PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 43 (57), 1988, 131-135

SOME PROPERTIES OF THE QUASIASYMPTOTIC OF SCHWARTZ DISTRIBUTIONS PART II: QUASIASYMPTOTIC AT 0

Stevan Pilipović

Abstract. We give the definition of the quasiasymptotic behaviour at 0 of Schwartz distributions from \mathcal{D}' and compare this definition with the definition of the quasiasymptotic of tempered distributions at 0 [2].

1. Definitions. The quasiasymptotic behaviour at 0 of tempered distributions was considered in [8] and [2]. First we reformulate the definition from [2].

Definition 1. Let $f \in \mathcal{S}'$ and c(x), $x \in (0, a)$, a > 0, be a measurable positive function. It is said that f has (in \mathcal{S}') the quasiasymptotic at 0 with recpect to c(1/k) if there is a $g \in \mathcal{S}', g \neq 0$, such that

(1)
$$\lim_{k \to \infty} \left\langle \frac{f(x/k)}{c(1/k)}, \varphi(x) \right\rangle = \langle g(x), \varphi(x) \rangle, \quad \varphi \in \mathcal{S}.$$

In this case we write $f \sim^q g$ at 0 with respect to c(1/k) (in \mathcal{S}').

We extend this definition.

Definition 2. Let $f \in \mathcal{D}'$ and c be as in Definition 1. It is said that f has (in \mathcal{D}') the quasiasymptotic at 0 with respect to c(1/k) if there is a $g \in \mathcal{D}'$, $g \neq 0$, such that

(2)
$$\lim_{k \to \infty} \left\langle \frac{f(x/k)}{c(1/k)}, \varphi(x) \right\rangle = \langle g(x), \varphi \in \mathcal{D}.$$

In this case we write $f \sim^q g$ at 0 with recpect to c(1/k) (in \mathcal{D}').

Obviously, if $f \in \mathcal{S}'$ and $f \sim^q g$ at 0 with respect to c(1/k) (in \mathcal{S}') then $f \sim^q g$ at 0 with respect to c(1/k) in \mathcal{D} .

AMS Subject Classification (1980): Primary 46F10

Pilipović

THEOREM 1. Let f and c satisfy conditions of Definition 2. Assume further that c is continuous. Then for some real number ν and some slowly varying function L at 0^+

$$c(x) = x^{\nu} L(x), \ x \in (0, a).$$

Moreover, g is homogeneous with the order of homogeneity ν .

(Slowly varying functions are studied in [4]).

Proof. Let $f \in \mathcal{D}$ be such that $\langle g, \varphi \rangle \neq 0$. For any m > 0 we have

$$\left\langle \frac{f(mx/k)}{c(m/k)}, \varphi(x) \right\rangle \to \langle g(x), \varphi(x) \rangle, \ k \to \infty,$$
$$\left\langle \frac{f(mx/k)}{c(1/k)}, \varphi(x) \right\rangle \to \langle g(mx), \varphi(x) \rangle, \ k \to \infty;$$

(3)
$$\left(\frac{c(m/k)}{c(1/k)}\right)\left\langle\frac{f(mx/k)}{c(m/k)},\,\varphi(x)\right\rangle \to \langle g(mx),\,\varphi(x)\rangle,\,k\to\infty$$

This implies that for any m > 0

(4)
$$\lim_{k \to \infty} \frac{c(m/k)}{c(1/k)}$$
 exists.

From [4, 1.4] it follows that the limit function defined by (4) must be equal to $m^{\nu}, m > 0$, and that for that $\nu \in R$ and for some function L slowly varying at 0^+ one has

(5)
$$c(x) = x^{\nu} L(x), \ x \in (0, a).$$

Also, (3) implies that $g(mx) = m^{\nu}g(x), m > 0, x \in \mathbb{R}$, which completes the proof. This theorem directly implies:

THEOREM 2. Let f and c satisfy conditions of Definition 1 and let c be continuous. Then the assertion of Theorem 1 holds.

Some obivous properties of the quasiasymptotic at 0 in \mathcal{S}' are given in the next theorem.

THEOREM 3. Let $f \in S'$ and $f \sim^q g$ at 0 with respect to $(1/k)^{\nu}L(1/k)$ (in S'). Then: (i) if $g^{(m)} \neq 0$ then $f^{(m)} \sim^q g^{(m)}$ at 0 with respect to $(1/k)^{\nu-m}L(1/k)$ (in S'), $m \in N$, (ii) $x^m f(x) \sim^q x^m g(x)$ at 0 with respect to $(1/k)^{\nu+m}L(1/k)$ (in S') if $m \in N$ and $\nu \notin -N$; (iii) if $\nu \in -N$, $m \in N$ and $m < |\nu|$, then $x^m f(x) \sim^q x^m g(x)$ at 0 with respect to $(1/k)^{\nu+m}L(1/k)$ (in S').

