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UNIFORM c-CONVEXITY OF L7, 0<p<1

Miroslav Pavlovié

Abstract.We extend a result of Globevnik by proving that LP spaces with 0 < p <1 are
uniformly c-convex. We also give the precise values for the moduli of c-convexity of LP. A short
proof of Globenik’s result is included.

1. Introduction. A result of Thorp and Whitley [8] states that L!'-spaces
are strictly c-convex, although the unit sphere of L (0, 1) does not possess exstreme
points. This results was strenghtened by Globevnik [1], who proved that L'-spaces
are uniformly c-convex. Further examples of uniformly c-convex normed spaces are
given in [6]. However, it seems that the case of quasi-normed spaces has not been
discussed yet. In this paper we present some results in this direction. Theorems 1,
2, 3 were proved by the author in [5].

Definition. A complex quasi-normed space X, i. e. a complex linear space with

a quasi-norm || - ||, is said to be uniformly c-convex if there exists a real function §
on [0, +00) such that d(¢) > 0 whenever ¢ > 0, and
(1) 6(e) < sup{lle + Ayl : Al <1} -1

for all z,y with ||z|| = 1, ||ly|]|] > €. The supremum of all §, satisfying (1), is denoted
by 0% and is called the modulus of c-convexity of X.

We recall that a quasi-norm || - || on a linear space X has the following prop-
erties: 1. ||z|| > 0, 2. z = 0if ||z]] = 0, 3. [|Az|| =| A | ||z|| for all scalars A, 4.
there exists a K > 1 such that ||z + y|| < K(||z]| + |ly]|) for all z,y € X. If the
quasi-norm is p-subadditive for some p, 0 < p < 1, 1. e. if ||z + y||? < ||=]|P + ||y||?,
then X is called a p-normed space.

We consider the complex Lebesgue space LP = LP(m), 0 < p < 1, where m
is a positive measure on a o-algebra of subset of a set S. The quasi-norm on L? is
given by

. » 1/q
el = llall, : = Bigt{ [ | [" dm}
S
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The modulus of c-convexity of LP will be denoted by d,. Our main results is the
following theorem.

THEOREM 1. The space LP,0 < p < 1 is uniformly c-convex. Moreover,

1 2m ) 1/p
(2) Op(e) > Fp(e) :=—1+ {%/ | 1+ e |P dt} , €>0
0

with equality if LP is infinite-dimensional.

The inequality (2) is a consequence of the following stronger result.

THEOREM 2 Ifz,y € LP, 0 < p <1, then

27 ) 27
| ety
0 0

Note that the same inequality is valid for p €[1, 2]. A proof can be found in [7],
but the arguments given there cannot be applied in the case 0 < p < 1. On the
other hand, the proof of Theorem 2, which will be given in Section 2, works for
all p € (0,2]. It is a natural question whether the modulus ¢,, can be improved by
use an equivalent quasi-norm. The following theorem gives a partial answer to this
queston.

. p
]l + e llyll | dt

THEOREM 3. Let the space LP, 0 < p < 1, be infinite-dimensional. If a
p-normed space X is isomorphic to LP, then 0% () < Fp(e) for every e > 0.

As an immediate consequence of Theorem 3 and the inequality Fj(e) <
F,(e), p < ¢, € > 0, we have the following well known fact.

COROLLARY. If an infinite-dimensional LY space is isomorphic to LP, 0 <
p, ¢ <1, then p=q.

In Section 3 we give some more applications of Theorem 3.

2. Proofs of the theorems. The proof of Theorem 2 is based on the
following lemma.

LEMMA 1. Let 0 < p < 1. Then the function @, given by
27 )
p(u,v) = / | ul/P 4 ol /Peit P dt,
0

is convex on the set {(u,v) :u >0, v > 0}.

