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ON A SYSTEM OF FUNCTIONAL EQUATIONS

Jovan D. Ke�cki�c

Dedicated to Professor D. S. Mitrinovi�c on the occasion of his eightieth birth-
day.

Abstract. We consider the system of functional equations (3), written in the matrix form
(4). The general solution of this system is obtained provided that there exist �; � 2 C such that
�A+�B is nonsingular. The solutions are expressed by means of generalized inverses of matrices.

1. Let S be a nonempty set, and suppose that g : S ! S is such that gnx = x
for all x 2 S and some �xed positive integer n. The functional equation

(1) af(gx) = bf(x);

where a; b are given complex numbers and the unknown function f maps S into
the set of all complex numbers C, is well known. It is, of course, a special case
of the linear cyclic equation (see, for example, [1]), but it was also considered
independently, e. g. by Mitrinovi�c [2, 3]. If an 6= nn, the general solution of (1) is
trivial, f(x) � 0; if an = bn, its general solution is given by

(2) f(x) =

n�1X

k=0

akbn�k�1h(gkx) (h : S ! C arbitrary):

In this note we shall be concerned with the system of functional equations

(3)
mX

j=1

aijfj(gx) =
mX

j=1

bijfj(x) (i = 1; 2; . . . ;m);

where g is the same as before, aij 2 C; bij 2 C(i; j = 1; . . . ;m) are given, and the
unknown functions f1; . . . ; fm map S into C. The matrix form of (3), namely

(4) AF (gx) = BF (x)
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where A =k aij km�m; B =k bij km�m; F (x) =k f1(x) � � � fm(x) k
T , is completely

analogous to (1), but as we shall see its general solution cannot be obtained so
simply. In fact, we shall be needing some specijal generalized inverses of matrices.

Recall that for any complex matix M there exists an in�nity of matrices X
such that MXM = M . Any such matrix X is called a (1)-inverse of M and is
denoted by M (1). Again, for any square complex matix M there exists a unique
matrix X such that MX = XM;XMX = X;Ms+1X =Ms, where s is the index
of M , i. e. the smallest nonnegative integer such that rankMs = rank Ms+1. This
matrix X is called the Drazin inverse ofM and is denoted byMD. Many properties
of those two, and other generalized inverses, can be found for example in [4].

2. We shall �rst solve the equation (4) on the condition that one of the
coeÆcients A;B is the unit matrix.

Theorem 1. The general solution of the equation

(5) AF (gx) = F (x)

is given by

(6) F (x) =

n�1X

m=0

Ak(I � C(1)C)H(gkx):

where C = : An � I; H(x) =k h1(x) . . . hm(x) k
T , and h1; . . . ; hm are arbitrary

functions which map S into C.

Proof . From (6) we get

AF (gx) =

n�1X

k=0

Ak+1(I � C(1)C)H(gk+1x)

=An(I � C(1)C)H(x) +

n�1X

k=1

Ak(I � C(1)C)H(gkx):

But An(I � C(1)C) = (I + C)(I � C(1)C) = I � C(1)C, and so

AF (gx) =

n�1X

k=1

Ak(I � C(1)C)H(gkx) = F (x);

which means thay (6) is a solution of (5).

Conversely, suppose that F0(x) is a solution of (5), i.e. that AF0(gx) = F0(x).
But then AkF0(g

kx) = F0(x) for all nonnegative integers k; in particular for k =
n we get AnF0(x) = F0(x), i.e. CF0(x) = 0 implying CF0(g

kx) = 0 for k =
0; 1; . . . ; n� 1. Put H(x) = F0(x)=n into (6). We get

F (x) =
1

n

n�1X

k=1

Ak(I � C(1)C)F0(g
kx) =

1

n

n�1X

k=1

AkF0(g
kx) =

1

n

n�1X

k=1

F0(x) = F0(x):
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This means that the solution F0(x) can be obtained from (6), i.e. that (6) is
general solution of (5).

In a similar manner the following theorem is proved.

Theorem 2. The general solution of the equation

(7) F (gx) = BF (x)

is given by

F (x) =

n�1X

k=1

Bn�k�1(I �D(�1)D)H(gkx);

where D = : Bn � I and H(x) is the same as in Theorem 1.

Remark 1. Equatons of the form

AF (gpx) = F (gqx); F (gpx) = BF (gqx) (1 < p; q < n)

are easoly reduced to the forms (5) or (7).

