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ON A RUSCHEWEYH TYPE GENERALIZATION OF THE PASCU CLASS
OF ANALYTIC FUNCTIONS

R. Parvatham and S. Radha

Abstract. New classes Mg (a;h), Ra(a, h) and Io(a;h) of analytic functions are defined
and studied. results of this paper generalizee mainly results of Padmanabham and Manjini [5],
Padmanabhan and Parvatham [4] and Pascu [5].

Let E = {z € C: | z|< 1} be the open unit disc in C and H(E) be the class
of functions f(z) holomorphic in E. Let A = {f € H(E); f(0) =0 = f'(0) — 1}.
By f * g we denote the Hadamard product or convolution of f,g € H(E); that is if

o0

f(z) = S a;27 and g(z) = 3 b;27 then (f xg)(2) = . a;jb;z7.
j=0 7j=0 7j=0
Let g and G be two functions in H(E). Then g(z) is said to be subordinate
to G(z) (writen g(z) < G(z)) if G is univalent, g(0) = G(0) and g(E) C G(E).
Let ko(z) = z(1 — 2)~%, where a is any real number. In the sequal h € H(E) is a
convex univalent function in E with h(0) =1 and Re h(z) > 0in E.

In this paper we define certain new classes of functions holomorphic in E with
Montel’s normalizations and study these classes in detail. To establish results of
this paper connected with these new classes, we require the following two theorems.
Theorem A is due to Eenigenburg, Miller, Mocanu and Reade [2] and Theorem B
may be found in [4].

THEOREM A. Let 3,7 € C and h € H(E) be convex univalent in E with
h(0) =1 and Re(Bh(z) +v) >0 in E, and let p(z) =1+ p1z+--- € H(E). Then

p(z) + ﬁ;?z()jzv < h(z) implies p(z) < h(z).

THEOREM B. Let 8,7 € C, k€ H(E) be convezr univalent in E with h(0) =1
and Re(Bh(z) + ) >0 in E. Let g€ H(E) with ¢(0) =1 and q(z) < h(z) in E. If

p(z) =1+ piz+--- € HE) then p(z) + ﬁq’(’;()i27 < h(z) implies p(z) < h(z).
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First let us define a new class M, («a;h) of holomorphic functions in E and
study its properties.

Definition 1. Let M,(«;h) denote the class of functions f with
(ko x ) (2)(ka x f)(2) #0 in E-{0} satisfying

az(z(ka * £)'(2))" + (1 = @)2(ka * f)'(2)
az(ka * f)'(2) + (1 — a)(ka * )(2)
Note 1. When a = 0 this class coincides with the class S, (h) studied in [4]
and when o = 1 this is the same class as K, (h) in [3]. Also M;(a; (1—2)(1+2)71)
is the class introduced by Pascu and Podaru [6].

< h(z) for a > 0.

THEOREM 1. For 0 < a <1 we have My(a;h) C My (0;h) = So(h).

Proof . Let f € M,(a;h) and p(z) = Z((,i”::iw Then

az(z(ka * f)'(2))" + (1 = a)z(ka * f)'(2)
= az(ka x f)(2)p'(2) + azp(2) (ka * f)'(2) + (L = a)p(2) (ka * f)(2)
= (azp'(2) + p(2)(ap(2) + (1 — @))) (ka * £)(2);

az(ka x f)'(2) + (1 — a)(ka * )(2) = (ap(2) + (1 = @))(ka * f)(2)

Hence

az(z(ka * f)'(2))" + (1 = a)z(ka x f)'(2) _azp'(z) + p(2)(ap(z) + (1 — o))
az(ky * f)'(2) + (1 = a)(ka * f)(2) ap(z) + (1 —a)
zp'(2)

“p + (@t =) TPE) G

because f € M,(a;h). Since 0 < a < 1, an application of Theorem A gives
p(z) < h(z) in E which implies f € S, (h).

