M)$ with local components τ_{i}. Then its lifts $\tau^{0}, \tau^{(\alpha)}, \tau^{(\alpha, \beta)}$ have the components of the form

$$
\begin{align*}
& \tau^{0}=\left(\tau_{h}, 0,0\right), \tau^{(\alpha)}=\left(\left(\mathcal{L}_{V \alpha} \tau\right)_{h}, \delta^{\lambda \alpha} \tau_{h}, 0\right) \\
& \tau^{(\alpha, \beta)}=\left(1 / 2 \cdot\left\{\mathcal{L}_{V_{\alpha} V_{\beta}} \tau+\mathcal{L}_{V_{\beta} V_{\alpha}} \tau\right\}_{h}, \delta^{\lambda \beta}\left(\mathcal{L}_{V_{\alpha}} \tau\right)_{h}+\delta^{\lambda \alpha}\left(\mathcal{L}_{V_{\beta}} \tau\right)_{h}, \delta^{\lambda \alpha} \delta^{\lambda \beta} \tau_{h}\right) \tag{2.14}
\end{align*}
$$

respectively, in the adapted coframe.
Then we have

Proposition 2.2. (i) A necessary and sufficient condition for the (α)-lift $\tau^{(\alpha)}$ of a 1-form τ on M to $F^{2}(M)$ to be zero for all vector fields tangent to $\gamma_{V}(M)$ is that the Lie derivative of τ with respect to the vector field V_{α} vanishes, that is, $\mathcal{L}_{V \alpha} \tau=0$
(ii) A necessary and sufficient condition for the (α, β)-lift of a 1-form τ on M to $F^{2} M$ to be zero for all vector fields tangent to $\gamma_{V}(M)$ is that $\mathcal{L}_{V_{\alpha} V_{\beta}} \tau=$ $-\mathcal{L}_{V \beta V \alpha} \tau$. A sufficient condition is that the Lie derivatives of τ with respect to V_{α} and V_{β} vanish, that is, $\mathcal{L}_{V \alpha} \tau=\mathcal{L}_{V_{\beta}} \tau=0$.

Using (1.6), (2.9), (2.11), (2.12) and (2.13), we can find components of 0 -lift, (α)-lift and (α, β)-lift of any tensor field on M of type $(0, q)$ or $(1, q), q \geq 1$, with respect to the adapted frame. For instance, for an element $G \in \mathcal{I}_{2}^{0}(M)$ we have

$$
G^{0}=\left(\begin{array}{ccc}
G_{i j} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad G^{(\alpha)}=\left(\begin{array}{ccc}
\left(\mathcal{L}_{V_{\alpha}} G\right)_{i j} & \delta^{\eta \alpha} G_{i j} & 0 \\
\delta^{\lambda \alpha} G_{i j} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
G^{(\alpha, \beta)}=\left(\begin{array}{ccc}
1 / 2 \cdot\left(\mathcal{L}_{V_{\alpha} V_{\beta}} G+\mathcal{L}_{V_{\beta} V_{\alpha}} G\right)_{i j} & \delta^{\alpha \eta}\left(\mathcal{L}_{V_{\beta}} G\right)_{i j}+\delta^{\beta \eta}\left(\mathcal{L}_{V_{\alpha}} G\right)_{i j} & \delta^{\alpha \eta} \delta^{\beta \gamma} G_{i j} \tag{2.15}\\
\delta^{\alpha \lambda}\left(\mathcal{L}_{V_{\beta}} G\right)_{i j}+\delta^{\beta \lambda}\left(\mathcal{L}_{V_{\alpha}} G\right)_{i j} & \delta^{\alpha \lambda} \delta^{\beta \eta} G_{i j}+\delta^{\alpha \eta} \delta^{\beta \lambda} G_{i j} & 0 \\
\delta^{\alpha \lambda} \delta^{\beta \mu} G_{i j} & 0 & 0
\end{array}\right)
$$

