PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 43 (57), 1988, 125-130

.

SOME PROPERTIES OF THE QUASIASYMPTOTIC OF SCHWARTZ DISTRIBUTIONS PART I: QUASIASYMPTOTIC AT $\pm \infty$

Stevan Pilipović

Abstract. Using the results for the quasiasymptotic at $+\infty$ of tempered distributions from S'_+ and the results from [5] we give several properties of the quasiasymptotic at $+\infty$ of Schwartz distributions.

1. Introduction

The quasiasymptotic at ∞ of tempered distributions which have their supports in $[0, \infty)$ (the space of such distributions is denoted by S'_+) have been studied by Soviet mathematicians Drožžinov, Vladimirov and Zavialov in many pepers (see [8] and references therein).

We extend this notion to the space of Schwartz distributions (on the real line):

Definition 1. It is said that an $f \in \mathcal{D}'$ has the quasiasymptotic at $\pm \infty$ with recpect to some positive measurable function c(k), $k \in (a, \infty)$, a > 0 if for some $g \in \mathcal{D}'$, $g \neq 0$,

(1)
$$\lim_{k \to \infty} \langle f(kx)/c(k), \Phi(x) \rangle = \langle g(x), \Phi(x) \rangle, \ \Phi \in \mathcal{D}$$

In this case we write $f \sim^q g$ at $\pm \infty$ with respect to c(k).

Let us recall (see [4]) that a positive measurable function L(x), $x \in (a, \infty)$, resp. $x \in (0, a)$, a > 0, is called slowly varying at ∞ , resp. 0^+ , if for any $\lambda > 0$

$$\lim_{x \to \infty} L(\lambda x)/L(x) = 1, \text{ resp. } \lim_{x \to 0^+} L(\lambda x)/L(x) = 1.$$

For the properties of slowly varying functions we refer to [4].

AMS Subject Classification (1980): Primary 46F10

Pilipović

Because of [4, 1.4] we can and we shall always assume that L is a continuous function.

The following theorem is proved in [5].

THEOREM 1. Let $f \in \mathcal{D}'$ have the quasiasympotic at $\pm \infty$ with respect to some positive continuous function c(k), k > a. Then: (i) $f \in S'$; (ii) There are $\nu \in R$ and a slowly varying function L(k), k > a, such that $c(k) = k^{\nu}L(k)$, k > a; moreover, (g) is a homogeneous distribution with the order of homogenity ν ; (iii) if $\nu \in R \setminus (-N)$, then (1) holds in the sense of convergence in S' (i. e. for $\varphi \in S$).

Using the quoted results from [5] and the results of the mentioned Soviet mathematicians we shall give in this paper several properties of the quasiasymptotic behaviour at $\pm \infty$ of Schwartz distributions.

2. Some properties

Several trivial properties of the quasiasymptotic at $\pm \infty$ are given in the following theorem.

THEOREM 1. Let $f \in \mathcal{D}'$ and $f \sim^q g$ at $\pm \infty$ with respect to $k^{\nu}L(k)$. Then: (i) $f^{(\alpha)}$ at $\pm \infty$ with respect to $k^{\nu-\alpha}L(k)$, $\alpha \in N$ (we assume $g^{(\alpha)} \neq 0$); (ii) if $\nu \notin -N$ and $m \in N$ then $x^m f \sim^q x^m g$ at $\pm \infty$ with respect to $k^{\nu+m}L(k)$; (iii) if $\nu = -n$, $n \in N$, and $m \in N$ such that m < n, then (ii) holds as well; (iv) If $\Phi \in \mathcal{E}$ and c_1 is a measurable positive function on some interval (a, ∞) , a > 0, such that

$$\Phi(kx)/c_1(k) \to \Phi_0(x)$$
 in $\mathcal{E}, k \to, x \in \mathbb{R},$

then $f \Phi \sim^q g \Phi_0$ at $\pm \infty$ with respect to $c_1(k) k^{\nu} L(k)$.

Let us only remark that (iv) follows from [7, T. I, p. 72, Théorème X].

THEOREM 2. Let $f \in \mathcal{E}'$ and $f \sim^q g$ at $\pm \infty$ with respect to $k^{\nu}L(k)$. Then L(k) = 1, k > a for some a > 0, and $\nu \in -N$. Moreover, the limit in (1) can be exstended on S.

Proof. It is well-known that f can be written in the from $f = \sum_{k=o}^{m} f_k^{(k)}$, where f_k , $k = 0, \ldots, m$, are continuous functions with compact supports. If F is a continuous function with the compact support, then one can easily prove that for some C

$$\lim_{k \to \infty} \left\langle \frac{F(kx)}{k^{-1}}, \Phi(x) \right\rangle = \langle C\delta(x), \Phi(x) \rangle, \quad \Phi \in \mathcal{S}.$$

This implies the assertion.