The same assertions hold for the quasiasymptotic at 0 in \mathcal{D}'

The quasiasymptotic at 0 is a local property of a distribution. Namely,

THEOREM 4. Let $f \in \mathcal{D}'$ and $f \sim^q g$ at 0 with respect to $(1/k)^{\nu} L(1/k)$ (in \mathcal{D}'), and let $f_1 \in \mathcal{D}'$ be such that $f = f_1$ in some neighbourhood of zero. Then $f_1 \sim^q g$ at 0 with respect to $(1/k)^{\nu} \cdot L(1/k)$.

132

Proof. Follows from the equality $\langle f(x), \varphi(kx) \rangle = \langle f_1(x), \varphi(kx) \rangle$ which holds for any $\varphi \in \mathcal{D}$ if $k > k_0(\varphi)$.

The some assertion holds for the quasiasymptotic at 0 (in S'). This was proved in [2, Lemma 1.6].

THEOREM 5. Let $f \in S'$, resp. $f \in D'$, and $f \sim^q g$ at 0 with respect to c(1/k)(in S', resp. in D'). Let $\omega \in S$, resp. $\omega \in \mathcal{E}$ and

$$\frac{\omega(x/k)}{c_1(1/k)} \to \omega_0(x) \text{ in } \mathcal{S}, \text{ resp. in } \mathcal{E}, \text{ as } k \to \infty,$$

where c(x), $x \in (0, a)$, a > 0, is a measurable positive function. Then $f\omega \sim^q \omega_0 g$ at 0 with respect to $c(1/k)c_1(1/k)$ (in S', resp. in \mathcal{D}').

Proof. Follows from [7, Y. I, p. 72., Théorème X].

2. Relations between two definitions. Let $f \in S'$ and $f \sim^q g$ at 0 with respect to c(1/k) (in \mathcal{D}'). The question is: Does the same hold in S'? We shall prove in this section that for $c(1/k) = (1/k)^{\nu} L(1/k)$, k > 1/a, the answer to the question is affirmative if $\nu > 0$ or if $0 \ge \nu > -1$ and L is bounded in some interval $(0, \eta), \eta > 0$. Otherwise the problem is still open.

Theorem 3(i) and [2, Lemma 1.7] directly imply the following:

THEOREM 6. Let $f \in S'$ and $f = F^{(m)}$ in some neighbourhood of 0, where $m \in N_0$ and F is a locally integrable function such that for some $\nu > -1, L$ and $(C_+, C_-) \neq (0, 0),$

$$\lim_{x \to \pm 0} \frac{F(x)}{|x|^{\nu} L(|x|)} = C_{\pm}.$$

Then $f \sim^q g$ at 0 with respect to $(1/k)^{\nu}L(1/k)$ (in S'), where $g = (C_+ x_+^{\nu} + C_- x_-^{\nu})^{(m)}$, and $x_{\pm}^{\nu} = H(\pm x) |x|^{\nu}$ (H is the Heaviside function).

The following theorem is proved in [P].

THEOREM 7. Let $f \in S$, $f \sim^q g$ at 0 with respect to $(1/k)^{\nu}L(1/k)$ (in \mathcal{D}'), where $\nu > 0$. Then there is a continuous function F(x), $x \in (-1,1)$ and an $m \in N_0$ such that $f = F^{(m)}$ in (-1,1) and

$$\lim_{x \to \pm 0} \frac{F(x)}{|x|^{\nu+m} L(|x|)} = C_{\pm}. \text{ for some } (C_+, C_-) \neq (0, 0)$$

If $0 \ge \nu > -1$ and L(x) is bounded in some interval $(0, \eta)$, the assertion holds as well.

Theorems 6 and 7 directly imlpy the following

THEOREM 8. Let f satisfy conditions of Theorem 7. Then $\sim^q g$ at 0 with respect to $(1/k)^{\nu}L(1/k)$ (in S').

For $\nu < 0$ we have a partial answer to the question above.

Pilipović

Let us denote by \mathcal{Z} the space of Fourer transformations of elements from \mathcal{D} supplied by the convergence structure transported from $\mathcal{D}(\mathcal{Z} = \mathcal{F}(\mathcal{D}))$. Let $f \in \mathcal{S}'$. We write $f \sim^q g$ at 0 with respect to $(1/k)^{\nu} L(1/k)$ (in \mathcal{Z}') if $g \in \mathcal{Z}', g \neq 0$, and

$$\lim_{k \to \infty} \left\langle \frac{f(x/k)}{(1/k)^{\nu} L(1/k)}, \varphi(x) \right\rangle = \langle g(x), \varphi(x) \rangle, \varphi \in \mathcal{Z}$$

Using the Fourier Transformations and Theorem I (i) (Part I) one can easily obtain that $g \in S'$.