$G_{i j}$ being the local components of G.
For an element F of $\mathcal{J}_{1}^{1}(M)$ we obtain

$$
\begin{gather*}
F^{0}=\left(\begin{array}{ccc}
F_{i j} & 0 & 0 \\
\delta^{\alpha \lambda}\left(\mathcal{L}_{V_{\alpha}} F\right)_{j}^{i} & \delta^{\lambda \eta} F_{j}^{i} & 0 \\
1 / 2 \cdot \delta^{\lambda \alpha} \delta^{\mu \beta}\left(\mathcal{L}_{V_{\alpha} V_{\beta}} F+\mathcal{L}_{V_{\beta} V_{\alpha}} F\right)_{j}^{i} & \delta^{\mu \eta}\left(\mathcal{L}_{V \lambda} F\right)_{j}^{i}+\delta^{\lambda \eta}\left(\mathcal{L}_{V_{\mu}} F\right)_{j}^{i} & \delta^{\lambda \eta} \delta^{\mu \gamma} F_{j}^{i}
\end{array}\right) \tag{2.16}\\
F^{0}=\left(\begin{array}{ccc}
(\alpha) \\
\delta^{\lambda \alpha} F_{j}^{i} & 0 & 0 \\
\delta^{\lambda \alpha}\left(\mathcal{L}_{V_{\mu}} F\right)_{j}^{i}+\delta^{\mu \alpha}\left(\mathcal{L}_{V_{\lambda}} F\right)_{j}^{i} & \delta^{\alpha \lambda} \delta^{\mu \eta} F_{j}^{i}+\delta^{\alpha \mu} \delta^{\lambda \eta} F_{j}^{i} & 0
\end{array}\right) \\
F^{(\alpha, \beta)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\delta^{\lambda \alpha} \delta^{\mu \beta} F_{j}^{i} & 0 & 0
\end{array}\right)
\end{gather*}
$$

F_{j}^{i} being the local components of F.

For an element of S of $\mathcal{I}_{2}^{1}(M)$, we have

$$
\begin{align*}
& \left(S^{0}\right)_{j k}^{i}=S_{j k}^{i},\left(S^{0}\right)_{j k}^{i_{\lambda}}=\left(\mathcal{L}_{V_{\lambda}} S\right)_{j k}^{i},\left(S^{0}\right)_{j k}^{i_{\lambda \mu}}=1 / 2 \cdot\left(\mathcal{L}_{V_{\lambda} V_{\mu}} S+\mathcal{L}_{V_{\mu} V_{\lambda}} S\right)_{j k}^{i} \\
& \left(S^{0}\right)_{j_{\mu} k}^{i_{\lambda}}=\left(S^{0}\right)_{j k_{\mu}}^{i_{\lambda}}=\delta^{\lambda \mu} S_{j k}^{i} \\
& \left(S^{0}\right)_{j_{\eta} k}^{i_{\lambda \mu}}=\left(S^{0}\right)_{j k_{\eta}}^{i_{\lambda \mu}}=\delta^{\lambda \eta}\left(\mathcal{L}_{V_{\mu}} S\right)_{j k}^{i}+\delta^{\mu \eta}\left(\mathcal{L}_{V_{\lambda}} S\right)_{j k}^{i} \tag{2.17}\\
& \left(S^{0}\right)_{j_{\eta} k_{\gamma}}^{i_{\lambda \mu}}=\delta^{\lambda \eta} \delta^{\mu \gamma} S_{j k}^{i}+\delta^{\lambda \gamma} \delta^{\mu \eta} S_{j k}^{i}, \quad\left(S^{0}\right)_{j_{\eta \gamma} k}^{i_{\lambda \mu}}=\left(S^{0}\right)_{j k_{\eta \gamma}}^{i_{\lambda \mu}}=\delta^{\lambda \eta} \delta^{\mu \gamma} S_{j k}^{i}
\end{align*}
$$

and the rest of the components are equal to zero, $S_{j k}^{i}$ being the local componenets of S.

