UNIFORM c-CONVEXITY OF $\mathbf{L}^{p}, \mathbf{0}<\mathbf{p} \leq \mathbf{1}$

Miroslav Pavlović

Abstract

We extend a result of Globevnik by proving that L^{p} spaces with $0<p \leq 1$ are uniformly c-convex. We also give the precise values for the moduli of c-convexity of L^{p}. $\overline{\mathrm{A}}$ short proof of Globenik's result is included.

1. Introduction. A result of Thorp and Whitley [8] states that L^{1}-spaces are strictly c-convex, although the unit sphere of $L^{1}(0,1)$ does not possess exstreme points. This results was strenghtened by Globevnik [1], who proved that L^{1}-spaces are uniformly c-convex. Further examples of uniformly c-convex normed spaces are given in [6]. However, it seems that the case of quasi-normed spaces has not been discussed yet. In this paper we present some results in this direction. Theorems 1, 2,3 were proved by the author in [5].

Definition. A complex quasi-normed space X, i. e. a complex linear space with a quasi-norm $\|\cdot\|$, is said to be uniformly c-convex if there exists a real function δ on $[0,+\infty)$ such that $\delta(\varepsilon)>0$ whenever $\varepsilon>0$, and

$$
\begin{equation*}
\delta(\varepsilon) \leq \sup \{\|x+\lambda y\|:|\lambda| \leq 1\}-1 \tag{1}
\end{equation*}
$$

for all x, y with $\|x\|=1,\|y\| \geq \varepsilon$. The supremum of all δ, satisfying (1), is denoted by δ_{X}^{c} and is called the modulus of c-convexity of X.

We recall that a quasi-norm $\|\cdot\|$ on a linear space X has the following properties: $1 .\|x\| \geq 0,2 . x=0$ if $\|x\|=0,3 .\|\lambda x\|=|\lambda|\|x\|$ for all scalars $\lambda, 4$. there exists a $K \geq 1$ such that $\|x+y\| \leq K(\|x\|+\|y\|)$ for all $x, y \in X$. If the quasi-norm is p-subadditive for some $p, 0<p \leq 1$, i. e. if $\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}$, then X is called a p-normed space.

We consider the complex Lebesgue space $L^{p}=L^{p}(m), 0<p \leq 1$, where m is a positive measure on a σ-algebra of subset of a set S. The quasi-norm on L^{p} is given by

$$
\|x\|=\|x\|_{p}:=\operatorname{Bigl}\left\{\int_{S}|x|^{p} d m\right\}^{1 / q}
$$

The modulus of c-convexity of L^{p} will be denoted by δ_{p}. Our main results is the following theorem.

Theorem 1. The space $L^{p}, 0<p \leq 1$ is uniformly c-convex. Moreover,

$$
\begin{equation*}
\delta_{p}(\varepsilon) \geq F_{p}(\varepsilon):=-1+\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+\varepsilon e^{i t}\right|^{p} d t\right\}^{1 / p}, \quad \varepsilon \geq 0 \tag{2}
\end{equation*}
$$

with equality if L^{p} is infinite-dimensional.
The inequality (2) is a consequence of the following stronger result.
Theorem 2 If $x, y \in L^{p}, 0<p \leq 1$, then

$$
\int_{0}^{2 \pi}\left\|x+e^{i t} y\right\|^{p} d t \geq \int_{0}^{2 \pi}\left|\|x\|+e^{i t}\|y\|\right|^{p} d t
$$

Note that the same inequality is valid for $p \in[1,2]$. A proof can be found in [7], but the arguments given there cannot be applied in the case $0<p<1$. On the other hand, the proof of Theorem 2, which will be given in Section 2, works for all $p \in(0,2]$. It is a natural question whether the modulus δ_{n} can be improved by use an equivalent quasi-norm. The following theorem gives a partial answer to this queston.

THEOREM 3. Let the space $L^{p}, 0<p \leq 1$, be infinite-dimensional. If a p-normed space X is isomorphic to L^{p}, then $\delta_{X}^{c}(\varepsilon) \leq F_{p}(\varepsilon)$ for every $\varepsilon \geq 0$.

As an immediate consequence of Theorem 3 and the inequality $F_{p}(\varepsilon)<$ $F_{q}(\varepsilon), p<q, \varepsilon>0$, we have the following well known fact.

Corollary. If an infinite-dimensional L^{q} space is isomorphic to $L^{p}, 0<$ $p, q<1$, then $p=q$.