Let us recall ([7, p. 88]) that the scale of distribution f_{nu+1} , $\nu \in R$; is defined in the following way.

$$f_{\nu+1}(x) = H(x)x^{\nu}\Gamma(\nu+1) \text{ for } \nu > -1$$
$$x \in R,$$
$$f_{\nu+1}(x) = f_{\nu+n+1}^{(n)}(x) \text{ for } \nu \le -1$$

126

where $n \in N$ and $n + \nu > -1$. *H* is the Heaviside function.

As it us usual, we identify locally integrable function with the corresponding distributions.

THEOREM 3. Let F be a locally integrable function and $\nu \in R$, $\nu > -1$, such that

$$\lim_{\substack{x \to +\infty \\ x \to -\infty}} \frac{F(x)}{|x|^{\nu} L(|x|)} = C_{\pm} \quad where \ (C_{+}, C_{-}) \neq (0, 0).$$

Then $F \sim^q g$ at $\pm \infty$ with respect to $k^{\nu} L(k)$ where

$$g(x) = \overline{C}_+ f_{\nu+1}(x) + \overline{C}_- f_{\nu+1}(-x), \ x \in R \ and \ (\overline{C}_+, \overline{C}_- \neq (0, 0).$$

Proof. Let us put $F_+(x) = H(x)F(x)$ and $F_-(x) = H(-x)F(x)$, $x \in R$. It is well-known ([1]) that for any $\Phi \in S$

$$\left\langle \frac{F_+(kx)}{k^{\nu}L(k)}, \ \Phi(x) \right\rangle \to \left\langle g_+(x), \quad \Phi(x) \right\rangle, \quad k \to \infty,$$
$$\left\langle \frac{F_-(kx)}{k^{\nu}L(k)}, \ \Phi(x) \right\rangle \to \left\langle g_-(x), \quad \Phi(x) \right\rangle \quad k \to \infty$$

where

$$g_{\pm}(x) = \overline{C}_{\pm} f_{\nu+1}(\pm x), \ x \in R, \text{ with } (\overline{C}_+, \overline{C}_-) \neq (0, 0).$$

This implies the assertion.

THEOREM 4. Let $f \in \mathcal{D}'$ and $f \sim^q at \pm \infty$ with respect to $k^{\nu}L(k)$ where $\nu \in R \setminus (-N)$. There are $m \in N_0$ and a locally integrable function F such that

$$f = F^{(m)} and \lim_{\substack{x \to +\infty \\ x \to -\infty}} \frac{F(x)}{\mid x \mid^{\nu+m} L(\mid x \mid)} = C_{\pm}$$

where $(C_+, C^-) \neq (0, 0)$.

Proof. Since $f \in S'$ (Theorem I), let $f = f_+ + f_-$, where $f_+ \in S'_+$ and $f_- \in S'_-$ (supp $f_{\subset}(-\infty, 0]$. Theorem I implies that for every $\Phi \in S$

$$\left\langle \frac{f(kx)}{k^{\nu}L(k)}, \Phi(x) \right\rangle \to \langle g(x), \Phi(x) \rangle \quad k \to \infty.$$

Now [2, Lemmas 2.2 and 2.3] implies (see Part II, the proof of Theorem 9) that

$$\left\langle \frac{f_{\pm}(kx)}{k^{\nu}L(k)}, \Phi(x) \right\rangle \to \langle \widetilde{C}_{\pm}f_{\nu+1}(\pm x), \Phi(x) \rangle \quad k \to \infty.$$

The structural theorem [1, Theorem I] implies that there are locally integrable functions F_1 and F_2 with supp $F_1 \subset [0, \infty)$, supp $F_2 \subset (-\infty, 0]$, and $m \in N_0$ such that

$$f_+(x) = F_1^{(m)}(x), \ f_-(x) = F_2^{(m)}(x), \ x \in R,$$

Pilipović

$$\lim_{x \to \infty} \frac{F_1(x)}{x^{\nu+m} L(x)} = C_+, \quad \lim_{x \to -\infty} \frac{F_2(x)}{|x|^{\nu+m} L(|x|)} = C_-$$

This completes the proof.