Proof. Since ¢ is continuous and ¢(cu,cv) = cp(u,v) for all ¢ > 0, it is
enough to prove that the function ¢ (e) : = ¢(1,€) is convex on the interval [0, 00).
Suppose first that 0 < e < 1. Then

27
waz/'|a+é”wwﬂﬁm
0
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Hence, by Parseval’s formula applied to the function t — (1 4 '/Peit)P/? =

X (7)enlreim,
p(e) = 27 (1 + i <p7/L2>252"/P>.

From this it follows that ¢ is convex on [0,1] as a sum of convex functions. Now
we can prove that 1 is convex on (1,400). Indeed, if € > 1, we use the equality
() = ep(1/e) to obtain " (e) = e~31"(1/e) > 0. Finally, it is enough to prove
that 1 (¢) is differentiable for ¢ = 1.

Let

27
f(e) = (eP) = / (14 &2 + 2ecos t)P/2dt, &> 0.
0
By Leibniz’s rule,
27 /
fl(e) = p/ (e +cos t)(1 + & + 2ecos t)P/* " dt
0
if € # 1. Since (£ + cos t)? < (e + cos t)2 +sin®t = 1 + &2 + 2z cos t we have
| e+cos t| (1424 2ecos t)P/271 < [(e + cos )% +sin? t]P71/2 < (sin? £)(P~1)/2
=|sin t P71,

Hence, by the Lebesgue dominated couvergence theorem, lini f(e) exist and is
E—r

finite. This completes the proof.

Proof of Theorem 2. Let x,y € LP, 0 < p < 1. Then the support of
| z | + |y | is of o-finite measure. So we can apply Fubini’s theorem to get

27 27
/ e + ey|Pdt = / dm / @+ ety |P dt = / oll 17, ] y [Pldm,
0 S 0 S

where we have used the equality

2T ) 2T
0 0

Hence, by Jensen’s inaquality and Lemma 1,

27
[ e+ etyipa ao[ [repan, [ 1y dm}
0 S S
27
—olllel, llyll7] = /

Remark. In the case of L' a short proof of Theorem 2 can be given in the
following way. Let z,y € L*. Then

27 ) 2
/ |z + et |dt :/
0 0
27
-/

. p
2|+ |y | dt.

. p
il + “lyll| e

o] +e |y | | dt >

27
[ 1+t 1y pam | = [
S 0

]l + €™ [lyll | dt.
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Proof of Theorem 1. The inequality (2) follows easily from Theorem 2. To
prove the rest suppose that LP is infinite-dimensional. Then, by Proposition I. 5
of [3], LP contains an isometric copy of the sequence space. Thus the assertion
reduces to the case [P.

Let {ex}&° be the standard basis of IP. For a positive integer n let m =
2" e >0 and

m=1 m=1
z=m /P Z er, Y= em /P Z e2kmi/me,
k=0 k=0
Since ||z]| = 1, ||ly|| = €, we have
[14d,(e)]" < gl‘gﬁillw + Ayl

where we have used the fact that the function A — ||z + Ay||P is supharmonic. On
the other hand, one can choose t,, € [0,27/m] so that

m—1
ma. AyllP = -1 1 ity ,2kTi/m |p )
w:>§||m+ yllP =m™ )" |1+eeime |
k=0
Hence
m—1
1+5,E@F <m™ 3 | 14ecitmk|r,
k=0

where 2km/m <ty < 2(k+1)m/m. Now the resuly follows from the fact that the
last sum tends to

2
(27)~1 / |1+ zeit P dt.
0

For the proof of Theorem 3 we need the following propositio. It is an extension
of the corresponding result for the space [ [4, Proposition 2. e. 3].

PROPOSITION 1. Let X be a p-normed space which is isomorphic to I, 0 <
p < 1. Then, for every c > 1, there exists a linear operator T' : [, = X such that
Azl < IT2) < cllz] for all z € 7.