\S 3. Lifts of tensor fields of type $(1,1)$ and of type $(0,2)$ on a cross-section

3.1. Lifts of tensor fields of type $(\mathbf{1}, \mathbf{1})$. Let $F \in \mathcal{I}_{1}^{1}$ with local components F_{j}^{i}. Then, from (2.11) and (2.16), we have along $\gamma_{V}(M)$ that

$$
\begin{align*}
F^{0}(B X) & =B(F X)+\sum_{\alpha=1}^{n} C_{\alpha}\left(\left(\mathcal{L}_{V_{\alpha}} F\right) X\right)+1 / 2 \sum_{\alpha=1}^{n} D_{\alpha \beta}\left(\left(\mathcal{L}_{V \alpha v \beta} F+\mathcal{L}_{V_{\beta} V_{\alpha}} F\right) X\right) \tag{3.1}\\
F^{(\alpha)}(B X) & =C_{\alpha}(F X)+\sum_{\lambda, \mu=1}^{n} D_{\lambda \mu}\left(\delta^{\lambda \alpha}\left(\mathcal{L}_{V \mu} F\right) X+\delta^{\mu \alpha}\left(\mathcal{L}_{V_{\lambda}} F\right) X\right) \\
F^{(\alpha, \beta)}(B X) & =D_{\alpha \beta}(F X)
\end{align*}
$$

for any vector field X on M.
When $F^{0}(B X)$ is tangent to $\gamma_{V}(M)$ for any vector field X on M, F^{0} is said to leave $\gamma_{V}(M)$ invariant. Thus we have from (3.1).

Proposition 3.1. F^{0} leaves $\gamma_{V}(M)$ invariant if and only if $\mathcal{L}_{V \alpha} F=0$ for every $\alpha=1, \ldots, n$. The lifts F^{α} and $F^{(\alpha, \beta)}, 1 \leq \alpha, \beta \leq n$, do not have $\gamma_{V}(M)$ invariants unless $F=0$.

Now, assume F^{0} leaves $\gamma_{V}(M)$ invariantr. Then we can define an element $\left(F^{0}\right)^{\#} \in \mathcal{I}_{1}^{1}\left(\gamma_{V}(M)\right)$ by

$$
\begin{equation*}
\left(F^{0}\right)^{\#}(B X)=F^{0}(B X)=B(F X) \tag{3.2}
\end{equation*}
$$

for arbitrary $X \in \mathcal{I}_{0}^{1}(M) ;\left(F^{0}\right)^{\#}$ is called the tensor field induced on $\gamma_{V}(M)$ from F^{0} 。

Let us now recall from [3] that if F is a polynomial structure of rank r and structural polynomial $P(t)$ (i. e., rank $F=r$ and $P(F)=0$) then its 0-lift F^{0} to $F^{2} M$ defines on $F^{2} M$ a polynomial structure with the same structural polynomial and with rank $F^{0}=r(1+n+n(n+1) / 2)$. Moreover, if N_{F} and $N_{F^{0}}$ denote the Nijenhuis tensor of F and F^{0}, respectively, then $\left(N_{F}\right)^{0}=N_{F^{0}}$

So, if F defines on M a polynomial structure of rank r and $P(F)=0$, and if F^{0} leaves $\gamma_{V}(M)$ invariant, then $\left(F^{0}\right)^{\#}$ satisfies $P\left(\left(F^{0}\right)^{\#}\right)=0$ and the rank of
$\left(F^{0}\right)^{\#}=r$, and hence, $\left(F^{0}\right)^{\#}$ defines on $\gamma_{V}(M)$ a polynomial structure of the same type.

Taking into account (2.11) and (2.17), one obtains

$$
\begin{align*}
\left(N_{F}\right)^{0}(B X, B Y)= & B\left(N_{F}(X, Y)\right)+\sum_{\alpha=n}^{n} C_{\alpha}\left(\left(\mathcal{L}_{V_{\alpha}} N_{F}\right)(X, Y)\right)+ \\
& +\frac{1}{2} \sum_{\alpha, \beta=1}^{n} D_{\alpha \beta}\left(\left(\mathcal{L}_{V_{\alpha} V_{\beta}} N_{F}+\mathcal{L}_{V_{\beta} V_{\alpha}} N_{F}\right)(X, Y)\right) \tag{3.3}
\end{align*}
$$

along $\gamma_{V}(M)$, for any $X, Y \in \mathcal{I}_{0}^{1}(M)$. Thus
Propositions 3.2. $N_{F^{0}}(B X, B Y)$ is tangent to $\gamma_{V}(M)$ for arbitrary elements $X, Y \in \mathcal{I}_{0}^{1}(M)$ if and only if $\mathcal{L}_{V_{\alpha}} N_{F}=0$ for every $\alpha=1, \ldots, n$.