THEOREM 5. Let $f \in S'$ and $\Phi_0 \in D$ such that $\int \Phi_0(t) dt = 1$. Let $f' \sim^q g$ at $\pm \infty$ with respect to $k^{\nu} L(k), \nu \in R$, and

$$\left\langle \frac{f(kx)}{k^{\nu+1}L(k)}, \quad \Phi_0(x) \right\rangle \to \left\langle g_0(x), \quad \Phi_0(x) \right\rangle$$

for some $g_0 \in S'$ for which there holds: $g'_0 = g$. Then $f \sim^q g_0$ at $\pm \infty$ with respect to $k^{\nu+1}L(k)$, $(g \text{ ang } g_o \text{ are determined by Theorem 1.})$

Proof. It is well-known that for any $\Phi \in \mathcal{D}$ there exist $\psi \in \mathcal{D}$ such that

$$\Phi(x) = \Phi_0(x) \int \Phi(t)dt + \psi(x), \quad x \in R,$$

and ψ is of the form $\psi = \psi'_1$ for some $\psi_1 \in \mathcal{D}$. We have

$$\left\langle \frac{f'(kx)}{k^{\nu+1}L(k)}, \quad \Phi(x) \right\rangle = \left\langle \frac{f(kx)}{k^{\nu+1}L(k)}, \quad \Phi_0(x) \right\rangle \int \Phi(t) dt - \left\langle \frac{f'(kx)}{k^{\nu}L(k)}, \quad \psi(x) \right\rangle \to \left\langle g_0(x), \quad \Phi_0(x) \right\rangle \int \Phi(t) dt - \left\langle g(x), \quad \psi_1(x) \right\rangle = \left\langle g_0(x), \quad \Phi(x) \right\rangle \text{ as } k \to \infty.$$

This proves the assertion.

3. The Fourier transformation and the quasiasymptotic

The Fourier and inverse Fourier transformation in S and S' are defined in a usual way ([7]). The connection between the quasiasymptotics at 0 and $\pm \infty$ is given in the theorem which follows. Note that the definition of the quasiasymptotic behaviour at 0 (in S') is given in Part II (Definition 2).

THEOREM 6. Let
$$f \in \mathcal{D}'$$
 and $\nu \in R \setminus (-N)$. If

(2)
$$f \sim^q at \pm \infty$$
 with respect to $k^{\nu} L(k)$

then

(3)
$$\hat{f} \sim^q \hat{g}$$
 at 0 with respect to $(1/k)^{-\nu-1} L_1(1/k)$ (in S')

where $L_1(\cdot) = L(1/\cdot)$ is slowly varying at 0^+ .

Conversely, if $f \in S'$ and (3) holds with $\nu \in R$, then (2) holds.

Proof. Let $\Phi \in \mathcal{S}$. We have

128

This implies the assertion.

We studied in [6] the notion of the S-asymptotic at ∞ of Schwartz distributions. The relation between this notion and the quasiasymptotic at $+\infty$ can be deduced from the following theorem.

THEOREM 7. Let $f \in S'$ and $\Phi = \mathcal{F}^{-1}(\psi)$ where $\psi \in S$ such that $\psi = 1$ in some neighbourhood of U. If

$$\lim_{k \to +\infty} \frac{(f * \Phi)(k)}{k^{\nu} L(k)} = C_{+} \text{ and } \lim_{k \to +\infty} \frac{(f * \Phi)(k)}{k^{\nu} L(k)} = C_{-}$$

where $\nu > -1$ and $(C_+, C_-) \neq (0, 0)$, then $f \sim^q g$ at $\pm \infty$ with respect to $k^{\nu}L(k)$ where $g \neq 0$ is a suitable distribution from S'.

(For the convolution in \mathcal{S}' see [7]).

Proof. Theorem 3 implies that $f * \Phi \sim^q g$ at $\pm \infty$ with respect to $k^{\nu}L(k)$ $(g \neq 0)$. From the well-known exchange formula and Theorem 6 it follows that $\hat{f}\psi \sim^q \hat{g}(x)$ at 0 (in \mathcal{S}') with respect to $(1/k)^{-\nu-1}L_1(1/k)$, where $L_1(\cdot) = L(1/\cdot)$.

Since the quasiasymptotic at 0 is the local property of a distribution (see Part II) we obtain that $\hat{f} \sim^q C\hat{g}$ at 0 with respect to $(1/k)^{-\nu-1}L_1(1/k)$ ($C \neq 0$). Now, Thorem 6 implies the assertion.

5. The convolution and the quasiasymptotic

THEOREM 8. Let $T \in \mathcal{E}'$ and $T \sim^q g_1$, at $\pm \infty$ with respect to k^{ν} , $\nu \in -N$ (see Theorem 2). Let $f \in \mathcal{D}$ and $f \sim^q g$ at $\pm \infty$ with respect to $k^{\alpha}L(k)$, $\alpha \in R \setminus (-N)$. Then $T * f \sim^q g_1 * g$ with respect to $k^{\alpha+\nu+1}L(k)$.