In Section 3 we give some more applications of Theorem 3.
2. Proofs of the theorems. The proof of Theorem 2 is based on the following lemma.

Lemma 1. Let $0<p \leq 1$. Then the function φ, given by

$$
\varphi(u, v)=\int_{0}^{2 \pi}\left|u^{1 / p}+v^{1 / p} e^{i t}\right|^{p} d t
$$

is convex on the set $\{(u, v): u \geq 0, v \geq 0\}$.
Proof. Since φ is continuous and $\varphi(c u, c v)=c \varphi(u, v)$ for all $c>0$, it is enough to prove that the function $\psi(\varepsilon):=\varphi(1, \varepsilon)$ is convex on the interval $[0, \infty)$. Suppose first that $0 \leq \varepsilon \leq 1$. Then

$$
\psi(\varepsilon)=\int_{0}^{2 \pi}\left|\left(1+\varepsilon^{1 / p} e^{i t}\right)^{p / 2}\right|^{2} d t
$$

Hence, by Parseval's formula applied to the function $t \mapsto\left(1+\varepsilon^{1 / p} e^{i t}\right)^{p / 2}=$ $\sum\binom{p / 2}{n} \varepsilon^{n / p} e^{i n t}$,

$$
\psi(\varepsilon)=2 \pi\left(1+\sum_{n=1}^{\infty}\binom{p / 2}{n}^{2} \varepsilon^{2 n / p}\right)
$$

From this it follows that ψ is convex on $[0,1]$ as a sum of convex functions. Now we can prove that ψ is convex on $(1,+\infty)$. Indeed, if $\varepsilon>1$, we use the equality $\psi(\varepsilon)=\varepsilon \psi(1 / \varepsilon)$ to obtain $\psi^{\prime \prime}(\varepsilon)=\varepsilon^{-3} \psi^{\prime \prime}(1 / \varepsilon)>0$. Finally, it is enough to prove that $\psi(\varepsilon)$ is differentiable for $\varepsilon=1$.

Let

$$
f(\varepsilon)=\psi\left(\varepsilon^{p}\right)=\int_{0}^{2 \pi}\left(1+\varepsilon^{2}+2 \varepsilon \cos t\right)^{p / 2} d t, \quad \varepsilon>0
$$

By Leibniz's rule,

$$
f^{\prime}(\varepsilon)=p \int_{0}^{2 \pi}(\varepsilon+\cos t)\left(1+\varepsilon^{2}+2 \varepsilon \cos t\right)^{p / 2-1} d t
$$

if $\varepsilon \neq 1$. Since $(\varepsilon+\cos t)^{2} \leq(\varepsilon+\cos t)^{2}+\sin ^{2} t=1+\varepsilon^{2}+2 \varepsilon \cos t$ we have

$$
\begin{aligned}
|\varepsilon+\cos t|\left(1+\varepsilon^{2}+2 \varepsilon \cos t\right)^{p / 2-1} & \leq\left[(\varepsilon+\cos t)^{2}+\sin ^{2} t\right]^{(p-1) / 2} \leq\left(\sin ^{2} t\right)^{(p-1) / 2} \\
& =|\sin t|^{p-1}
\end{aligned}
$$

Hence, by the Lebesgue dominated couvergence theorem, $\lim _{\varepsilon \rightarrow 1} f(\varepsilon)$ exist and is finite. This completes the proof.

Proof of Theorem 2. Let $x, y \in L^{p}, 0<p \leq 1$. Then the support of $|x|+|y|$ is of σ-finite measure. So we can apply Fubini's theorem to get

$$
\int_{0}^{2 \pi}\left\|x+e^{i t} y\right\|^{p} d t=\int_{S} d m \int_{0}^{2 \pi}\left|x+e^{i t} y\right|^{p} d t=\int_{S} \varphi\left[|x|^{p},|y|^{p}\right] d m
$$

where we have used the equality

$$
\int_{0}^{2 \pi}\left|x+e^{i t} y\right|^{p} d t=\int_{0}^{2 \pi}| | x\left|+e^{i t}\right| y| |^{p} d t
$$

Hence, by Jensen's inaquality and Lemma 1,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left\|x+e^{i t} y\right\|^{p} d t & \geq \varphi\left[\int_{S}|x|^{p} d m, \int_{S}|y|^{p} d m\right] \\
& =\varphi\left[\|x\|^{p},\|y\|^{p}\right]=\int_{0}^{2 \pi} \mid\|x\|+e^{i t}\|y\|^{p} d t
\end{aligned}
$$