THEOREM 2. Let f € M,(a;h). Then for 0 < a <1 we have

z
F(z) = cflzl*l/“/ /22 f(t)dt € My(as;h).
0

Proof. Differentiating F(z) = a1z [“1/@=2 f(t)dt with respect to z
and simplifying we get azF'(z) + (1 — )F(z) = f(2). This, by convolution with
ka.(2), gives

az(ky * F) (2) + (1 — @) (ko * F)(2) = (ko * f)(2)
where we used the fact that k, * 2F'(2) = 2(k, * F)'(z). Taking logarithmic deriv-
ative with respect to z and multiplying by z we get

az(z(ke * F)'(2)) + (1 — a)z(k, % F)'(2) _ 2(kq * f)'(2)
az(ka*F)l(Z)+(l_a)(ka*F)(Z) (ka*f)(z) ‘
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The member on the right hand side is subordinate to h(z) since f € M,(a;h) C
Sa.(h) by the previous theorem. Also F(z) = ~(z) * f(z) where 7,(2) =

ioj Wlﬁflzn. Since (ko * f)(2) # 0, (ko * f)'(2) #0in E — {0} and a > 0
n=1
(

we have (ko * F)(2) = va(2)(ka * f)(2) # 0, hence (k,F)'(z) # 0 in E — {0}. Thus
F € My(a;h).

We now obtain an estimate for the modulii of the coefficients, | a, | where
o0
f(z) =24+ Y anz" € My(a; h)
2

o0 .
THEOREM 3. Let f(z) = z+ > a;2" be in M,(a;h) Then
i=2

| ha | (A4 [ he ) (=24 | ha ) -
G-DatDaasl) (@+ri-2 ‘22

where h(z) =1+ hyz+---.

(1) |ai|<

az(z(ko * 1)'(2))' + (1= @)z(ke * 1)'(2)
Proof Lot thax 1(2) & (1 — @) (ko * 1) (2)

=p(z)=1+pz+---.

Since f € My(a;h),p(2) < h(z) = 1+ h1z + ha2? + ---. It is well known that
| pi |<| hy | for all i > 2. Now,

(2) az(z(kaxf)'(2))" + (1= a)z(kaxf)'(2) = p(2)(az(ka* ) (2) + (=) (ka * £)(2))

o0 .

and ko(2) = 2(1 —2)"% = z+ > b;2" where b = ala+1)---(a+i—2)/(i — 1)L
i=2

By actual computation we have

o0

az(z(ke x £)'(2)) + (1 —)z(ke x f)'(2) = 2 + Zz((z — Da+ Dabz"
=2
p(2)(azke x f)'(2) + (1 — a)(ka x f)(2)) =
=(14+piz+---) <z + Z((z‘ - Da+ l)aibizi> :
i=2
Now comparing the coefficients on either side of (2) we get
i((i — a4+ 1)ab; = pi=1 + pi—2azbs(a + 1) + p;_sasbs(2a+ 1)
+ A praj—1bi—1((0 — 2)a + 1) + a;:b;((i — Da + 1)).
Let (1) be true for all i = 2,... ,n — 1. In other words

| P | (AP ) A+ b | (i =2)7Y)
G —1)((i - Da+1)

()  Jaib; |< for i =2,3,... ,n -1
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Now for ¢ = n we have
n(n — Da+ 1)apb, = pp—1 + pn—sazbe(a + 1) + pp_sazbs(2a+ 1) = ---
st prag_1bp_1((n—2)a+ 1) + apb,((n — D)a + 1);

(n—1)((n—1)a+ 1)ayb, = pn_1 + pn—2a2bo(a+ 1)+ ---
o+ prap—1bp—1((n — 2)a + 1);
(n=1((n—=Da+1)|anby [<[h1 |+ [l [(a+1) |azby [+
ot [ he | (R=2)a+1) | anibpot [<| ho |+ [ ha [P /2 (14 [ha )+ -+
o [h P/ =2) - (I TR ) (T [ | /(0= 3))
=[ha | I+ [ b YA+ | Ba | /2)--- (A4 | ha | /(n = 2)).

Hence
| ha | (A [P YO+ [ Pa [ /2) - (14 | P | /(0 = 2))
|anbn |S
(n=1)((n—-1)a+1)
which means (3) is true for i« = n provided it is true for i = 2,3,--- ,;n — 1. It is

easy to see that (1) is true for ¢ = 2 and hence it is true for all i > 2.