Now, we assume that F^{0} leaves $\gamma_{V}(M)$ invariant. Then from (2.8) and (3.2) we obtain

$$
N_{F^{0}}(B X, B Y)=N_{\left(F^{0}\right) \#}(B X, B Y)
$$

for arbitrary $X, Y \in \mathcal{I}_{0}^{1}(M)$. Then, since $\mathcal{L}_{V_{\alpha}} F=0$ implies $\mathcal{L}_{V_{\alpha}} N_{F}=0$, from (3.3) we have

Proposition 3.3. Suppose that the 0-lift of F^{0} of F to $F^{2} M$ leaves $\gamma_{V}(M)$ invariant. Then $N_{\left(F^{0}\right) \#}=0$ if and only if $N_{F}=0$.

Next, let us suppose that $F \in \mathcal{I}_{i}^{i}(M)$ defines an almost complex structure on M, i.e. $F^{2}=-I$. Then, F^{0} defines an almost complex structure on $F^{2} M$. Recall that a submanifold in an almost complex manifold with structure F is said to be invariant or almost analytic when F leaves the submanifold invariant. Thus, from the previous propositions, we deduce

Proposition 3.4. $\gamma_{V}(M)$ is almost analytic in the almost complex manifold $F^{2} M$ with structure F^{0} if and only if each vector field V_{α} is almost analytic, that is, $\mathcal{L}_{V_{\alpha}} F=0$. In this case, $\gamma_{V}(M)$ is an almost complex manifold with structure tensor $\left.F^{0}\right)^{\#}$; moreover $N_{\left(F^{0}\right) \#}=0$, that is, $\left(F^{0}\right)^{\#}$ is complex analytic, if and only if F is complex analytic, that is, $N_{F}=0$.

Let $X \in \mathcal{I}_{0}^{1}(M)$ and $F \in \mathcal{I}_{1}^{1}(M)$ such that F^{0} leaves $\gamma_{V}(M)$ invariant. Then, $\left(\mathcal{L}_{B X}\left(F^{0}\right)^{\#}\right)(B Y)=B\left(\left(\mathcal{L}_{X} F\right) Y\right)$ for any $Y \in \mathcal{I}_{0}^{1}(M)$. Therefore,

Proposition 3.5. Let F be an almost complex structure on M such that F^{0} leaves $\gamma_{V}(M)$ invariant. Then, for any $X \in \mathcal{I}_{0}^{1}(M), B X$ is almost analytic in $\gamma_{V}(M)$ if and only if X is almost analytic in M.
3.2. Lifts of tensor fields of type $(\mathbf{0}, \mathbf{2})$.. Let G be a tensor field of type $(0,2)$ on M. Then, from (2.15) we have along $\gamma_{V}(M)$.

$$
\begin{align*}
G^{0}(B X, B Y) & =(G(X, Y))^{0} \\
G^{(\alpha)}(B X, B Y) & =\left\{\left(\mathcal{L}_{V_{\alpha}} G\right)(X, Y)\right\}^{0} \tag{3.4}\\
G^{(\alpha, \beta)}(B X, B Y) & =\left\{1 / 2\left(\mathcal{L}_{V_{\alpha} V_{\beta}} G+\mathcal{L}_{V_{\beta} V_{\alpha}} G\right)(X, Y)\right\}^{0}
\end{align*}
$$