THEOREM 9. Let $f \in S'$ and $f \sim^q g$ at 0 with respect to $(1/k)^{\nu}L(1/k)$ (in \mathcal{Z}') where $\nu < 0$, and $\nu \notin -N$. Then $f \sim^q q$ at 0 with respect to $(1/k)^{\nu}L(1/k)$ (in S').

Proof. Since for some $m \in N_0$ and some continuous function F of slow growth $f = F^{(m)}$, the Fourier transformation implies

$$(-i)^m x^m \hat{F}(x) \sim^q \hat{g}(x)$$
 at $\pm \infty$ with respect to $k^{-\nu-1} L_1(k)$

in the sence of convergence in \mathcal{D}' and thus, in the sense of convergence in \mathcal{S}' (see Theorem I, Part I). $L_1(\cdot) = L(1/\cdot)$ is slowly varying at ∞ . Let us put

$$\hat{F}_{+}(x) = \begin{cases} \hat{F}(x), \, x > 0\\ 0, \quad x \le 0 \end{cases} \quad \hat{F}_{-}(x) = \begin{cases} 0, \quad x \ge 0\\ \hat{F}(x), \, x < 0 \end{cases}$$

[2, Lemma 2.2] implies that for some $N \in \mathbb{N}$ and some $(C_+, C_-) \in \mathbb{C}^2, (C_+, C_-) \neq (0, 0)$

$$x^{m+N}\hat{F}_{\pm}(x) \sim^q C_{\pm}f_{-\nu+N}(\pm x)$$
 at $\pm \infty$ with respect to $k^{-\nu-1+N}L_1(k)$.

Now [2, Lemma 2.3] implies, for $-\nu - m > 0$

(6) $\hat{F}_{\pm}(x) \sim^q C_{\pm} f_{-\nu-m}(\pm x)$ at $\pm \infty$ with respect to $k^{-\nu-1-m} L_1(k)$.

and for $-\nu - m < 0$.

$$\hat{F}_{\pm}(x) \sim^{q} C_{\pm} f_{-\nu+N}(\pm x) + \sum_{j=0}^{p} a_{j\pm} \delta^{(j)}(x) \text{ at } \pm \infty \text{ with respect to } k^{-\nu-1-m} L_{1}(k).$$

Using the Inverse Fourier transformation we obtain: for $-\nu - m > 0$

$$F(t) \sim^{q} \mathcal{F}^{-1}(C_{+}f_{-\nu-m}(t) + C_{-}f_{-\nu-m}(-t))$$

at 0 with respect to $(1/k)^{\nu+m}L(1/k)$ (in \mathcal{S}');

for $-\nu-m<0$

$$\begin{split} F(t) &\sim^{q} \mathcal{F}^{-1}(\tilde{C}_{+}f_{-\nu-m}(t) + \tilde{C}_{-}f_{-\nu-m}(-t) + \sum_{j=0}^{p} a_{j+}\delta^{(j)}(t) + \\ &+ \sum_{j=0}^{p} a_{j} - \delta^{(j)}(t)) \text{ at } 0 \text{ with respect to} \\ &(1/k)^{\nu+m}L(1/k) \text{ (in } \mathcal{S}'), \ ((\tilde{C}+,\tilde{C}-) \neq (0,0).) \end{split}$$

134

Now Theorem 3 (i) completes the proof.

The proof of Theorem 9 shows that if ν and m satisfy the condition $-\nu - m > 0$, then the assertion of Theorem 9 holds without the asymptotion $\nu \notin -\mathbf{N}$.

At the end we give a theorem which is a consequence of Theorem 5 from part I.

THEOREM 10. Let $f \in S'$ such that $xf \sim^q g$ at 0 with respect to

$$(1/k)^{\nu+1}L(1/k), \ \nu \in R \setminus (-\mathbf{N}) \ (in \ \mathcal{S}').$$

Let $\varphi_0 \in \mathcal{D}$ such that $\hat{\varphi}_0(0) = 1$ and

$$\left\langle \frac{f(x/k)}{(1/k)^{\nu}L(1/k)}, \, \hat{\varphi}_0(x) \right\rangle \to \left\langle g_0(x), \hat{\varphi}_0(x) \right\rangle \text{ as } k \to \infty$$

such that $g_0 \in \mathcal{S}'$ an $xg_0(x) = g(x), x \in \mathbf{R}$. Then, $f \sim^q g$ at 0 with respect to $(1/k)^{\nu} L(1/k)$ (in \mathcal{S}') (g and g_0 are homogeneous of order $\nu + 1$ and ν , respectively).

REFERENCES

[P] S. Pilipović, On the behaviour of a distribution at 0, Math. Nachr., to appear.

Institut za matematiku Prirodno-matematički fakultet Univerzitet u Novom Sadu 21000 Novi Sad Jugoslavija (Received 01 01 1987)