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A GEOMETRIC CHARACTERIZATION OF HELICODIAL SURFACES

OF CONSTANT MEAN CURVATURE

Ioannis M. Roussos

Abstract. We prove that a helicodial surface has constant mean curvature if and only if
its principal axes make an angle constant with the orbits. Moreover, the arguments used lead
to a simple proof of the fact that all helicodial surfaces with constant mean curvature H can be
isometrically deformed, trough helicodial surfaces of the same H, into surfaces of revolution of
the same H (Delaunay surfaces).

.

1. Introduction. A one parameter subgroup of the group of rigid motions

of E3 is a diferentiable mapping  : R�E3 ! E3 with the following properties:

a) The map t : E3 ! E3 given by x ! (t; x); x 2 E3; t 2 R is a rigid
motion,

b) t Æ s = t+s; c) 0 = the identity.

Let x 2 E3 have coordinates x = (x1; x2; x3). It may be shown that, possibly
after a change of basis, any one parameter subgroup may be written either as

(t; x) = (x1 cos t+ x2 sin t;�x1 sin t+ x2 cos t; x3 + bt);

where �1 < b < +1 is constant, or as

(t; x) = (x1; x2; x3) + t(0; 0; 1) = (x1; x2; x3 + t):

In the former case, if b 6= 0; (t; x) is called a helicodial motion with axis the

x3-axis and pitch b. The orbit t 2 R ! (t; x) 2 E3 of a point x = (x1; x2; x3)
which does not lie on the x3-axis is a helix. All such helices have the x3-axis as
common axis. If b = 0; (t; x) is a rotational motion about the x3-axis. The orbits
of points not lying on the x3-axis are circles having the x3-axis as common axis.
In the latter case, (t; x) is called a parallel translational motion in the direction of

the x3-axis. All orits are straight lines parallel to the x3-axis.
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A helicodial surface with axis the x3-axis and pitch b 6= 0 is surface that
is invariant by (t; x) for all t. When b = 0 the surface reduces to a surface of

revolution. Finally, the translational motions generate the cylinders.

If we consider a curve c(s) on any of these surfaces which intersects all the
orbits without touching them, the surface can be parametrized by (s; t) as (t; c(s)).

The main result states:

Theorem 4. A helicodial surface has constant mean curvature if and only if

its principal axes make an angle constant with the orbits.

This is not true for the surfaces of revolution and the cylinders since, regard-
less of H , the orbits are principal curves.

In [3], an analytic parametrization of the helicoidal surfaces of constant mean
curvature was exhibited. Also, in [3] was �rst shown that these surfaces can be
isometrically deformed under preservation of the mean curvature and through he-
licoidal surfaces into Delaunay surfaces. Here, a simpler proof of this fact is given
by making use of facts for general (not necessarily with H =constant) helicodial
surfaces. The main tool for the proof of this part is the following:

Theorem (O. Bonnet) (cf. [1, 2, 4]) A surface of constant mean curvature

in E3, other than the plane and the sphere, can be isometrically deformed so that

the mean curvature is preserved. During this deformation the principal directions

rotate by a �xed angle, and for any �xed angle as rotation angle of the principal

directions a surface of this isometric deformation is obtained.

2. Some local surface theory. We consider a surfaceM2 in E3, orientable
and suÆciently smooth. We consider a well de�ned �eld of orthonormal frames
(x; e01; e

0

2; e
0

3) over M
2, such that x 2M , and e1; e2 comprise an orthonormal basis

of the tangent space of M at x. We have then

�i = dx � e0i; �ij = de0i � e
0

j ; �ij = ��ji(so �ii = 0)

d�i =
3P

j=1
�ij ^ �j (1-st structural equation), d�ij

3P
k=1

�ik ^ �kj (2nd structural equa-

tion) where 1 � i; j � 3. On M2; �3 = 0 so we have �13 ^ �1+ �23 ^ �2 = 0. So, by
Cartan's Lemma we get