for all vector fields X, Y on $M, 1 \leq \alpha, \beta \leq n$. Then, putting

$$
\begin{aligned}
& \left(G^{0}\right)^{\#}(B X, B Y)=G^{0}(B X, B Y),\left(G^{(\alpha)}\right)^{\#}(B X, B Y)=G^{(\alpha)}(B X, B Y) \\
& \left(G^{(\alpha, \beta)}\right)^{\#}(B X, B Y)=G^{(\alpha, \beta)}(B X, B Y)
\end{aligned}
$$

we have elements $\left(G^{0}\right)^{\#},\left(G^{(\alpha)}\right)^{\#},\left(G^{(\alpha, \beta)}\right)^{\#} \in \mathcal{I}_{2}^{0}\left(\gamma_{V}(M)\right)$.
If G is a Riemann metric on M, then from (3.4) we deduce
Proposition 3.6. $\gamma_{V}(M)$ is a Riemann manifold with metric $\left(G^{0}\right)^{\#}$ and the projection $\pi: F^{2} M \rightarrow M$ is an isometry.

Next, assume that $G \in \mathcal{I}_{0}^{2}(M)$ is a 2-form; then, $\left(G^{0}\right)^{\#}$ is a 2-form on $\gamma_{V}(M)$, and a straightforward computation shows the identity

$$
d\left(G^{0}\right)^{\#}(B X, B Y \cdot B Z)=(d G(X, Y, Z))^{0}
$$

along $\gamma_{V}(M)$, for every $X, Y, Z \in \mathcal{I}_{0}^{1}(M)$. Therefore,
Proposition 3.7. $\left(G^{0}\right)^{\#}$ is closed along $\gamma_{V}(M)$ if and only if G is closed. Since $\operatorname{rank}\left(G^{0}\right)^{\#}$ along $\gamma_{V}(M)$ is equal to $\operatorname{rank} G$ on M, we easily deduce.

Corollary 3.8. $\gamma_{V}(M)$ is a symplectic manifold with respect to $\left(G^{0}\right)^{\#}$ if and only if M is a symplectic manifold with respect to G.

For an arbitrary $G \in \mathcal{I}_{2}^{0}(M)$, we have along $\gamma_{V}(M)\left(\mathcal{L}_{B X}\left(G^{0}\right)^{\#}\right)(B Y, B Z)=$ $\left(\left(\mathcal{L}_{X} G\right)(Y, Z)\right)^{0}$ for any $X, Y, X \in \mathcal{I}_{0}^{1}(M)$. Therefore

Corollary 3.9. i) Under the hypothesis of Proposition 3.6, a vector field X on M is Killing for the metric G on M if and only if $B X$ is Killing for the metric $\left(G^{0}\right)^{\#}$ on $\gamma_{V}(M)$.
ii) Under the hypothesis of Corollary 3.8, a vector field X on M is an infinitesimal symplectic authomorphism with respect to G on M if and only if $B X$ is such an automorphism with respect to $\left(G^{0}\right)^{\#}$ on M.

\S 4. Linear connections induced on $\gamma_{V}(\mathrm{M})$

Let M be a manifold with a linear connection ∇. Then the frame bundle of second order $F^{2}(M)$ of M is a manifold with linear connection ∇^{0}. We now study the linear connection ∇^{\prime}, induced from ∇^{0} on $\gamma_{V}(M)$.

From (1.7) and (2.11) trough a direct computation we get along $\gamma_{V}(M)$

$$
\begin{gathered}
\nabla_{B_{i}}^{0} B_{j}=\Gamma_{i j}^{h} B_{h}+\sum_{\alpha=1}^{n}\left(\mathcal{L}_{v_{\alpha}} \nabla\right)_{i j}^{h} C_{h_{\alpha}}+\frac{1}{2} \sum_{\alpha, \beta=1}^{n}\left(\mathcal{L}_{V_{\alpha} V_{\beta}} \nabla+\mathcal{L}_{V_{\beta} V_{\alpha}} \nabla\right)_{i j}^{h} D_{h_{\alpha \beta}} \\
\nabla_{B_{i}}^{0} C_{j \alpha}=\Gamma_{i j}^{h} C_{h_{\alpha}}+\sum_{\beta=1}^{n}\left\{\left(\mathcal{L}_{V_{\beta}} \nabla\right)_{i j}^{h} D_{h_{\alpha \beta}}+\left(\mathcal{L}_{V_{\beta}} \nabla\right)_{i j}^{h} D_{h_{\beta \alpha}}\right\} \\
\nabla_{B_{i}}^{0} D_{j_{\alpha \beta}}=\Gamma_{i j}^{h} D_{h_{\alpha \beta}}
\end{gathered}
$$