Remark. In the case of L^{1} a short proof of Theorem 2 can be given in the following way. Let $x, y \in L^{1}$. Then

$$
\begin{aligned}
\int_{0}^{2 \pi}\left\|x+e^{i t}\right\| d t & =\int_{0}^{2 \pi}\left\||x|+e^{i t}|y|\right\| d t \geq \\
& =\int_{0}^{2 \pi}\left|\int_{S}\left(|x|+e^{i t}|y|\right) d m\right| d t=\int_{0}^{2 \pi}\left|\|x\|+e^{i t}\|y\|\right| d t
\end{aligned}
$$

Proof of Theorem 1. The inequality (2) follows easily from Theorem 2. To prove the rest suppose that L^{p} is infinite-dimensional. Then, by Proposition I. 5 of [3], L^{p} contains an isometric copy of the sequence space. Thus the assertion reduces to the case l^{p}.

Let $\left\{e_{k}\right\}_{0}^{\infty}$ be the standard basis of l^{p}. For a positive integer n let $m=$ $2^{n}, \varepsilon>0$ and

$$
x=m^{-1 / p} \sum_{k=0}^{m=1} e_{k}, \quad y=\varepsilon m^{-1 / p} \sum_{k=0}^{m=1} e^{2 k \pi i / m} e_{k} .
$$

Since $\|x\|=1,\|y\|=\varepsilon$, we have

$$
\left[1+\delta_{p}(\varepsilon)\right]^{p} \leq \max _{|\lambda|=1}\|x+\lambda y\|^{p}
$$

where we have used the fact that the function $\lambda \mapsto\|x+\lambda y\|^{p}$ is supharmonic. On the other hand, one can choose $t_{m} \in[0,2 \pi / m]$ so that

$$
\max _{|\lambda|=1}\|x+\lambda y\|^{p}=m^{-1} \sum_{k=0}^{m-1}\left|1+\varepsilon e^{i t_{m}} e^{2 k \pi i / m}\right|^{p}
$$

Hence

$$
\left[1+\delta_{p}(\varepsilon)\right]^{p} \leq m^{-1} \sum_{k=0}^{m-1}\left|1+\varepsilon e^{i t m, k}\right|^{p}
$$

where $2 k \pi / m \leq t_{m, k} \leq 2(k+1) \pi / m$. Now the resuly follows from the fact that the last sum tends to

$$
(2 \pi)^{-1} \int_{0}^{2 \pi}\left|1+\varepsilon e^{i t}\right|^{p} d t
$$

For the proof of Theorem 3 we need the following propositio. It is an extension of the corresponding result for the space l^{1} [4, Proposition 2. e. 3].

Proposition 1. Let X be a p-normed space which is isomorphic to $l^{p}, 0<$ $p \leq 1$. Then, for every $c>1$, there exists a linear operator $T: l_{p} \rightarrow X$ such that $c^{-1}\|x\| \leq\|T x\| \leq c\|x\|$ for all $x \in l^{p}$.

Proof. The proof is the same as that of Proposition 3 e. 3 of [4]. Let S be an isomorphism of l^{p} onto X and assume, without loss of generality that $\alpha\|S x\| \leq$ $\|x\| \leq\|S x\|$, for some $\alpha>0$ and all $x \in l^{p}$. Let $c>1$ and let $\left\{P_{n}\right\}_{n=1}^{\infty}$ be the projections induced by the unit vector basis $\left\{e_{n}\right\}$ of l^{p} :

$$
P_{n} x=\sum_{j=1}^{n} a_{j} e_{j}, \quad x=\sum_{n=1}^{\infty} a_{n} e_{n} \in l^{p}
$$

For every n put $\lambda=\sup \left\{\|x\|:\|S x\|=1, P_{n} x=0\right\}$. Then $\lambda_{n} \downarrow \lambda$ for some $\lambda, \alpha \leq \lambda \leq 1$. Let N be such that $\lambda_{N}<\lambda \sqrt{c}$. By the definition of $\left\{\lambda_{n}\right\}$ there
are vectors $\left\{y_{k}\right\}_{k=1}^{\infty}$ such that, for all $k,\left\|S y_{k}\right\|=1, P_{N} y_{k}=0,\left\|y_{k}\right\|>\lambda / \sqrt{c}$ and $\operatorname{supp}\left(y_{m}\right) \cap \operatorname{supp}\left(y_{k}\right)=\varnothing$ for $m \neq k$. For every choice of scalars $\left\{a_{k}\right\}_{k=1}^{\infty}$ we have