Proof. The proof is the same as that of Proposition 3 e. 3 of [4]. Let S be
an isomorphism of {? onto X and assume, without loss of generality that «||Sz|| <
llz|| < [|Sz||, for some @ > 0 and all z € IP. Let ¢ > 1 and let {P,}52, be the
projections induced by the unit vector basis {e,} of I?:

n o0
P,z = E ajej, T = g anen € 1P,
j=1 n=1

For every n put A = sup{||z|| : ||Sz|| = 1, P,z = 0}. Then A, | A for some
A, @ < X< 1. Let N be such that Ay < A\y/c. By the definition of {\,} there
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are vectors {yx}52, such that, for all k, ||Syx| =1, Pnyr = 0, ||yx|| > A/+/c and
supp(ym)Nsupp(yx) = @ for m # k. For every choice of scalars {a;}72, we have

(S =0

k=1

and hence, by the definition of Ay,

00 00 > 1/p
s an | 220t S awan | =3 (3 1w el
k=1 k=1 k=1
o 1/p 0 1/p
ZAN101/2)\<Z | ay |p> >ct <Z | ay |”> .

k=1 k=1
On the other hand, since X is a p-normed space, we have
o0 p o0 o0
18> awwe|” <D taw P USwAP =3 a7
k=1 k=1 k=1

The desired operator is defined by Te, = Syi, k =1,2,... .

Proof of Theorem 3. Let ¢ > 1 and let X be an infinite-dimensional p-normed
space isomorphic to LP. Since X contains an isomorphic copy of {?, there is a linear
operator T : [P — X such that ¢ ||z|| < ||Tz|| < c||z| for all z € IP. For a fixed
e > 0 there are z,y € [? such that ||z]| = 1, ||y|| > c*c and

sup [l + Myl < e[l + F(c2e)).

A<t
Let 2’ = Tz/||Tz||, y' = Ty/||Tx||. Then ||z'|| =1 and ||y'|| > €, because ||Tz|| <
¢, [|Tyll > ¢ t|ly|| > ce. Hence, by the definition of §%,

14 0% (e) < sup [lz" + Ayl
[A[<1

On the other hand, ||z’ + Ay'|| < é?||z + Ay|| < ¢*[1 + F,(c%¢)]. This implies
1+0%(e) < [L+ Fy(c®e)]-
Since ¢ > 1 was arbitrary, we get 6% (¢) < Fp(e).

3. Uniform c-convexity in IP. In this section we given an extension of
Theorem 1 to subspaces of IP.

THEOREM 4. Let X be an infinite-dimensional subspaces of [P, 0 < p < 1.
Then 6% (e) = 05 (e for all € > o.

In the case p = 1 this result follows directly from Theorem 3 and the fact
that for every closed infinite-dimensional subspace X of [P, 1 < p < oo, there is an
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isomorpism of [” into X [4 Propositional 2. a. 2]. To prove Theorem 4 for p < 1 we
use a similar but somewhat more general approach .

PROPOSITION 2. Let X be a closed infinite-dimensional subspace of [P, 0 <
p < oo. Then, for every ¢ > 1, there is a linear operator T : I[P — X such that
cHlzl| < ||| < cllz|| for all x € 1P

Proof.. We proceed in the same way as in [4, Propositions 1. a. 11 and 1.
a.9]. Let ¢ > I. For any b > 0 we find two sequences, {z,,}22, and {y,}>>,, such
that: 1. z, € X, 2.||zu|| = lynll = 1, 3.]|n — ynl| < b/27, and 4. supp(y.,)N supp
(yn) = @ for m # n. From the last condition it follows that Y: = [y,]5%,, the
closed linear span of {y, }, isometrically isomorphic to [P. Thus it is enough to find
an operator S:Y — X such that c¢=t||y|| < [|Sy|| < cllyl], y € Y.

