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UNIFORM c-CONVEXITY OF Lp, 0<p�1
Miroslav Pavlovi�c

Abstract.We extend a result of Globevnik by proving that Lp spaces with 0 < p � 1 are
uniformly c-convex. We also give the precise values for the moduli of c-convexity of Lp. A short
proof of Globenik's result is included.

.

1. Introduction. A result of Thorp and Whitley [8] states that L1-spaces
are strictly c-convex, although the unit sphere of L1(0; 1) does not possess exstreme
points. This results was strenghtened by Globevnik [1], who proved that L1-spaces
are uniformly c-convex. Further examples of uniformly c-convex normed spaces are
given in [6]. However, it seems that the case of quasi-normed spaces has not been
discussed yet. In this paper we present some results in this direction. Theorems 1,
2, 3 were proved by the author in [5].

De�nition. A complex quasi-normed spaceX , i. e. a complex linear space with
a quasi-norm k � k, is said to be uniformly c-convex if there exists a real function Æ
on [0;+1) such that Æ(") > 0 whenever " > 0, and

(1) Æ(") � supfkx+ �yk : j�j � 1g � 1

for all x; y with kxk = 1; kyk � ". The supremum of all Æ, satisfying (1), is denoted
by ÆcX and is called the modulus of c-convexity of X .

We recall that a quasi-norm k � k on a linear space X has the following prop-
erties: 1: kxk � 0; 2: x = 0 if kxk = 0; 3: k�xk =j � j kxk for all scalars �, 4:
there exists a K � 1 such that kx + yk � K(kxk + kyk) for all x; y 2 X . If the
quasi-norm is p-subadditive for some p; 0 < p � 1, i. e. if kx+ ykp � kxkp + kykp,
then X is called a p-normed space.

We consider the complex Lebesgue space Lp = Lp(m); 0 < p � 1, where m
is a positive measure on a �-algebra of subset of a set S. The quasi-norm on Lp is
given by

kxk = kxkp : = Biglf
Z
S

j x jp dm
o1=q
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The modulus of c-convexity of Lp will be denoted by Æp. Our main results is the
following theorem.

Theorem 1. The space Lp; 0 < p � 1 is uniformly c-convex. Moreover,

(2) Æp(") � Fp(") := �1 +
�

1

2�

Z 2�

0

j 1 + "eit jp dt
�1=p

; " � 0

with equality if Lp is in�nite-dimensional.

The inequality (2) is a consequence of the following stronger result.

Theorem 2 If x; y 2 Lp; 0 < p � 1, then

Z 2�

0

kx+ eitykpdt �
Z 2�

0

???kxk+ eitkyk
???pdt

Note that the same inequality is valid for p 2[1, 2]. A proof can be found in [7],
but the arguments given there cannot be applied in the case 0 < p < 1. On the
other hand, the proof of Theorem 2, which will be given in Section 2, works for
all p 2 (0; 2]. It is a natural question whether the modulus Æn can be improved by
use an equivalent quasi-norm. The following theorem gives a partial answer to this
queston.

Theorem 3. Let the space Lp; 0 < p � 1, be in�nite-dimensional. If a

p-normed space X is isomorphic to Lp, then ÆcX(") � Fp(") for every " � 0.

As an immediate consequence of Theorem 3 and the inequality Fp(") <
Fq("); p < q; " > 0, we have the following well known fact.

Corollary. If an in�nite-dimensional Lq space is isomorphic to Lp; 0 <
p; q < 1, then p = q.

In Section 3 we give some more applications of Theorem 3.

2. Proofs of the theorems. The proof of Theorem 2 is based on the
following lemma.

Lemma 1. Let 0 < p � 1. Then the function ', given by

'(u; v) =

Z 2�

0

j u1=p + v1=peit jp dt;

is convex on the set f(u; v) : u � 0; v � 0g.

Proof . Since ' is continuous and '(cu; cv) = c'(u; v) for all c > 0, it is
enough to prove that the function  (") : = '(1; ") is convex on the interval [0;1).
Suppose �rst that 0 � " � 1. Then

 (") =

Z 2�

0

j (1 + "1=peit)p=2 j2 dt
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Hence, by Parseval's formula applied to the function t 7! (1 + "1=peit)p=2 =P�
p=2
n

�
"n=peint,

 (") = 2�

�
1 +

1X
n=1

�
p=2

n

�2

"2n=p
�
:

From this it follows that  is convex on [0; 1] as a sum of convex functions. Now
we can prove that  is convex on (1;+1). Indeed, if " > 1, we use the equality
 (") = " (1=") to obtain  00(") = "�3 00(1=") > 0. Finally, it is enough to prove
that  (") is di�erentiable for " = 1.