where $\Gamma_{i j}^{h}$ are the components of ∇. Therefore

$$
\nabla_{B_{i}}^{\prime} B_{j}=\Gamma_{i j}^{h} B_{h}
$$

defines the induced linear connection ∇^{\prime} on $\gamma_{V}(M)$, and

$$
\nabla_{B_{i}}^{0} B_{j}=\nabla_{B_{i}}^{\prime} B_{j}+\sum_{\alpha=1}^{n}\left(\mathcal{L}_{V_{\alpha}} \nabla\right)_{i j}^{h} C_{h_{\alpha}}+\frac{1}{2} \sum_{\alpha, \beta=1}^{n}\left(\mathcal{L}_{V_{\alpha} V_{\beta}} \nabla+\mathcal{L}_{V_{\beta} V_{\alpha}} \nabla\right)_{i j}^{h} D_{h_{\alpha \beta}}
$$

is the Gauss formula for $\gamma_{V}(M)$.
Proposition 4.1. $\gamma_{V}(M)$ is autoparallel with respect to ∇^{0} if and only if each $V_{\alpha}, 1 \leq \alpha \leq n$, is an infinitesimal affine transformation on M, i.e. $\mathcal{L}_{V_{\alpha}} \nabla=0$, for any $\alpha=1, \ldots, n$.

Now we recall that if R is the curvature tensor of ∇, then the cutvature tensor of ∇^{0} is R^{0}. Using (1.7), (2.11) and (2.12) we obtain along $\gamma_{V}(M)$.

$$
\begin{aligned}
R^{0}(B X, B Y) B Z=B(R(X, Y) Z) & +\sum_{\alpha=1}^{n} C_{\alpha}\left(\left(\mathcal{L}_{V_{\alpha}} R\right)(X, Y, Z)\right) \\
& +\frac{1}{2} \sum_{\alpha, \beta=1}^{n} D_{\alpha \beta}\left(\left(\mathcal{L}_{V_{\alpha} V_{\beta}} R+\mathcal{L}_{V_{\beta} V_{\alpha}} R\right)(X, Y, Z)\right)
\end{aligned}
$$

for all vector fields X, Y, Z on M.
Then we have
Proposition 4.2. Let R be the curvature tensor of a linear connection ∇ on M. Then, for all vector fields $\widetilde{X}, \widetilde{Y}, \widetilde{Z}$ tangent to $\gamma_{V}(M), R^{0}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}$ is tangent to $\gamma_{V}(M)$ if and only if $\mathcal{L}_{V_{\alpha}} R=0$, for $\alpha=1, \ldots, n$.

Let $F \in \mathcal{I}_{0}^{1}(M)$ be such that F^{0} leaves $\gamma_{V}(M)$ invariant. Then, along $\gamma_{V}(M)$ we obtain $\nabla_{B X}^{\prime}\left(F^{0}\right)^{\#}(B Y)=B\left(\left(\nabla_{X} F\right) Y\right)$, for any $X, Y \in \mathcal{I}_{0}^{1}(M)$. Therefore

Proposition 4.3. Let $F \in \mathcal{I}_{1}^{1}(M)$ be such that F^{0} leaves $\gamma_{V}(M)$ invariant. Then $\nabla^{\prime}\left(F^{0}\right)^{\#}=0$ if and only if $\nabla^{\prime}\left(F^{0}\right)^{\#}=0$.