Let ¢ = min(p,1) and choose b so that (1 — 1/29)"1 = 1 —1/¢?. For
Y= " oanyn let Sy =>° a,z, and Uy =y — Sy. Then

o0 o0
Uy <D T an | lzn = yall” < Myl llza = yall” < 671 = 1729 ly|l%,

n=0 n=0

where we used the condition 3. Hence
1Syll” = lly = Uyll? < llyll* + [[Uy]|7 < lyl|“.

On the other hand, since y = Y>> U™Sy, we have

oo
Iyl < ISyll” D U™ < et]|Sy||”.

n=0
This completes the proof.

Using Proposition 2 we can prove that Theorem 4 holds for every p > 0. If
X is closed, this can be done in the same way as in the proof of Theorem 3. If X
is not closed, one can not closed, one can use the equality §% = 45, where Y is the
closure of X. We note that, if p > 2, the modulus of c-convexity of [P is equal to
(1 +¢P)!/P — 1. This follows from Clarkson’s inequality [2]:

lz +yll” + llz —yll” 2 2(|[I” + lylI), =,y € L¥, p>2.

4. Remarks. One of simple ways to prove that LP(m) is uniformly c-convex
is to use the inequality

2m
(3) (27T)71/ |utve |Pdt> (|ul’ +p v * /2)P%, 0<p<?,
0

valid for all complex numbers u,v. Indeed, if 0 < p < 2, the function N(u,v) : =
(| u > 4+p | v [>/P /2)P/? is a norm and, consequently,

/S N(|z PP, |y|P>dm2N( /S |z P dm, /S P dm> = (12l + pllyl2/2)?",
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where z,y € LP(m). Hence, by (3),

2m
(27T)’1/0 le + ye™|IPdt > (|l«]|* + plly||*/2)"/>.

This gives the estimate d,(g) > (1 + pe?/2)!/? — 1.

)
To prove the inequality (3) we may assume that u = 1. Then, if | v |[< 1, by
Parseval’s formula,

2m
f(v)::(27r)’1/ |1+ve Pdt>1+p? [v|> /4> 1 +p]|ov|? /272
0

If | v |> 1, we have
F)=[v P fLfo) 2w [P (L+p/2|v )P > L +p ol /2P

After completing this paper the author has learned of a recent paper of Davis,
Garling and Tomczak-Jaegermann [9]. For a quasi-normed space X ( with some
additional propeties) they define the moduli H;(, 0 <qg<o0,and [, ,(X), 0<
q < 00, 2 <71 <00, in the following way:

1 [2r ' 1/q
veae) =int{ (5 [lle+etylpar) el = 1wl = e} >0
0

I, (X) is the largest non-negative A such that

1 27 . 1/q
(E/O ||ff+€”y||th> > (ll=l” + Al

for all z,y € X.

In [9] the following problem is raised (Problem 4): Is it true that I, »(C) = ¢/2
for ¢ < 2, where C' is the complex plane? The preceding remarks show that the
answer is yes. Moreover, we have the following results.

THEOREM 5. Let X be an infinite-dimensional LP-space or an infinite-
dimensional subspace of P, 0 < p < 2. Then: 1. HqX(g) = F,(e) if ¢ > p,
and 2. HX (£) = Fy(e) if 0 < ¢ < p.

The first equality follows from Theorems 1, 2 and 4 because H, ;( increases
with ¢ and HX = §%. To prove the second equality one can use the inequality

21 ) 27 ) q
/ e + etylledt > / el + e Jull, | "t
0 0

(¢ < p < 2), which follows from Theorem 2 and the fact that every finite-
dimensional LP-space is isometric to a subspace of L?(u), for some measure p [10,
Lemma 21. 1. 3.].

Note that if ¢ < 2 then Theorem 5 holds for every (non-trivial) LP-space.
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THEOREM 6. Under the hypothesis of Theorem 5 we have I »(X) = p/2 for

q>p, and I, >(X) = q/2 for ¢ <p.

(1]

= =

[10]
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