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ON A RUSCHEWEYH TYPE GENERALIZATION OF THE PASCU CLASS

OF ANALYTIC FUNCTIONS

R. Parvatham and S. Radha

Abstract. New classes Ma(�;h); Ra(�; h) and Ia(�;h) of analytic functions are de�ned
and studied. results of this paper generalizee mainly results of Padmanabham and Manjini [5],
Padmanabhan and Parvatham [4] and Pascu [5].

Let E = fz 2 C : j z j< 1g be the open unit disc in C and H(E) be the class
of functions f(z) holomorphic in E. Let A = ff 2 H(E); f(0) = 0 = f 0(0) � 1g.
By f � g we denote the Hadamard product or convolution of f; g 2 H(E); that is if

f(z) =
1P
j=0

ajz
j and g(z) =

1P
j=0

bjz
j then (f � g)(z) =

1P
j=0

ajbjz
j .

Let g and G be two functions in H(E). Then g(z) is said to be subordinate
to G(z) (writen g(z) � G(z)) if G is univalent, g(0) = G(0) and g(E) � G(E).
Let ka(z) = z(1� z)�a, where a is any real number. In the sequal h 2 H(E) is a
convex univalent function in E with h(0) = 1 and Re h(z) > 0 in E.

In this paper we de�ne certain new classes of functions holomorphic in E with
Montel's normalizations and study these classes in detail. To establish results of
this paper connected with these new classes, we require the following two theorems.
Theorem A is due to Eenigenburg, Miller, Mocanu and Reade [2] and Theorem B
may be found in [4].

Theorem A. Let �;  2 C and h 2 H(E) be convex univalent in E with

h(0) = 1 and Re(�h(z) + ) > 0 in E, and let p(z) = 1 + p1z + � � � 2 H(E). Then

p(z) + zp0(z)
�p(z)+ � h(z) implies p(z) � h(z).

Theorem B. Let �;  2 C; k2H(E) be convex univalent in E with h(0) = 1
and Re(�h(z) + ) > 0 in E. Let q2H(E) with q(0) = 1 and q(z) � h(z) in E. If

p(z) = 1 + p1z + � � � 2 H(E) then p(z) + zp0(z)
�q(z)+ � h(z) implies p(z) � h(z).
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First let us de�ne a new class Ma(�;h) of holomorphic functions in E and
study its properties.

De�nition 1. Let Ma(�;h) denote the class of functions f with

(ka � f)
0(z)(ka � f)(z) 6= 0 in E{f0g satisfying

�z(z(ka � f)
0(z))0 + (1� �)z(ka � f)

0(z)

�z(ka � f)0(z) + (1� �)(ka � f)(z)
� h(z) for � � 0:

Note 1. When � = 0 this class coincides with the class Sa(h) studied in [4]
and when � = 1 this is the same class as Ka(h) in [3]. Also M1(�; (1� z)(1+ z)�1)
is the class introduced by Pascu and Podaru [6].

Theorem 1. For 0 < � � 1 we have Ma(�;h) �Ma(0;h) = Sa(h).

Proof . Let f 2Ma(�;h) and p(z) = z(ka�f)
0(z)

(ka�f)(z)
. Then

�z(z(ka � f)
0(z))0 + (1� �)z(ka � f)

0(z)

= �z(ka � f)(z)p
0(z) + �zp(z)(ka � f)

0(z) + (1� �)p(z)(ka � f)(z)

= (�zp0(z) + p(z)(ap(z) + (1� �)))(ka � f)(z);

az(ka � f)
0(z) + (1� �)(ka � f)(z) = (ap(z) + (1� �))(ka � f)(z)

Hence

�z(z(ka � f)
0(z))0 + (1� �)z(ka � f)

0(z)

�z(ka � f)0(z) + (1� �)(ka � f)(z)
=
�zp0(z) + p(z)(�p(z) + (1� �))

�p(z) + (1� �)

=
zp0(z)

p(z) + (��1 � 1)
+ p(z) � h(z)

because f 2 Ma(�;h). Since 0 < � � 1, an application of Theorem A gives
p(z) � h(z) in E which implies f 2 Sa(h).