Remark 2. There is some analogy between the general solution of the matrix
equation (5) and the general solution of the scalar equation (1) for the case b = 1.
Namely, if An� I is nonsingular, then C(1) = C�1, and so I �C(1)C = 0, implying
that F (x) � 0 is the only solution of (5). Again, if An� I = 0, then C = 0, and (6)
reduces to the form complately analogous to (2) with b = 1. Of course, the case
when An � I is nonzero, but singular, has no analogy in the scalar case.

3. We now turn to the general equation (4). If either one of the coeÆcients
A;B is nonsingular, then (4) can be reduced to one of the forms (5), (7); hence, the
only interesting case in when both A and B are singular. Using the known general
solution of (1) and Theorem 1 and 2, one is tempted to try

(9) F (x) =

n�1X

k=0

AkBn�k�1(I �E(1)E)H(gkx)

for a solution, where E = : An � Bn, and H(x) is the same as in Theorem 1.
Indeed, if we introduce a rather restricting supposition that AB = BA, then it
is easily verifed that (9) is a solution of (4), but unfortunately this solution need
not be general. More precisely, if E is nonsingular, then (9) does give the general
solution of (4), that is the trivial solution. If E is singular (zero or not) then (9)
need not be the general solution of (4), as shown by the following two examples.

Example 1. Let m = n = 2; A = 0; B =


1 1
1 1

. The equation (4) reduces

to f1(x) + f2(x) = 0, and clearly has nontrivial solutions. On the other hand,
(9) becomes F (x) = B(I � E(1)E)H(gx), with E = �B2, and so we may take
E(1) = �(1=4)I . But then it is easily veri�ed that B(I � E(1)E) = 0, and so (9)
gives only the trivial solution.
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Example 2. Let m = n = 2; A = B, where B is the same as in Example 1.
The equation (4) reduces to the equation f1(gx)+f2(gx) = f1(x)+f2(x), with the
general solution

(10) f1(x) = p(x); f2(x) = q(x) + q(gx)� p(x);

where p and q are arbitrary. On the other hand, E = A2�B2 = 0 and formula (9)
becomes F (x) = A(H(x) +H(gx)), i. e. f1(x) = f2(x) = '(x) + '(gx), where ' is
arbitrary, and this solution does not contain all the solutions (10).

Hence, the attempt to exploit the analogy with the corresponding scalar equa-
tion leads to two pretty weak conclusions: (i) If AB = BA and if An � Bn is
nonsingular, then the general solution of (4) is F (x) � 0; (ii) If AB = BA, then
(9) is a solution (not necessarily general) of (4).

4. Systems of diferential and di�erence equations of the form

(11) AF 0(x) = BF (x); AXn+1 = BXn

were successfully solved in [4] on the condition that �A�B is nonsingular for some
� 2 C. If such a � exists, the equatons (11) are called tractable, for reasons which
cannot be directly carried over to the equation (4).

We introduce now the same condition, i. e. we suppose that there exists a
� 2 C such that �A�B is nonsingular.

Multiply (4) by (�A�B)�1 to obtain

(12) PF (gx) = QF (x)

with

(13) P = (�A�B)�1A; Q = (�A �B)�1B:

From (13) we get �P�Q = I , implying that Q = �P�I , and that PQ = QP ,
so that (12) becomes

(14) PF (gx) = (�P � I)F (x):

Since A is, by hypothesis, singular, so is P , and hence there exist nonsingular
matrices S and R, and a nilpotent matrix N such that

(15) P = S


N O
O R

S
�1:

If we put F (x) = S k G(x)K(x) kT , the equation (14) can be rewritten as

N O
O R




G(gx)
K(gx)

 =

�N � I 0

0 �R � I




G(x)
K(x)

 ;

and it splits into

(16) NG(gx) = (�N � I)G(x);
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(17) RK(gx) = (�R � I)K(x):

Since N is nilpotent, �N � I is nonsingular and from (16) we get

G(x) =(�N � I)�1NG(gx) = (�N � I)�2N2G(g2x)

= � � � = (�N � I)�sNsG(gsx) = 0;

where s is the index of nilpotency of N .