Let

f(") =  ("p) =

Z 2�

0

(1 + "2 + 2" cos t)p=2dt; " > 0:

By Leibniz's rule,

f 0(") = p

Z 2�

0

("+ cos t)(1 + "2 + 2" cos t)p=2�1dt

if " 6= 1. Since ("+ cos t)2 � ("+ cos t)2 + sin2 t = 1 + "2 + 2" cos t we have

j "+ cos t j (1 + "2 + 2" cos t)p=2�1 � [("+ cos t)2 + sin2 t](p�1)=2 � (sin2 t)(p�1)=2

=j sin t jp�1 :
Hence, by the Lebesgue dominated couvergence theorem, lim

"!1
f(") exist and is

�nite. This completes the proof.

Proof of Theorem 2. Let x; y 2 Lp; 0 < p � 1. Then the support of
j x j + j y j is of �-�nite measure. So we can apply Fubini's theorem to getZ 2�

0

kx+ eitykpdt =
Z
S

dm

Z 2�

0

j x+ eity jp dt =
Z
S

'[j x jp; j y jp]dm;
where we have used the equalityZ 2�

0

j x+ eity jp dt =
Z 2�

0

??? j x j +eit j y j ???pdt:
Hence, by Jensen's inaquality and Lemma 1,Z 2�

0

kx+ eitykpdt �'
�Z

S

j x jp dm;
Z
S

j y jp dm
�

='[kxkp; kykp] =
Z 2�

0

???kxk+ eitkyk
???pdt:

Remark . In the case of L1 a short proof of Theorem 2 can be given in the
following way. Let x; y 2 L1. ThenZ 2�

0

kx+ eitkdt =
Z 2�

0

www j x j +eit j y j
wwwdt �

=

Z 2�

0

???
Z
S

(j x j +eit j y j)dm
???dt =

Z 2�

0

???kxk+ eitkyk
???dt:
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Proof of Theorem 1. The inequality (2) follows easily from Theorem 2. To
prove the rest suppose that Lp is in�nite-dimensional. Then, by Proposition I. 5
of [3], Lp contains an isometric copy of the sequence space. Thus the assertion
reduces to the case lp.

Let fekg10 be the standard basis of lp. For a positive integer n let m =
2n; " > 0 and

x = m�1=p
m=1X
k=0

ek; y = "m�1=p
m=1X
k=0

e2k�i=mek:

Since kxk = 1; kyk = ", we have

[1 + Æp(")]
p � max

j�j=1
kx+ �ykp;

where we have used the fact that the function � 7! kx+ �ykp is supharmonic. On
the other hand, one can choose tm 2 [0; 2�=m] so that

max
j�j=1

kx+ �ykp = m�1
m�1X
k=0

j 1 + "eitme2k�i=m jp :

Hence

[1 + Æp(")]
p � m�1

m�1X
k=0

j 1 + "eitm;k jp;

where 2k�=m � tm;k � 2(k+1)�=m. Now the resuly follows from the fact that the
last sum tends to

(2�)�1
Z 2�

0

j 1 + "eit jp dt:

For the proof of Theorem 3 we need the following propositio. It is an extension
of the corresponding result for the space l1 [4, Proposition 2. e. 3].

Proposition 1. Let X be a p-normed space which is isomorphic to lp; 0 <
p � 1. Then, for every c > 1, there exists a linear operator T : lp ! X such that

c�1kxk � kTxk � ckxk for all x 2 lp.

Proof . The proof is the same as that of Proposition 3 e. 3 of [4]. Let S be
an isomorphism of lp onto X and assume, without loss of generality that �kSxk �
kxk � kSxk, for some � > 0 and all x 2 lp. Let c > 1 and let fPng1n=1 be the
projections induced by the unit vector basis feng of lp:

Pnx =

nX
j=1

ajej ; x =

1X
n=1

anen 2 lp:

For every n put � = supfkxk : kSxk = 1; Pnx = 0g. Then �n # � for some
�; � � � � 1. Let N be such that �N < �

p
c. By the de�nition of f�ng there
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are vectors fykg1k=1 such that, for all k; kSykk = 1; PNyk = 0; kykk > �=
p
c and

supp(ym)\supp(yk) = ? for m 6= k. For every choice of scalars fakg1k=1 we have

PN

� 1X
k=1

akyk

�
= 0

and hence, by the de�nition of �N ,

wwwS
1X
k=1

akyk

www ���1N
www

1X
k=1

akyk

www = ��1N

� 1X
k=1

j ak jp kykkp
�1=p

���1N c�1=2�

� 1X
k=1

j ak jp
�1=p

� c�1
� 1X
k=1

j ak jp
�1=p

:

On the other hand, since X is a p-normed space, we have

wwwS
1X
k=1

akyk

wwwp

�
1X
k=1

j ak jp kSykkp =
1X
k=1

j ak jp :

The desired operator is de�ned by Tek = Syk; k = 1; 2; . . . .