$$
P_{N}\left(\sum_{k=1}^{\infty} a_{k} y_{k}\right)=0
$$

and hence, by the definition of λ_{N},

$$
\begin{aligned}
\left\|S \sum_{k=1}^{\infty} a_{k} y_{k}\right\| & \geq \lambda_{N}^{-1}\left\|\sum_{k=1}^{\infty} a_{k} y_{k}\right\|=\lambda_{N}^{-1}\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}\left\|y_{k}\right\|^{p}\right)^{1 / p} \\
& \geq \lambda_{N}^{-1} c^{-1 / 2} \lambda\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}\right)^{1 / p} \geq c^{-1}\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}\right)^{1 / p}
\end{aligned}
$$

On the other hand, since X is a p-normed space, we have

$$
\left\|S \sum_{k=1}^{\infty} a_{k} y_{k}\right\|^{p} \leq \sum_{k=1}^{\infty}\left|a_{k}\right|^{p}\left\|S y_{k}\right\|^{p}=\sum_{k=1}^{\infty}\left|a_{k}\right|^{p} .
$$

The desired operator is defined by $T e_{k}=S y_{k}, k=1,2, \ldots$.
Proof of Theorem 3. Let $c>1$ and let X be an infinite-dimensional p-normed space isomorphic to L^{p}. Since X contains an isomorphic copy of l^{p}, there is a linear operator $T: l^{p} \rightarrow X$ such that $c^{-1}\|x\| \leq\|T x\| \leq c\|x\|$ for all $x \in l^{p}$. For a fixed $\varepsilon>0$ there are $x, y \in l^{p}$ such that $\|x\|=1,\|y\| \geq c^{2} \varepsilon$ and

$$
\sup _{|\lambda| \leq 1}\|x+\lambda y\| \leq c\left[1+F_{p}\left(c^{2} \varepsilon\right)\right]
$$

Let $x^{\prime}=T x /\|T x\|, y^{\prime}=T y /\|T x\|$. Then $\left\|x^{\prime}\right\|=1$ and $\left\|y^{\prime}\right\| \geq \varepsilon$, because $\|T x\| \leq$ $c,\|T y\| \geq c^{-1}\|y\| \geq c \varepsilon$. Hence, by the definition of δ_{X}^{c},

$$
1+\delta_{X}^{c}(\varepsilon) \leq \sup _{|\lambda| \leq 1}\left\|x^{\prime}+\lambda y^{\prime}\right\|
$$

On the other hand, $\left\|x^{\prime}+\lambda y^{\prime}\right\| \leq c^{2}\|x+\lambda y\| \leq c^{3}\left[1+F_{p}\left(c^{2} \varepsilon\right)\right]$. This implies

$$
1+\delta_{X}^{c}(\varepsilon) \leq c^{3}\left[1+F_{p}\left(c^{2} \varepsilon\right)\right]
$$

Since $c>1$ was arbitrary, we get $\delta_{X}^{c}(\varepsilon) \leq F_{p}(\varepsilon)$.
3. Uniform c-convexity in \mathbf{l}^{p}. In this section we given an extension of Theorem 1 to subspaces of l^{p}.

Theorem 4. Let X be an infinite-dimensional subspaces of $l^{p}, 0<p \leq 1$. Then $\delta_{X}^{c}(\varepsilon)=\delta_{t^{p}}^{c}(\varepsilon$ for all $\varepsilon>o$.

In the case $p=1$ this result follows directly from Theorem 3 and the fact that for every closed infinite-dimensional subspace X of $l^{p}, 1 \leq p<\infty$, there is an
isomorpism of l^{p} into X [4 Propositional 2. a. 2]. To prove Theorem 4 for $p<1$ we use a similar but somewhat more general approach .

Proposition 2. Let X be a closed infinite-dimensional subspace of $l^{p}, 0<$ $p<\infty$. Then, for every $c>1$, there is a linear operator $T: l^{p} \rightarrow X$ such that $c^{-1}\|x\| \leq\|T x\| \leq c\|x\|$ for all $x \in l^{p}$.