Remark. The results above generalize many results found in [3, 4] and [6].

Now we define another new class of functions R, (a; h) which generalizes both
the class C(a; h) of Pascu [5] and the class C,(h) in [4].

Definition 2. Let R,(a;h) denote the class of functions f € A such that

az(z(kaxf) (2)'+(1—a)2(ka*f)' (2) .
) T A=) kx5 h(z) for some ¢ € M,(a;h) and a > 0.

Here we prove an inclusion relation and also the fact that this class is closed
under a certain integral operator.

THEOREM 4. R,(a;h) C R,(O;h) = Cy(h) for 0 < a < 1.
Proof. Let f € M,(a;h). Seting

_2(ka* ))(2)

2k % 9)'(2)
P& = o))

and 4(2) = S @)

we have

az(z(ka * f)'(2))" + (1 = a)z(ka * f)'(2)
az(ke @) (2) + (1 — @) (ka * @) (2)
azp'(z) + p(z) (% +1- a)

az(ka*xp) (2
e+ (1-a)

zp'(2)
=p(z)+ < h(z
Pe) z(kxp)'(2) 11 )
(ka*p)(2) a
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since f € Ry(a;h). Here g(z) < h(z) by Theorem 1. Since o < 1 an application of
Theorem B yields p(z) < h(z) there by establishing the theorem.

THEOREM 5. F(z) = a~'2!=V/e [F1/e=2f(t)dt € R,(a;h) whenever f €
R.(a;h), for 0 < a < 1.
Proof . Differentiating F' with respect to z we have
azF'(2) + (1 — a)F(2) = f(2).
This on convolution with k,(z) yields
az(kq * F)'(2) + (L = a)(ka x F)(2) = (ka * £)(2),

where we used the identity (k, *2F")(z) = z(k, * F)'(2). Again differentiating with
respect to z we get

(4)  az(z(kax F)'(2)) + (1 = @)2(ke * F)'(2) = 2(ka * )'(2), f € Ra, (a5 h).
Hence there exist a ¢ € M,(a; h) such that
az(z(ka * f)'(2))" + (1 — &) z(ka * [)'(2)
az(ka x @) (2) + (L — a)z(ka * ¢)(2)
Then by Theorem 2, ® defined by

(5) B(z) = "t/ /Z /220 (t)dt
0
is in M,(a;h) for 1 > a > 0. Differentiating (5) with recpect to z and convoluting
the result with k,(z) yields after simplication
(6) az(ka x ®)'(2) + (1 = a)(ka x ®)(2) = (ko * 9)(2)-
Finally (4) and (6) together yield,
az(z(ky * F)'(2)) + (1 — a)z(k, x F)'(2)  z(ka * f)(2)

< h(z) in E.

az(kax9)'(2) + (L —a)(ka x0)(2) — (kax¢)(2)
Since f € Ry(a; h) by Theorem 4 we get Z((,f;‘:im <h(z)forze E, 0<a<l1.

In the same way as in Theorem 2 we can show that (k,*F)' (z) #0, (ko*xF)(z) #0
in B — {0} from the fact that (k, * f)'(2) # 0, (ko * f)(2) #0in E — {0} for a > 0.
Thus we get F' € Rq(a; h).

Remark. Theorem 4 and Theorem 5 generalize results in [4] and [5].

Now let us establish a representation theorem for function belonging to the
class R,(a; h).

THEOREM 6. A functions f belongs to R.(a;h) if and only there exists a
function G € H(E) with G(0) = 0 such that zG'(2)/G(z) < h(z) in E and an
analytic function p(z) with p(0) =1 and p(z) < h(z) in E such that

(ko s 1Y(2) =~z [ PGt if o #0;
0

(ko * f)'(2) =p(2)G(2)/2, if a=0.