Theorem 2. Let f 2Ma(�;h). Then for 0 < � � 1 we have

F (z) = ��1z1�1=�
Z z

0

t1=��2f(t)dt 2Ma(�;h):

Proof . Di�erentiating F (z) = ��1z1�1=�
R z
0
t1=��2f(t)dt with respect to z

and simplifying we get �zF 0(z) + (1 � �)F (z) = f(z). This, by convolution with
ka(z), gives

�z(ka � F )
0(z) + (1� �)(ka � F )(z) = (ka � f)(z)

where we used the fact that ka � zF
0(z) = z(ka � F )

0(z). Taking logarithmic deriv-
ative with respect to z and multiplying by z we get

�z(z(ka � F )
0(z))0 + (1� �)z(ka � F )

0(z)

�z(ka � F )0(z) + (1� �)(ka � F )(z)
=
z(ka � f)

0(z)

(ka � f)(z)
:
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The member on the right hand side is subordinate to h(z) since f 2 Ma(�;h) �
Sa(h) by the previous theorem. Also F (z) = (z) � f(z) where �(z) =
1P
n=1

1=�
1=�+n�1z

n. Since (ka � f)(z) 6= 0; (ka � f)
0(z) 6= 0 in E � f0g and � > 0

we have (ka � F )(z) = a(z)(ka � f)(z) 6= 0, hence (kaF )
0(z) 6= 0 in E � f0g. Thus

F 2Ma(�;h).

We now obtain an estimate for the modulii of the coeÆcients, j an j where

f(z) = z +
1P
2
anz

n 2Ma(�;h)

Theorem 3. Let f(z) = z +
1P
i=2

aiz
i be in Ma(�;h) Then

(1) j ai j�
j h1 j (1+ j h1 j) � � � (i� 2+ j h1 j)

((i� 1)�+ 1)a(a+ 1) � � � (a+ i� 2)
; i � 2);

where h(z) = 1 + h1z + � � � .

Proof : Let
�z(z(ka � f)

0(z))0 + (1� �)z(ka � f)
0(z)

�z(ka � f)0(z) + (1� �)(ka � f)(z)
= p(z) = 1 + p1z + � � � :

Since f 2 Ma(�;h); p(z) � h(z) = 1 + h1z + h2z
2 + � � � . It is well known that

j pi j�j h1 j for all i � 2. Now,

(2) �z(z(ka �f)
0(z))0+(1��)z(ka �f)

0(z) = p(z)(�z(ka �f)
0(z)+(��)(ka �f)(z))

and k�(z) = z(1� z)�a = z +
1P
i=2

biz
i where bi = a(a + 1) � � � (a + i � 2)=(i � 1)!.

By actual computation we have

�z(z(ka � f)
0(z))0 + (1� �)z(ka � f)

0(z) = z +

1X
i=2

i((i� 1)�+ 1)aibiz
i;

p(z)(�zka � f)
0(z) + (1� �)(ka � f)(z)) =

=(1 + p1z + � � � )

�
z +

1X
i=2

((i� 1)�+ 1)aibiz
i

�
:

Now comparing the coeÆcients on either side of (2) we get

i((i� 1)�+ 1)aibi = pi=1 + pi�2a2b2(�+ 1) + pi�3a3b3(2�+ 1)

+ � � �+ p1ai�1bi�1((i� 2)�+ 1) + aibi((i� 1)�+ 1)):

Let (1) be true for all i = 2; . . . ; n� 1. In other words

(3) j aibi j�
j h1 j (1+ j h1 j) � � � (1+ j h1 j (i� 2)�1)

(i� 1)((i� 1)�+ 1)
for i = 2; 3; . . . ; n� 1:
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Now for i = n we have

n(n� 1)�+ 1)anbn = pn�1 + pn�2a2b2(�+ 1) + pn�3a3b3(2�+ 1) = � � �

� � �+ p1an�1bn�1((n� 2)�+ 1) + anbn((n� 1)�+ 1);

(n� 1)((n� 1)�+ 1)anbn = pn�1 + pn�2a2b2(�+ 1) + � � �

� � �+ p1an�1bn�1((n� 2)�+ 1);

(n� 1)((n� 1)�+ 1) j anbn j�j h1 j + j h1 j (�+ 1) j a2b2 j + � � �

� � �+ j h1 j ((n� 2)�+ 1) j an�1bn�1 j�j h1 j + j h1 j
2 =2 � (1+ j h1 j) + � � �

� � �+ j h1 j
2 =(n� 2) � (1+ j h1 j) � � � (1+ j h1 j =(n� 3))

=j h1 j (1+ j h1 j)(1+ j h1 j =2) � � � (1+ j h1 j =(n� 2)):

Hence

j anbn j�
j h1 j (1+ j h1 j)(1+ j h1 j =2) � � � (1+ j h1 j =(n� 2))

(n� 1)((n� 1)�+ 1)

which means (3) is true for i = n provided it is true for i = 2; 3; � � � ; n � 1. It is
easy to see that (1) is true for i = 2 and hence it is true for all i � 2.

Remark . The results above generalize many results found in [3, 4] and [6].

Now we de�ne another new class of functions Ra(�;h) which generalizes both
the class C(�;h) of Pascu [5] and the class Ca(h) in [4].