Proof of Theorem 3. Let c > 1 and let X be an in�nite-dimensional p-normed
space isomorphic to Lp. Since X contains an isomorphic copy of lp, there is a linear
operator T : lp ! X such that c�1kxk � kTxk � ckxk for all x 2 lp. For a �xed
" > 0 there are x; y 2 lp such that kxk = 1; kyk � c2" and

sup
j�j�1

kx+ �yk � c[1 + Fp(c
2")]:

Let x0 = Tx=kTxk; y0 = Ty=kTxk. Then kx0k = 1 and ky0k � ", because kTxk �
c; kTyk � c�1kyk � c". Hence, by the de�nition of ÆcX ,

1 + ÆcX(") � sup
j�j�1

kx0 + �y0k

On the other hand, kx0 + �y0k � c2kx+ �yk � c3[1 + Fp(c
2")]. This implies

1 + ÆcX(") � c3[1 + Fp(c
2")]:

Since c > 1 was arbitrary, we get ÆcX(") � Fp(").

3. Uniform c-convexity in lp. In this section we given an extension of
Theorem 1 to subspaces of lp.

Theorem 4. Let X be an in�nite-dimensional subspaces of lp; 0 < p � 1.
Then ÆcX(") = Æctp(" for all " > o.

In the case p = 1 this result follows directly from Theorem 3 and the fact
that for every closed in�nite-dimensional subspace X of lp; 1 � p <1, there is an
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isomorpism of lp into X [4 Propositional 2. a. 2]. To prove Theorem 4 for p < 1 we
use a similar but somewhat more general approach .

Proposition 2. Let X be a closed in�nite-dimensional subspace of lp; 0 <
p < 1. Then, for every c > 1, there is a linear operator T : lp ! X such that

c�1kxk � kTxk � ckxk for all x 2 lp.
Proof.. We proceed in the same way as in [4, Propositions 1. a. 11 and 1.

a.9]. Let c > I . For any b > 0 we �nd two sequences, fxng1n=0 and fyng1n=0, such
that: 1. xn 2 X; 2:kxnk = kynk = 1; 3:kxn � ynk � b=2n, and 4. supp(ym)\ supp
(yn) = ? for m 6= n. From the last condition it follows that Y: = [yn]

1
n=0, the

closed linear span of fyng, isometrically isomorphic to lp. Thus it is enough to �nd
an operator S:Y ! X such that c�1kyk � kSyk � ckyk; y 2 Y .

Let q = min(p; 1) and choose b so that bq(1 � 1=2q)�1 = 1 � 1=cq. For
y =

P1
n=0 anyn let Sy =

P1
n=0 anxn and Uy = y � Sy. Then

kUykq �
1X
n=0

j an jq kxn � ynkq � kykq
1X
n=0

kxn � ynkq � bq(1� 1=2q)�1kykq;

where we used the condition 3. Hence

kSykq = ky � Uykq � kykq + kUykq � cqkykq:
On the other hand, since y =

P1
n=0 U

nSy, we have

kykq � kSykq
1X
n=0

kUknq � cqkSykq:

This completes the proof.

Using Proposition 2 we can prove that Theorem 4 holds for every p > 0. If
X is closed, this can be done in the same way as in the proof of Theorem 3. If X
is not closed, one can not closed, one can use the equality ÆcX = ÆcY , where Y is the
closure of X . We note that, if p > 2, the modulus of c-convexity of lp is equal to
(1 + "p)1=p � 1. This follows from Clarkson's inequality [2]:

kx+ ykp + kx� ykp � 2(kxkp + kykp); x; y 2 Lp; p > 2:

4. Remarks. One of simple ways to prove that Lp(m) is uniformly c-convex
is to use the inequality

(3) (2�)�1
Z 2�

0

j u+ veit jp dt � (j u j2 +p j v j2 =2)p=2; 0 < p < 2;

valid for all complex numbers u; v. Indeed, if 0 < p < 2, the function N(u; v) : =
(j u j2=p +p j v j2=p =2)p=2 is a norm and, consequently,
Z
S

N(j x jp; j y jp)dm � N

�Z
S

j x jp dm;
Z
S

j y jp dm
�
= (kxk2 + pkyk2=2)p=2;
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where x; y 2 Lp(m). Hence, by (3),

(2�)�1
Z 2�

0

kx+ yeitkpdt � (kxk2 + pkyk2=2)p=2:

This gives the estimate Æp(") � (1 + p"2=2)1=2 � 1.