82 Paravatham and Radha

Proof. f(z) € Ry(a; h) means that there exists, a ¢ € M,(a;h) such that
az(z(ka x )'(2))" + (1 — a)z(ka * f)'(2)
az(ka * 9)'(2) + (L — @) (ka * ¢)(2)
Since p(z) € M,(a;h), there exists a G(z) such that
2G'(z) _ az(z(ka x9)'(2)) + (1 — a)z(ka * ¢)'(2)
G(2) az(ka * 9)'(2) + (L — @) (ka * ¢)(2)

This on integration gives G(2) = az(kq,*¢)'(2) + (1 —a) (ko *@)(2) and so az(z(k, *
£)'(2)) + (1 —a)z(ks * ) (2) = p(2)G(z) where p(z) < h(2). In a # o, multiplying
by a~'2/%=2 and integrating we get

< h(z).

< h(z).

8§

(kg f)’(z) = a,_lz—l/a/o p(t)G(t)tl/a_2dt.

Conversely, it is easy to see that if f(z) has the above integral representation then
f(2) € Ry(a;h). For a =01et G(z) = (ko *¢)(2). Then (k, * f)'(2) = p(2)G(2)/ 2,
where p(z) < h(z) and the converse is trivially true.

Finally we define a new class I, (a; h) which coincides with C, (h) of [4] when
a = 0. In particular if ¢(z) coincides with f(z) then I,(«; h) is nothing but K& (h)
studied in [3].

Definition 3. Let I,(c; h) denote the class of functions f € A such that

a(z(ka * f)'(2))’ z(ka * f)'(2)
(ko * )" (2) (kq * ©)(2)

for some ¢ € Sy(h) and @ >0 in E.

+(1-a) =< h(z)

Remark. Though for a = 1 the class I, (a; h) coincides with C2(h) studied in
[4] for other values of a, I, (a;h) is certainly different from C%(h).

THEOREM 7. We have the folloving inclusion relation I,(a;h) C I,(0;h) =
Co(h).

Proof. Let f € I, (a;h). Setting

_ 2(ka * f)'(2)

2(ka %) (2)
P = o))

and 4(2) = S 0@

we have

oelhe s ') 2k s ')
tero) TV e o))

= a(zp'(2)/q(z) + p(2)) + (1 — a)p(2) = p(2) + azp'(2)/q(2).

Since f(z) € I,(a,h) we have p(z) + azp'(z)/q(z) < h(z) and q(z) < h(z).
Now an application of Theorem B yields that p(z) < h(z) which imlies f € I, («a; h).
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THEOREM 8. For a > 8 > 0 we have I,(a;h) C I,(B;h).

Proof . The case a = 0 has already been proved in Theorem 7. Hence we can
assume 3 # 0. Suppose that f(z) € I,(a;h). Then,

a(z(ka x f)'(2))' z2(ka * f)'(2)

bt T ) <M
Let z; be an arbitrary point in E. Then,
a(z1 (ko * f)'(21))' _ Btk x £)(21))
@ I I T CY R
Because of Theorem 7 we have % < h(z). Hence,
21(k * f)'(21)
(8) 7(]% ) (1) € h(E).
Also
B(z(ka x f)'(2))' 2(kx f)'(2) _
CECIC R G
(B £YE) | Balela s G L (L Rax 1))
= (-0 e e e O e i
Since B/a < 1 and h(E) is convex we have
Blen (ko * ) (21)) 51 (ka = 1)'(21) -
ForoV G T G €M) DY (D and B

Thus it follows

z(ka * f)'(2)

B(z(ka x f)'(2))'
(ka * 9)(2)

(ka x ©)'(2)
which means f(z) € I,(8; h).

Now, let us state a representation Theorem for functions belonging to the
class I, (a; h) without a proof since it follows the idea of the proof of Theorem 6.

+(1-5)

THEOREM 9. A function f(z) belongs to I,(a;h) if and only if there exists a
function G(z) € H(E) with G(0) = 0 such that 2G'(2)/G(z) < h(z) in E and an
analytic function p(z) with p(0) =1 and p(z) < h(z) in E such that

(ko % f)'(2) = @~ 'z~ /ott /Ozp(t)Gl/D‘(t)G’(t)dt if a #0 and
(ko * f)'(2) = p(2)G(2)/2, if a=0,

Remark. If a = 1 and h(z) = (1 — 2)/(1 4+ z). Theorem 7, Theorem 8 and
Theorem 9 reduce to Theorem 1, Theorem 2 and Theorem 3 respectively of Chichra

[1].
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