�13 = a�1 + b�2; �23 = b�1 + c�2: (1)

Then the mean and Gaussian curvatures of M2 are

H = (a+ c)=2; K = ac� b2:

We also have

d�12 = �K�1 ^ �2 (Gauss Equation) (GE):

d�13 =�12 ^ �23 = �bd�2 + cd�1

d�23 =�21 ^ �13 = ad�2 � bd�1

�
(Codazzi-Mainardi Equations) (CME):
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A given Riemannian surface can be realized in E3 if the CME are satis�ed.

We now let

e1 = cos e1 � sin e2; e2 = sin e1 + cos e2

be the principal frame of M2. For this frame the function b de�ned by (1) is zero
and a; c are the principal curvatures.

In the sequel, we consider M2 with no umbilic points. We may then assume
for the principal curvatures k1; k2 of M

2 that k1 > k2 and we put J = k1� k2 > 0.
We will show that the CME are equivalent to:

dH = H1�1 +H2�2; (thus de�ning H1; H2) (2)

d =� cos 2 [H2J
�1�1 +H1J

�1�2] = sin 2 [�H1J
�1�1 +H2J

�1�2]+

+ 1=2 � d log J + �12;
(3)

where * is the Hodge operator whose action on the 1-forms is described by

��1 = �2; ��2 = ��1 (�2 = �1):

Proof . The principal coframe is

!1 = cos �1 � sin �2; !2 = sin �1 + cos �2:

Exterior di�erentiation gives

d!1 = (�d + �12) ^ !2; d!2 = !1 ^ (�d ^ �12):

Thus, the connection form assocated to the principal coframe is !12 = �d + �12,
so that d = �!12 + �12. We then need to show that

!12 = cos 2 [H2J
�1�1+H1J

�1�2]� sin 2 [�H1J
�1�1+H2J

�1�2]� 1=2 � d log J:

We work with !1; !2 and the associated forms !12; !13; !23. We have that !13 =
k1!1 and !23 = k2!2. We put !12 = p!1 + q!2. Then the equations d!13 =
!12 ^ !23; d!23 = !21 ^ !13 imply:

[dk1 � (k1 � k2)p!2] ^ !1 = 0; [dk2 � (k1 � k2)q!1] ^ !2 = 0:

We have J = k1� k2 > 0 and we set dH = d(k1+ k2)=2 = u!1+ v!2. Then we get

dk1 = (2u� Jq)!1 + Jp!2; dk2 = Jq!1 + (2v � Jp)!2:

By subtracting the second relation from the �rst and dividing by J we have

d log J = 2uJ�1!1 � 2vJ�1!2 + 2(�q!1 + p!2):

But �q!1 + p!2 = �!12, thus we obtain

!12 = vJ�1!1 + uJ�1!2 � 1=2 � d log J:
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Now by comparing dH given by (2) and dH given by dH = u!1+ v!2, with !1; !2
expressed in terms of �1; �2 we get

u = H1 cos  �H2 sin  ; v = H1 sin  +H2 cos  :

Now convert the last expression for !12 to the desired �nal form by inserting the
above relations for u; v and by again rewriting !1; !2 in terms of �1; �2.

The converse direction of the equivalence follows by reversing the process of
this computation �

Remark 1. The Theorem of 0. Bonnet quoted in section 1 follows from (3)
and the fundamental theorem of surfaces. With H constant onM2 we get from (3)
that

d = �1=2 � d log J + �12:

Thus if some  satis�es this equation, so does  +constant, and the fundamental
theorem of surfaces applies for each new  .