To prove the inequality (3) we may assume that u = 1. Then, if j v j� 1, by
Parseval's formula,

f(v) : = (2�)�1
Z 2�

0

j 1 + veit jp dt � 1 + p2 j v j2 =4 � (1 + p j v j2 =2)p=2:

If j v j> 1, we have

f(v) =j v jp f(1=v) �j v jp (1 + p=(2 j v j2))p=2 � (1 + p j v j2 =2)p=2:

After completing this paper the author has learned of a recent paper of Davis,
Garling and Tomczak-Jaegermann [9]. For a quasi-normed space X ( with some
additional propeties) they de�ne the moduli HX

q ; 0 < q � 1, and Iq;r(X); 0 <
q � 1; 2 � r <1, in the following way:

1 +HX
q (") = inf

��
1

2�

Z 2�

0

kx+ eitykqdt
�1=q

: kxk = 1; kyk = "

�
; " � 0;

Iq;r(X) is the largest non-negative � such that

�
1

2�

Z 2�

0

kx+ eitykqdt
�1=q

� (kxkr + �kykr)1=r

for all x; y 2 X .

In [9] the following problem is raised (Problem 4): Is it true that Iq;2(C) = q=2
for q < 2, where C is the complex plane? The preceding remarks show that the
answer is yes. Moreover, we have the following results.

Theorem 5. Let X be an in�nite-dimensional Lp-space or an in�nite-

dimensional subspace of lp; 0 < p � 2. Then: 1. HX
q (") = Fp(") if q � p,

and 2. HX
q (") = Fq(") if 0 < q � p.

The �rst equality follows from Theorems 1, 2 and 4 because HX
q increases

with q and HX
1 = ÆcX . To prove the second equality one can use the inequality

Z 2�

0

kx+ eitykqpdt �
Z 2�

0

??kxkp + eit jykp
???qdt

(q � p � 2), which follows from Theorem 2 and the fact that every �nite-
dimensional Lp-space is isometric to a subspace of Lq(�), for some measure � [10,
Lemma 21. 1. 3.].

Note that if q � 2 then Theorem 5 holds for every (non-trivial) Lp-space.
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Theorem 6. Under the hypothesis of Theorem 5 we have Iq;2(X) = p=2 for

q � p, and Iq;2(X) = q=2 for q � p.

REFERENCES

[1] J. Globevnik, On compelex stict and uniform convexity, Proc. Amer. Math. Soc. 47 (1975),
176{178.

[2] O. Hanner, On the uniform convezityofLp and lp, Arkiv Math. 3 (1956), 239{244.

[3] J. L. Krivine , Sous-espaces de dimension �nie des espaces de Banach r�eticul�es, Ann. Math.
104 (1976), 1{29.

[4] J. Lindenstrauss and L. Tzafriri, Classical Banch Spaces I. Sequence Spaces, Springer-
Verlag, 1977.

[5] M. Pavlovi�c, Geometry of Complex Banach Spaces, Thesis, Belgrade, 1983.

[6] M. Pavlovi�c, Moduli of c-convexity of normed spaces I, II, Math. Vesnik 6 (1982), 139{151;
307{314 (Russian).

[7] M. Pavlovi�c Some inequalities in Lp spaces, Math. Vesnik 6 (1982), 67{ 73 (Russian).

[8] E. Thorp, R.Whitley, The strong maximum modulus theorem for analytic functions into
Banach spaces, Proc. Amer. Math. Soc. 18 (1967), 640{646.

[9] W. J. Davis, D. J. H. Garling, N. Tomczak-Jaegermann, The complex convexity of quasi-
normed linear spaces, J. Funct. Anal. 55 (1984), 110{150.

[10] A. Pietsch, Operator Ideals, North Holland, Amsterdam, 1980.

Odsek za matematiku (Received 25 12 1985)
Prirodno-matemati�cki fakultet
31000 Kragujevac
Jugoslavija