De�nition 2. Let Ra(�;h) denote the class of functions f 2 A such that
�z(z(ka�f)

0(z))0+(1��)z(ka�f)
0(z)

�z(ka�')0(z)+(1��)(ka�')(z)
� h(z) for some ' 2Ma(�;h) and � � 0.

Here we prove an inclusion relation and also the fact that this class is closed
under a certain integral operator.

Theorem 4. Ra(�;h) � Ra(O;h) = Ca(h) for 0 < � < 1.

Proof . Let f 2Ma(�;h). Seting

p(z) =
z(ka � f)

0(z)

(ka � ')(z)
and q(z) =

z(ka � ')
0(z)

(ka � ')(z)
;

we have
�z(z(ka � f)

0(z))0 + (1� �)z(ka � f)
0(z)

�z(ka � ')0(z) + (1� �)(ka � ')(z)

=

azp0(z) + p(z)

�
�z(ka�')(z)
(ka�')0(z)

+ 1� �

�

�z(ka�')0(z)
(ka�')0(z)

+ (1� �)

= p(z) +
zp0(z)

z(k�')0(z)
(ka�')(z)

+

�
1
� � 1

� � h(z)
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since f 2 Ra(�;h). Here q(z) � h(z) by Theorem 1. Since � � 1 an application of
Theorem B yields p(z) � h(z) there by establishing the theorem.

Theorem 5. F (z) = ��1z1�1=�
R z
0
t1=��2f(t)dt 2 Ra(�;h) whenever f 2

Ra(�;h), for 0 < � � 1.

Proof . Di�erentiating F with respect to z we have

�zF 0(z) + (1� �)F (z) = f(z):

This on convolution with ka(z) yields

�z(ka � F )
0(z) + (1� �)(ka � F )(z) = (ka � f)(z);

where we used the identity (ka �zF
0)(z) = z(ka �F )

0(z). Again di�erentiating with
respect to z we get

(4) �z(z(ka � F )
0(z))0 + (1� �)z(ka � F )

0(z) = z(ka � f)
0(z); f 2 Ra; (�;h):

Hence there exist a ' 2Ma(�;h) such that

�z(z(ka � f)
0(z))0 + (1� �)z(ka � f)

0(z)

�z(ka � ')0(z) + (1� �)z(ka � ')(z)
� h(z) in E:

Then by Theorem 2, � de�ned by

(5) �(z) = ��1z1�1=�
Z z

0

t1=��2'(t)dt

is in Ma(�;h) for 1 � � > 0. Di�erentiating (5) with recpect to z and convoluting
the result with ka(z) yields after simplication

(6) �z(ka � �)
0(z) + (1� �)(ka ��)(z) = (ka � ')(z):

Finally (4) and (6) together yield,

�z(z(ka � F )
0(z))0 + (1� �)z(ka � F )

0(z)

�z(ka � ')0(z) + (1� �)(ka � ')(z)
=
z(ka � f)(z)

(ka � ')(z)
:

Since f 2 Ra(�;h) by Theorem 4 we get z(ka�f)
0(z)

(ka�')(z)
� h(z) for z 2 E; 0 < � � 1.

In the same way as in Theorem 2 we can show that (ka �F )
0(z) 6= 0; (ka�F )(z) 6= 0

in E�f0g from the fact that (ka � f)
0(z) 6= 0; (ka � f)(z) 6= 0 in E�f0g for � > 0.

Thus we get F 2 Ra(�;h).

Remark . Theorem 4 and Theorem 5 generalize results in [4] and [5].

Now let us establish a representation theorem for function belonging to the
class Ra(�;h).

Theorem 6. A functions f belongs to Ra(�;h) if and only there exists a

function G 2 H(E) with G(0) = 0 such that zG0(z)=G(z) � h(z) in E and an

analytic function p(z) with p(0) = 1 and p(z) � h(z) in E such that

(ka � f)
0(z) =��1z�1=�

Z z

0

p(t)G(t)t1=��2dt; if � 6= 0;

(ka � f)
0(z) =p(z)G(z)=z; if � = 0:
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Proof . f(z) 2 Ra(�;h) means that there exists, a ' 2Ma(�;h) such that

�z(z(ka � f)
0(z))0 + (1� �)z(ka � f)

0(z)

�z(ka � ')0(z) + (1� �)(ka � ')(z)
� h(z):

Since '(z) 2Ma(�;h), there exists a G(z) such that

zG0(z)

G(z)
=
�z(z(ka � ')

0(z))0 + (1� �)z(ka � ')
0(z)

�z(ka � ')0(z) + (1� �)(ka � ')(z)
� h(z):

This on integration gives G(z) = �z(ka �')
0(z)+(1��)(ka�')(z) and so �z(z(ka�

f)0(z))0+(1��)z(ka � f)
0(z) = p(z)G(z) where p(z) � h(z). In � 6= o, multiplying

by ��1z1=��2 and integrating we get

(ka � f)
0(z) = a�1z�1=�

Z s

0

p(t)G(t)t1=��2dt:

Conversely, it is easy to see that if f(z) has the above integral representation then
f(z) 2 Ra(�;h). For � = 0 let G(z) = (ka �')(z). Then (ka � f)

0(z) = p(z)G(z)=z,
where p(z) � h(z) and the converse is trivially true.