Let $G \in \mathcal{I}_{2}^{0}(M)$. Then we obtain along $\gamma_{V}(M)$.

$$
\left(\nabla_{B X}^{\prime}\left(G^{0}\right)^{\#}\right)(B Y, B Z)=\left\{\left(\nabla_{X} G\right)(Y, Z)\right\}^{0} \text { for any } X, Y, Z \in \mathcal{I}_{0}^{1}(M)
$$

Therefore, using Propositions 3.6. and 3.7 and Corollary 3.9, we deduce
Proposition 4.4. i) Let G be a Riemann metric on M and ∇ its Riemann connection. Then, the connection ∇^{\prime}, induced on $\gamma_{V}(M)$ from ∇^{0}, is the Riemann connection constructed from the metric $\left(G^{0}\right)^{\#}$ induced on $\gamma_{V}(M)$ from G^{0}.
ii) Let G be an almost symplectic (resp., symplectic) 2 -form on M and ∇ an adapted connection, i.e. $\nabla G=0$. Then, the linear connection ∇^{\prime}, induced on $\gamma_{V}(M)$ from ∇^{0}, is adapted with respect to the almost symplectic (resp., symplectic) from $\left(G^{0}\right)^{\#}$ induced from G^{0} on $\gamma_{V}(M)$.

Now, let $F \in \mathcal{I}_{1}^{1}(M)$ and $G \in \mathcal{I}_{2}^{0}(M)$ such that F^{0} leaves $\gamma_{V}(M)$ invariant. Then, along $\gamma_{V}(M)$.

$$
\left(G^{0}\right)^{\#}\left(\left(F^{0}\right)^{\#}(B X),\left(F^{0}\right)^{\#}(B Y)\right)=\left(G^{0}\right)^{\#}(B(F X), B(F Y))=\{G(F X, F Y)\}^{0}
$$

for all vector fields Y, Y on M.
If a Riemann metric G and a complex structure F on M satisfy the conditions $G(F X, F Y)=G(X, Y), \nabla_{X} F=0$, for all vector fields X, Y, ∇ being the Riemann connection determined by G, then (F, G) is a Kahlerian structure. Thus, taking into accound the previous results, we have

Proposition 4.5. Let (F, G) be a Kahlerian structure on M such that F^{0} leaves $\gamma_{V}(M)$ invariant. Then $\left.\left(\left(F^{0}\right)^{\#}\right),\left(G^{0}\right)^{\#}\right)$ is a Kahlerian structure on $\gamma_{V}(M)$.

REFERENCES

[1] L. A. Cordero, M. De Leone, Tensor fields and connections on cross-section in the frame bundle of a parallelizable manifold, Riv. Mat. Univ. Parma (4) 9 (1983), 433-455.
[2] J. Gancerzewicz, Liftings of functions and vector fields to natural bundles, Dissetationes Math. 212 (1983).
[3] J. Gancerzewicz, Complete lifts of tensor fields of type $(1, k)$ to natural bundles, Zeszyty Naukowe UJ, Prace Mathematyczne, 23 (1983), 51-84.
[4] M. De Leon, M. Salgado, G-structures on the frame bundle of second order, Riv. Mat. Univ. Parma (4) 11 (1985), 161-179.
[5] M. De Leon, M. Salgado, Diagonal lifts of tensor fields to the frame bundle of second order, Acta Si. Math. 50 (1986), 67-86.
[6] S. Kobayashi, Frame bundles of higher order contact, Proc. Symp. Pure Math. Vol. 3, Amer. Math. Soc. (1961).
[7] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. 1 and 2, Interscience, New York, 1963-1969.
[8] A. Morimoto, Prolongations of geometric structures, Lect. Notes, Math. Inst. Nagoya Univ. 1969.
[9] M. Tani, Tensor fields and connections on cross-sections in the tangent bundle of order 2, Kodai Math. Sem. Rep. 21 (1969), 310-325.
[10] K. Yano, Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold, Proc. Royal Soc. Edinburg 67 (1967), 277-288.

CECIME
(Received 19. 06 1987)
Consejo Superior
de Investigaciones Cientificas
Serrano, 123
28006 Madrid
Spain

Departmento de Geometria y Topologia
Facultad de Matemáticas
Universidad de Santiago de Comostela
Spain