Proof.. We proceed in the same way as in [4, Propositions 1. a. 11 and 1. a.9]. Let $c>I$. For any $b>0$ we find two sequences, $\left\{x_{n}\right\}_{n=0}^{\infty}$ and $\left\{y_{n}\right\}_{n=0}^{\infty}$, such that: 1. $x_{n} \in X, 2 .\left\|x_{n}\right\|=\left\|y_{n}\right\|=1,3 .\left\|x_{n}-y_{n}\right\| \leq b / 2^{n}$, and 4. $\operatorname{supp}\left(y_{m}\right) \cap \operatorname{supp}$ $\left(y_{n}\right)=\varnothing$ for $m \neq n$. From the last condition it follows that Y: $=\left[y_{n}\right]_{n=0}^{\infty}$, the closed linear span of $\left\{y_{n}\right\}$, isometrically isomorphic to l^{p}. Thus it is enough to find an operator $\mathrm{S}: Y \rightarrow X$ such that $c^{-1}\|y\| \leq\|S y\| \leq c\|y\|, y \in Y$.

Let $q=\min (p, 1)$ and choose b so that $b^{q}\left(1-1 / 2^{q}\right)^{-1}=1-1 / c^{q}$. For $y=\sum_{n=0}^{\infty} a_{n} y_{n}$ let $S y=\sum_{n=0}^{\infty} a_{n} x_{n}$ and $U y=y-S y$. Then

$$
\|U y\|^{q} \leq \sum_{n=0}^{\infty}\left|a_{n}\right|^{q}\left\|x_{n}-y_{n}\right\|^{q} \leq\|y\|^{q} \sum_{n=0}^{\infty}\left\|x_{n}-y_{n}\right\|^{q} \leq b^{q}\left(1-1 / 2^{q}\right)^{-1}\|y\|^{q}
$$

where we used the condition 3. Hence

$$
\|S y\|^{q}=\|y-U y\|^{q} \leq\|y\|^{q}+\|U y\|^{q} \leq c^{q}\|y\|^{q} .
$$

On the other hand, since $y=\sum_{n=0}^{\infty} U^{n} S y$, we have

$$
\|y\|^{q} \leq\|S y\|^{q} \sum_{n=0}^{\infty}\|U\|^{n q} \leq c^{q}\|S y\|^{q}
$$

This completes the proof.
Using Proposition 2 we can prove that Theorem 4 holds for every $p>0$. If X is closed, this can be done in the same way as in the proof of Theorem 3. If X is not closed, one can not closed, one can use the equality $\delta_{X}^{c}=\delta_{Y}^{c}$, where Y is the closure of X. We note that, if $p>2$, the modulus of c-convexity of l^{p} is equal to $\left(1+\varepsilon^{p}\right)^{1 / p}-1$. This follows from Clarkson's inequality [2]:

$$
\|x+y\|^{p}+\|x-y\|^{p} \geq 2\left(\|x\|^{p}+\|y\|^{p}\right), x, y \in L^{p}, p>2 .
$$

4. Remarks. One of simple ways to prove that $L^{p}(m)$ is uniformly c-convex is to use the inequality

$$
\begin{equation*}
(2 \pi)^{-1} \int_{0}^{2 \pi}\left|u+v e^{i t}\right|^{p} d t \geq\left(|u|^{2}+p|v|^{2} / 2\right)^{p / 2}, \quad 0<p<2 \tag{3}
\end{equation*}
$$

valid for all complex numbers u, v. Indeed, if $0<p<2$, the function $N(u, v):=$ $\left(|u|^{2 / p}+p|v|^{2 / p} / 2\right)^{p / 2}$ is a norm and, consequently,

$$
\int_{S} N\left(|x|^{p},|y|^{p}\right) d m \geq N\left(\int_{S}|x|^{p} d m, \int_{S}|y|^{p} d m\right)=\left(\|x\|^{2}+p\|y\|^{2} / 2\right)^{p / 2}
$$

where $x, y \in L^{p}(m)$. Hence, by (3),

$$
(2 \pi)^{-1} \int_{0}^{2 \pi}\left\|x+y e^{i t}\right\|^{p} d t \geq\left(\|x\|^{2}+p\|y\|^{2} / 2\right)^{p / 2}
$$

This gives the estimate $\delta_{p}(\varepsilon) \geq\left(1+p \varepsilon^{2} / 2\right)^{1 / 2}-1$.
To prove the inequality (3) we may assume that $u=1$. Then, if $|v| \leq 1$, by Parseval's formula,

$$
f(v):=(2 \pi)^{-1} \int_{0}^{2 \pi}\left|1+v e^{i t}\right|^{p} d t \geq 1+p^{2}|v|^{2} / 4 \geq\left(1+p|v|^{2} / 2\right)^{p / 2}
$$