Finally we de�ne a new class Ia(�;h) which coincides with Ca(h) of [4] when
� = 0. In particular if '(z) coincides with f(z) then Ia(�;h) is nothing but K�

a (h)
studied in [3].

De�nition 3. Let Ia(�;h) denote the class of functions f 2 A such that

�(z(ka � f)
0(z))0

(ka � ')0(z)
+ (1� �)

z(ka � f)
0(z)

(ka � ')(z)
� h(z)

for some ' 2 Sa(h) and � � 0 in E.

Remark . Though for a = 1 the class Ia(�;h) coincides with C
�
a (h) studied in

[4] for other values of a; Ia(�;h) is certainly di�erent from C�
a (h).

Theorem 7. We have the folloving inclusion relation Ia(�;h) � Ia(0;h) =
Ca(h).

Proof . Let f 2 Ia(�;h). Setting

p(z) =
z(ka � f)

0(z)

(ka � ')(z)
and q(z) =

z(ka � ')
0(z)

(ka � ')(z)

we have

�(z(ka � f)
0(z))0

(ka � ')0(z)
+ (1� �)

z(ka � f)
0(z)

(ka � ')(z)
=

= �(zp0(z)=q(z) + p(z)) + (1� �)p(z) = p(z) + azp0(z)=q(z):

Since f(z) 2 Ia(�; h) we have p(z) + azp0(z)=q(z) � h(z) and q(z) � h(z).
Now an application of Theorem B yields that p(z) � h(z) which imlies f 2 Ia(�;h).
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Theorem 8. For � > � � 0 we have Ia(�;h) � Ia(�;h).

Proof . The case � = 0 has already been proved in Theorem 7. Hence we can
assume � 6= 0. Suppose that f(z) 2 Ia(�;h). Then,

�(z(ka � f)
0(z))0

(ka � ')(z)
+ (1� �)

z(ka � f)
0(z)

(ka � ')(z)
� h(z):

Let z1 be an arbitrary point in E. Then,

(7)
�(z1(ka � f)

0(z1))
0

(ka � ')0(z1)
+ (1� �)

(z1(ka � f)
0(z1))

(ka � ')(z1)
2 h(E):

Because of Theorem 7 we have z(ka�f)
0(z)

(ka�')(z)
� h(z). Hence,

(8)
z1(k � f)

0(z1)

(ka � ')(z1)
2 h(E):

Also

�(z(ka � f)
0(z))0

(ka � ')0(z)
+ (1� �)

z(k � f)0(z)

(ka � ')(z)
=

=

�
1�

�

�

�
z(ka � f)

0(z)

(ka � ')(z)
+
�

�

�(z(ka � f)
0(z))0

(ka � ')0(z)
+ (1� �)

z(ka � f)
0(z)

(ka � ')(z)
;

Since �=� < 1 and h(E) is convex we have

�(z1(ka � f)
0(z1))

0

(ka � ')0(z1)
+ (1� �)

s1(ka � f)
0(z1)

(ka � ')(z1)
2 h(E) by (7) and (8):

Thus it follows

�(z(ka � f)
0(z))0

(ka � ')0(z)
+ (1� �)

z(ka � f)
0(z)

(ka � ')(z)
� h(z)

which means f(z) 2 Ia(�;h).

Now, let us state a representation Theorem for functions belonging to the
class Ia(�;h) without a proof since it follows the idea of the proof of Theorem 6.

Theorem 9. A function f(z) belongs to Ia(�;h) if and only if there exists a

function G(z) 2 H(E) with G(0) = 0 such that zG0(z)=G(z) � h(z) in E and an

analytic function p(z) with p(0) = 1 and p(z) � h(z) in E such that

(ka � f)
0(z) = ��1z�1=�+1

Z z

0

p(t)G1=�(t)G0(t)dt if � 6= 0 and

(ka � f)
0(z) = p(z)G(z)=z; if � = 0;

Remark . If a = 1 and h(z) = (1 � z)=(1 + z). Theorem 7, Theorem 8 and
Theorem 9 reduce to Theorem 1, Theorem 2 and Theorem 3 respectively of Chichra
[1].
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