On the other hand, R is nonsingular, and hence (17) is equivalent to

K(gx) =WK(x); W = R�1(�R � I):

This is an equation of the form (7) and its general solution is therefore

K(x) =
n�1X

k=0

Wn�k�1(I � Y (1)Y )Z(gkx); Y =Wn � I;

where Z(x) is arbitrary, of the same size as K(x).

Hence, the general solution of (12) is given by

(18) F (x) = S


0Pn�1

k=0 W
n�k�1(I � Y (1)Y )Z(gkx)

 :

The general solution (18) of (12) can be written in a neather form by using
the Drazin inverse of P . Namely, recall that if P is given by (15), then the Drazin
inverse PD of P is

PD = S


0 0
0 R�1

S
�1:

An alternative expression for the general solution of (12) is given by the following
theorem.

Theorem 3. Suppose that there exists a � 2 C such that �A � B is non-
singular. The general solution of the equation (4) is given by

(19) F (x) =
n�1X

k=0

(PDQ)
n�k�1PDP (I �M (1)M)H(gkx);

where P = (�A � B)�1A; Q = (�A � B)�1B; M = (PDQ)
n � PDP and H is the

same as in Theorem 1.

Proof . The general solution of (12) is (18), and the equatons (4) and (12) are
equivalent. We shall therefore only prove that expressions F (x) given by (18) and
(19) are the same.

First, we note that from

M =(PDQ)
n � PDP = S


0 0
0 R�1

S
�1S


(�N � I)n 0

0 (�R � I)n

S
�1

�S


0 0
0 R�1

S
�1S


N 0
0 R

S
�1 = S


0 0
0 Wn

S
�1

�S


0 0
0 I

S
�1 = S


0 0
0 Y

S
�1
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follows

M (1) = S


U T
T Y (1)

S
�1 (U; V; T arbitrary)

and so

PDP(I �M (1)M)=S


0 0
0 1

S
�1S


I �V Y
0 I � Y (1)Y

S
�1 = S


0 0
0 I � Y (1)Y

S
�1:

Hence,

S


0

Wn�k�1(I � Y (1)Y )Z(gkx)

 = S


0 0
0 Wn�k�1




0 0
0 I � Y (1)Y

S
�1H(gkx)

=S


0 0
0 R�1


n�k�1

S�1S


�N � I 0

0 �R � I


n�k�1 

0 0
0 I � Y (1)Y

S
�1H(gkx)

=Pn�k�1
D Qn�k�1PDP (I �M (1)M)H(gkx);

where H(x) = S


�(x)
Z(x)

 is arbitrary. This implies that the right hand sides of (18)

and (19) are equal.

Remark 3. Notice the analogy between (19) and the general solution of (7).
Namely, if P = I , then PD = I; M = Qn � I , and (19) formally becomes

F (x) =

n�1X

k=0

Qn�k�1(I �M (1)M)H(gkx):

Remark 4. Combining the results of Theorems 1, 2 and 3 we say may that
the general solution of the system (4) can be obtained provided that there exist
�; � 2 C such that �A + �B is nonsingular.

Remark 5. The case when there is no � 2 C such that �A�B is nonsingular
remains unsolved. It may happen, however, that the system (4) can then be solved
directly, since A and B become rather special. As an illustration, we consider the
case m = 2 in some detail. Let

A =


a b
c d

 ; B =


� �
 Æ

 :

If �A�B is singulat, i. e. if det(�A�B) = 0 for all � 2 C, we have (ad� bc)�2 +
(b+�c� aÆ��d)�+(�� ��) = 0 for all � 2 C. Since A and B are singular by
supposition, we have c = ka; d = kb;  = l�; Æ = l� for some k; l 2 C, and we are
left with

(k � l)(a� � �b) = 0:

If k 6= l, then for some m 2 C we have � = ma; � = mb, and the system (4)
becomes

'(gx) = m'(x); k'(hx) = lm'(x);
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with '(x) = af1(x) + bf2(x), with the obvious general solution '(x) � 0. Hence,
it is satis�ed by all functions f1; f2 such that af1(x) + bf2(x) = 0.

If k = l, the system (4) reduces to the single equation

af1(gx) + bf2(gx) = �f1(x) + �f2(x);

which is equivalent to (a��)'(x) + (b��) (x) = 0, where '(x) =
Pn�1

k=0 f1(g
kx);

 (x) =
Pn�1

k=0 f2(g
kx) and is easily handled, since it remains to solve at most two

linear cyclic equations.
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