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SOME PROPERTIES OF THE QUASIASYMPTOTIC OF

SCHWARTZ DISTRIBUTIONS

PART II: QUASIASYMPTOTIC AT 0

Stevan Pilipovi�c

Abstract. We give the de�nition of the quasiasymptotic behaviour at 0 of Schwartz
distributions from D

0 and compare this de�nition with the de�nition of the quasiasymptotic of
tempered distributions at 0 [2].

.

1. De�nitions. The quasiasymptotic behaviour at 0 of tempered distri-
butions was considered in [8] and [2]. First we reformulate the de�nition from
[2].

De�nition 1. Let f 2 S 0 and c(x); x 2 (0; a); a > 0, be a mearurable positive
function. It is said that f has (in S 0) the quasiasymptotic at 0 with recpect to
c(1=k) if there is a g 2 S 0; g 6= 0, such that

(1) lim
k!1

Df(x=k)
c(1=k)

; '(x)
E
= hg(x); '(x)i; ' 2 S:

In this case we write f �q g at 0 with respect to c(1=k) (in S 0).

We extend this de�nition.

De�nition 2. Let f 2 D0 and c be as in De�nition 1. It is said that f has
(in D0) the quasiasymptotic at 0 with respect to c(1=k) if there is a g 2 D0; g 6= 0,
such that

(2) lim
k!1

Df(x=k)
c(1=k)

; '(x)
E
= hg(x); ' 2 D:

In this case we write f �q g at 0 with recpect to c(1=k) (in D0).

Obviously, if f 2 S 0 and f �q g at 0 with respect to c(1=k) (in S 0) then
f �q g at 0 with respect to c(1=k) in D.
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Theorem 1. Let f and c satisfy conditions of De�nition 2. Assume further
that c is continuous. Then for some real number � and some slowly varying function
L at 0+

c(x) = x�L(x); x 2 (0; a):

Moreover, g is homogeneous with the order of homogeneity �.

(Slowly varying functions are studied in [4]).

Proof . Let f 2 D be such that < g; ' > 6= 0. For any m > 0 we haveDf(mx=k)

c(m=k)
; '(x)

E
! hg(x); '(x)i; k !1;

Df(mx=k)

c(1=k)
; '(x)

E
! hg(mx); '(x)i; k !1;

(3)

�
c(m=k)

c(1=k)

�Df(mx=k)

c(m=k)
; '(x)

E
! hg(mx); '(x)i; k !1:

This implies that for any m > 0

(4) lim
k!1

c(m=k)

c(1=k)
exists:

From [4, 1.4] it follows that the limit function de�ned by (4) must be equal to
m� ;m > 0, and that for that � 2 R and for some function L slowly varying at 0+

one has

(5) c(x) = x�L(x); x 2 (0; a):

Also, (3) implies that g(mx) = m�g(x); m > 0; x 2 R, which completes the proof.

This theorem directly implies:

Theorem 2. Let f and c satisfy conditions of De�nition 1 and let c be
continuous. Then the assertion of Theorem 1 holds.

Some obivous properties of the quasiasymptotic at 0 in S 0 are given in the
next theorem.

Theorem 3. Let f 2 S 0 and f �q g at 0 with respect to (1=k)�L(1=k) (in S 0).
Then: (i) if g(m) 6= 0 then f (m) �q g(m) at 0 with respect to (1=k)��mL(1=k) (in
S 0);m 2 N , (ii) xmf(x) �q xmg(x) at 0 with respect to (1=k)�+mL(1=k) (in S 0) if
m 2 N and � 62 �N ; (iii) if � 2 �N; m 2 N and m <j � j, then xmf(x) �q xmg(x)
at 0 with respect to (1=k)�+mL(1=k) (in S 0).

The same assertions hold for the quasiasymptotic at 0 in D0

The quasiasymptotic at 0 is a local property of a distribution. Namely,

Theorem 4. Let f 2 D0 and f �q g at 0 with respect to (1=k)�L(1=k) (in
D0), and let f1 2 D0 be such that f = f1 in some neighbourhood of zero. Then
f1 �

q g at 0 with respect to (1=k)� � L(1=k).
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Proof . Follows from the equality hf(x); '(kx)i = hf1(x); '(kx)i which holds
for any ' 2 D if k > k0(').

The some assertion holds for the quasiasymptotic at 0 (in S 0). This was
proved in [2, Lemma 1.6].

Theorem 5. Let f 2 S 0, resp. f 2 D0, and f �q g at 0 with respect to c(1=k)
(in S 0, resp. in D0). Let ! 2 S, resp. ! 2 E and

!(x=k)

c1(1=k)
! !0(x) in S; resp. in E ; as k !1;

where c(x); x 2 (0; a); a > 0, is a measurable positive function. Then f! �q !0g
at 0 with respect to c(1=k)c1(1=k) (in S

0, resp. in D0).

Proof . Follows from [7, Y. I, p. 72., Th�eor�eme X].