3. Some facts about Helicodial Surfaces. The geometry of a helicodial
surface allows us to parametrize it by (s; t), where

s =arc-length of curves orthogonal to orbits measured from a �xed orbit,

t =time along orbits from a �xed t = t0, (see also [3]). Then the curves
t =constant are carried along the orbits by the motion. They remain orthogonal to
the orbits and foliate the surface. So an orthonormal frame (e01; e

0

2) is determined
along these coordinate curves with e02 tangent to the orbits. The corresponding
coframe may be written as

�1 = ds; �2 = q(s)dt (q depends only on s):

Thus,

�12 =
q0(s)

q(s)
�2 = �(s)�2:

Hence the �1-curves are geodesics and �2-curves (orbits) have geodesic curvature
equal to

�(s) =
d

ds
log(j q(s) j):

Along each orbit a; c; �;  are constant. So, in this case we get H2 = 0. Also if we
put dJ = J1�1 + J2�2, we get J2 = 0 and d log J = J1J

�1�1. Hence relation (3)
becomes

d = � cos 2 [H1J
�1�2]� sin 2 [H1J

�1�1] + 1=2J1J
�1�2 + ��2:

Since  =  (s), this implies

d 

ds
= � sin 2 

dH=ds

J
; � = cos 2 

dH=ds

J
�

1

2

dJ=ds

J
: (4)

By direct computation or by well known facts about curves on surfaces, we get the
following:
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The space curvature of orbits is

q
�2 + (k1 cos2  + k2 sin

2  )2 or

q
�2 + (k1 sin

2  + k2 cos2  )2;

and the space torsion of orbits is �(k1�k2) sin  cos  , (5) for the respective cases
when e1 is the major and minor principal direction.

Finally, we show that a helicodial surface of constant mean curvature is free
of umbilic points. This fact allows us to apply the previous local theory everywhere
to such a surface.

Proof . Let M2 be an oriented connected surface in E3 with unit normal
vector �eld v. We consider isothermal parameters (x1; x2) on M2. If M2 has
constant mean curvature then the (locally de�ned) function

f(z) = (b11 � b22 � 2ib12(z); z = x1 + ix2

is known to be holomorphic in z; here bij = �hr@=@xi
v; @=@xji; 1 � i; j � 2,

are the components of the second fundamental form of M2. The zeros of f(z)
are exactly the umbilic points of M2. So, if an umbilic point is not isolated then
f(z) � 0 and thus M2 is totally umbilical; i.e., a piece of a sphere or a plane.

Now if we assume that a point on a helicodial surface is unbilic then all
points belonging to the same orbit (helix) are umbilics and therefore that point is
not isolated. So, when H is constant umbilic points connot exist: �

4. Proof of the results. Looking at equation (4), we see that if  6�
multiple of �=2 then:

 � constant if and only if H � constant:

If  �multiple of �=2 then, by (5) we have that orbits are plane curves. This
happens only if the surface is a surface of revolution or cylinder. This �niches the
proof of the geometric characterization claimed. �.

Next, let us consider a helicodial surface M2 invariant under the motion 
with constant H and its deformation guaranteed by the Theorem of 0. Bonnet
(section 1). Let N2 be a surface in this deformation, so that there is an isome-
try f : M2 ! N2 which is onto, preserves H (and hence preserves the principal
curvatures), and rotates the principal frame by a �xed angle. It is easy to see that

f Æ  Æ f�1(y; t) :; = f [(f�1(y); t)]; y 2 N2; t 2 R;

forms a one-parameter group of isometries (one checks that (b) and (c) hold), under
which N2 is invariant. Also these isometries preserve the principal curvatures and
directions of N2, hence they extend to rigid motions of E3 (and thus property (a) is
valid as well). So, N2 is invariant under a one-parameter subgroup of rigid motions
of E3. The surface of revolution (Delaunay surface in this case) is obtained when,
by rotating the principal frame,  becomes a multiple of �=2. �
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Remark 2. The Delaunay surfaces of a given constant mean curvature form
a one-parameter family of surfaces. Thus the helicodal surfaces of a given constant
mean curvature form a two-parameter family. The extra parameter is  .
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