Proof. Let $\Phi \in S$. Using the properties of the Fourier transformation we have (with $L_1(\cdot) = L(1/\cdot)$)

(4)
$$\left\langle \frac{(T*f)(kx)}{k^{\alpha+\nu+1}L(x)}, \quad \hat{\Phi}(x) \right\rangle = \left\langle \frac{\hat{T}(x/k)\hat{f}(x/k)}{k^{\alpha+\nu+2}L(k)}, \quad \Phi(x) \right\rangle$$

$$= \left\langle \frac{\hat{f}(x/k)}{(1/k)^{-\alpha-1}L_1(1/k')}, \quad \frac{\hat{T}(x/k)}{(1/k)^{\nu-1}}\Phi(x) \right\rangle.$$

Since \hat{T} is an entire function of polynomial growth when $|x| \to \infty$, it must be of the form $\hat{T}(x) = x^{-\nu-1}T_1(x)$, $x \in R$, where T_1 is an entire function of polynomial growt such that $T_1(0) = C \neq 0$. All the derivatives of \hat{T} are of polynomial growth when $|x| \to \infty$. So, the same holds for T_1 . This implies that for any $\Phi \in S$.

(5)
$$\left\langle \frac{1}{k^{\nu+1}} (x/k)^{-\nu-1} T_1(x/k), \Phi(x) \right\rangle = \langle x^{\nu-1} T_1(x/k), \Phi(x) \rangle$$

 $\rightarrow \langle x^{\nu-1} T_1(0), \Phi(x) \rangle, \quad k \to \infty,$

in the sense of convergence in S. Let us note that $\hat{g}_1(x) = x^{-\nu-1}T_1(0), x \in \mathbb{R}$.

Pilipović

In the spaces ${\cal S}$ and ${\cal S}'$ the strong and weak sequential convergence are equaivalent. This implies that

$$\left\langle \frac{\hat{f}(x/k)}{(1/k)^{-\alpha-1}L_1(1/k)}, \quad \frac{\hat{T}(x/k)}{(1/k)^{-\nu-1}}, \Phi(x) \right\rangle$$
$$\to \langle \hat{g}(x), \quad \hat{g}_1(x)\Phi(x) \rangle = \langle (g_1 * g)(x), \quad \hat{\Phi}(x) \rangle, \quad k \to \infty$$

By (4) we obtain the assertion.

THEOREM 9. Let $f \in \mathcal{D}'$ and $\{f(kx)/k^{\alpha}L(k), k > a\} \alpha \in R \setminus (-N)$, be a bounded subset of \mathcal{D}' . Let $T \in \mathcal{E}'$ and $T \sim^q g_1$ at $\pm \infty$ with respect to k^{-1} . If $T * f \sim^q g_2$ at $\pm \infty$ with respect to $k^{\alpha}L(k)$, then $f \sim^q g$ at $\pm \infty$ with respect to $k^{\alpha}L(k)$ and $g_2 = g$.

Proof. The same arguments, as in Theorem I imply that $f \in S'$ and that $\{f(k \cdot)/k^{\alpha}L(k), k > a\}$ is a bounded subset of S'. With the same arguments as above we have $(\Phi \in S)$

$$\left\langle \frac{\hat{f}(x/k)}{(1/k)^{-\alpha-1}L_1(1/k)}, \quad \Phi(x)(1-\hat{T}(x/k)) \right\rangle \to 0 \text{ as } k \to \infty.$$

This implies the assertion.

REFERENCES

- [1] Yu. N. Drožžinov, B. I. Zavialov, Quasiasymptotic of generalized functions and Tuberian theorems in the compelex domain, Math. Sb. **102** (1977), 372-390 (In Russian).
- [2] Yu. N. Drožžinov, B. I. Zavialov, Asynptotic properties of some classes of generalized functions, Izv. Acad. Nauk SSSR 49 (1985), 81-140. (In Russian)
- [3] L. Schwartz, Théorie des distributions I, IIs, Hermann Paris, 1950-1951.
- [4] E. Seneta, Regulary Varying Functions, Springer, Berlin-Heiderberg-New York, 1976.
- [5] S. Pilipović, On the quasiasymptotic of Schwartz distributions, Math. Nachr., to appear
- [6] S. Pilipović, B. Stanković, S-Asymptotic of distributions, Pliska, to appear
- [7] V. S. Vladimirov Generalized Functions in Mathematical Physisc, Mir. Moscow, 1979.
- [8] V. S. Vladimirov, B. I. Zavialov, Tauberian theorems in the quantum field theory, Itogi Nauk. Tehn. 15 (1980), 95-130 (In Russian).

(Received 09. 01 1987)

130