2. Relations between two de�nitions. Let f 2 S 0 and f �q g at 0 with
respect to c(1=k) (in D0). The question is: Does the same hold in S 0? We shall
prove in this section that for c(1=k) = (1=k)�L(1=k); k > 1=a, the answer to the
question is aÆrmative if � > 0 or if 0 � � > �1 and L is bounded in some interval
(0; �); � > 0. Otherwise the problem is still open.

Theorem 3(i) and [2, Lemma 1.7] directly imply the following:

Theorem 6. Let f 2 S 0 and f = F (m) in some neighbourhood of 0, where
m 2 N0 and F is a locally integrable function such that for some � > �1; L and
(C+; C�) 6= (0; 0),

lim
x!�0

F (x)

j x j� L(j x j)
= C�:

Then f �q g at 0 with respect to (1=k)�L(1=k) (in S 0), where g = (C+x
�
+ +

C�x
�
�)

(m), and x�� = H(�x) j x j� (H is the Heaviside function).

The following theorem is proved in [P].

Theorem 7. Let f 2 S; f �q g at 0 with respect to (1=k)�L(1=k) (in D0),
where � > 0. Then there is a continuous function F (x); x 2 (�1; 1) and an

m 2 N0 such that f = F (m) in (�1; 1) and

lim
x!�0

F (x)

j x j�+m L(j x j)
= C�: for some (C+; C�) 6= (0; 0)

If 0 � � > �1 and L(x) is bounded in some interval (0; �), the assertion
holds as well.

Theorems 6 and 7 directly imlpy the following

Theorem 8. Let f satisfy conditions of Theorem 7. Then �q g at 0 with
respect to (1=k)�L(1=k) (in S 0).

For � < 0 we have a partial answer to the question above.
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Let us denote by Z the space of Fourer transformations of elements from D
supplied by the convergence structure transported from D(Z = F(D)). Let f 2 S 0.
We write f �q g at 0 with respect to (1=k)�L(1=k) (in Z 0) if g 2 Z 0; g 6= 0, and

lim
k!1

D f(x=k)

(1=k)�L(1=k)
; '(x)

E
= hg(x); '(x)i; ' 2 Z :

Using the Fourier Transformations and Theorem I (i) (Part I) one can easily
obtain that g 2 S 0.

Theorem 9. Let f 2 S 0 and f �q g at 0 with respect to (1=k)�L(1=k) (in
Z 0) where � < 0, and � 62 �N . Then f �q q at 0 with respect to (1=k)�L(1=k) (in
S 0).

Proof . Since for somem 2 N0 and some continuous function F of slow growth
f = F (m), the Fourier transformation implies

(�i)mxmF̂ (x) �q ĝ(x) at �1 with respect to k���1L1(k)

in the sence of convergence in D0 and thus, in the sense of convergence in S 0 (see
Theorem I, Part I). L1(�) = L(1=�) is slowly varying at 1. Let us put

F̂+(x) =

(
F̂ (x); x > 0

0; x � 0
F̂�(x) =

(
0; x � 0

F̂ (x); x < 0

[2, Lemma 2.2] implies that for some N 2 N and some (C+; C�) 2 C
2; (C+; C�) 6=

(0; 0)

xm+N F̂�(x) �
q C�f��+N (�x) at �1 with respect to k���1+NL1(k):

Now [2, Lemma 2.3] implies, for �� �m > 0

(6) F̂�(x) �
q C�f���m(�x) at �1 with respect to k���1�mL1(k):

and for �� �m < 0.
(7)

F̂�(x) �
q C�f��+N (�x)+

pX
j=0

aj�Æ
(j)(x) at �1 with respect to k���1�mL1(k):

Using the Inverse Fourier transformation we obtain: for �� �m > 0

F (t) �q F�1(C+f���m(t) + C�f���m(�t))

at 0 with respect to (1=k)�+mL(1=k) (in S 0);

for �� �m < 0

F (t) �q F�1( ~C+f���m(t) + ~C�f���m(�t) +

pX
j=0

aj+Æ
(j)(t)+

+

pX
j�0

aj � Æ(j)(t)) at 0 with respect to

(1=k)�+mL(1=k) (in S 0); (( ~C+; ~C�) 6= (0; 0):)
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Now Theorem 3 (i) completes the proof.

The proof of Theorem 9 shows that if � and m satisfy the condition ���m >
0, then the assertion of Theorem 9 holds without the asypmtotion � 62 �N.

At the end we give a theorem which is a consequence of Theorem 5 from part
I.

Theorem 10. Let f 2 S 0 such that xf �q g at 0 with respect to

(1=k)�+1L(1=k); � 2 Rn(�N) (in S 0):

Let '0 2 D such that '̂0(0) = 1 and

D f(x=k)

(1=k)�L(1=k)
; '̂0(x)

E
! hg0(x); '̂0(x)i as k !1

such that g0 2 S 0 an xg0(x) = g(x); x 2 R. Then, f �q g at 0 with respect to
(1=k)�L(1=k) (in S 0) (g and g0 are homogeneous of order �+1 and �, respectively).
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