If $|v|>1$, we have

$$
f(v)=|v|^{p} f(1 / v) \geq|v|^{p}\left(1+p /\left(2|v|^{2}\right)\right)^{p / 2} \geq\left(1+p|v|^{2} / 2\right)^{p / 2}
$$

After completing this paper the author has learned of a recent paper of Davis, Garling and Tomczak-Jaegermann [9]. For a quasi-normed space X (with some additional propeties) they define the moduli $H_{q}^{X}, 0<q \leq \infty$, and $I_{q, r}(X), 0<$ $q \leq \infty, 2 \leq r<\infty$, in the following way:

$$
1+H_{q}^{X}(\varepsilon)=\inf \left\{\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x+e^{i t} y\right\|^{q} d t\right)^{1 / q}:\|x\|=1,\|y\|=\varepsilon\right\}, \quad \varepsilon \geq 0
$$

$I_{q, r}(X)$ is the largest non-negative λ such that

$$
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x+e^{i t} y\right\|^{q} d t\right)^{1 / q} \geq\left(\|x\|^{r}+\lambda\|y\|^{r}\right)^{1 / r}
$$

for all $x, y \in X$.
In [9] the following problem is raised (Problem 4): Is it true that $I_{q, 2}(C)=q / 2$ for $q<2$, where C is the complex plane? The preceding remarks show that the answer is yes. Moreover, we have the following results.

Theorem 5. Let X be an infinite-dimensional L^{p}-space or an infinitedimensional subspace of $l^{p}, 0<p \leq 2$. Then: 1. $H_{q}^{X}(\varepsilon)=F_{p}(\varepsilon)$ if $q \geq p$, and 2. $H_{q}^{X}(\varepsilon)=F_{q}(\varepsilon)$ if $0<q \leq p$.

The first equality follows from Theorems 1,2 and 4 because H_{q}^{X} increases with q and $H_{\infty}^{X}=\delta_{X}^{c}$. To prove the second equality one can use the inequality

$$
\int_{0}^{2 \pi}\left\|x+e^{i t} y\right\|_{p}^{q} d t \geq \int_{0}^{2 \pi}\left|\|x\|_{p}+e^{i t}\right| y \|\left._{p}\right|^{q} d t
$$

$(q \leq p \leq 2)$, which follows from Theorem 2 and the fact that every finitedimensional $L^{p_{\text {-space }}}$ is isometric to a subspace of $L^{q}(\mu)$, for some measure $\mu[\mathbf{1 0}$, Lemma 21. 1. 3.].

Note that if $q \leq 2$ then Theorem 5 holds for every (non-trivial) L^{p}-space.

TheOrem 6. Under the hypothesis of Theorem 5 we have $I_{q, 2}(X)=p / 2$ for $q \geq p$, and $I_{q, 2}(X)=q / 2$ for $q \leq p$.

REFERENCES

[1] J. Globevnik, On compelex stict and uniform convexity, Proc. Amer. Math. Soc. 47 (1975), 176-178.
[2] O. Hanner, On the uniform convezityof ${ }^{p}$ and l^{p}, Arkiv Math. 3 (1956), 239-244.
[3] J. L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. Math. 104 (1976), 1-29.
[4] J. Lindenstrauss and L. Tzafriri, Classical Banch Spaces I. Sequence Spaces, SpringerVerlag, 1977.
[5] M. Pavlović, Geometry of Complex Banach Spaces, Thesis, Belgrade, 1983.
[6] M. Pavlović, Moduli of c-convexity of normed spaces I, II, Math. Vesnik 6 (1982), 139-151; 307-314 (Russian).
[7] M. Pavlović Some inequalities in L^{p} spaces, Math. Vesnik 6 (1982), 67- 73 (Russian).
[8] E. Thorp, R.Whitley, The strong maximum modulus theorem for analytic functions into Banach spaces, Proc. Amer. Math. Soc. 18 (1967), 640-646.
[9] W. J. Davis, D. J. H. Garling, N. Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces, J. Funct. Anal. 55 (1984), 110-150.
[10] A. Pietsch, Operator Ideals, North Holland, Amsterdam, 1980.

Odsek za matematiku
(Received 2512 1985)
Prirodno-matematički fakultet
31000 Kragujevac
Jugoslavija

