ON A RUSCHEWEYH TYPE GENERALIZATION OF THE PASCU CLASS OF ANALYTIC FUNCTIONS

R. Parvatham and S. Radha

Abstract. New classes $M_a(\alpha; h)$, $R_a(\alpha, h)$ and $I_a(\alpha; h)$ of analytic functions are defined and studied. results of this paper generalizee mainly results of Padmanabham and Manjini [5], Padmanabhan and Parvatham [4] and Pascu [5].

Let $E = \{z \in \mathbf{C} : |z| < 1\}$ be the open unit disc in \mathbf{C} and H(E) be the class of functions f(z) holomorphic in E. Let $A = \{f \in H(E); f(0) = 0 = f'(0) - 1\}$. By f * g we denote the Hadamard product or convolution of $f, g \in H(E)$; that is if $f(z) = \sum_{j=0}^{\infty} a_j z^j$ and $g(z) = \sum_{j=0}^{\infty} b_j z^j$ then $(f * g)(z) = \sum_{j=0}^{\infty} a_j b_j z^j$.

Let g and G be two functions in H(E). Then g(z) is said to be subordinate to G(z) (writen $g(z) \prec G(z)$) if G is univalent, g(0) = G(0) and $g(E) \subset G(E)$. Let $k_a(z) = z(1-z)^{-a}$, where a is any real number. In the sequal $h \in H(E)$ is a convex univalent function in E with h(0) = 1 and Re h(z) > 0 in E.

In this paper we define certain new classes of functions holomorphic in E with Montel's normalizations and study these classes in detail. To establish results of this paper connected with these new classes, we require the following two theorems. Theorem A is due to Eenigenburg, Miller, Mocanu and Reade [2] and Theorem B may be found in [4].

THEOREM A. Let $\beta, \gamma \in \mathbf{C}$ and $h \in H(E)$ be convex univalent in E with h(0) = 1 and $Re(\beta h(z) + \gamma) > 0$ in E, and let $p(z) = 1 + p_1 z + \cdots \in H(E)$. Then $p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z)$ implies $p(z) \prec h(z)$.

THEOREM B. Let $\beta, \gamma \in \mathbf{C}$, $k \in H(E)$ be convex univalent in E with h(0) = 1and $Re(\beta h(z) + \gamma) > 0$ in E. Let $q \in H(E)$ with q(0) = 1 and $q(z) \prec h(z)$ in E. If $p(z) = 1 + p_1 z + \cdots \in H(E)$ then $p(z) + \frac{zp'(z)}{\beta q(z) + \gamma} \prec h(z)$ implies $p(z) \prec h(z)$.

AMS Subject Classification (1980): Primary 30C45

First let us define a new class $M_a(\alpha; h)$ of holomorphic functions in E and study its properties.

Definition 1. Let $M_a(\alpha; h)$ denote the class of functions f with

$$\begin{aligned} &(k_a * f)'(z)(k_a * f)(z) \neq 0 \text{ in } E - \{0\} \text{ satisfying} \\ &\frac{\alpha z(z(k_a * f)'(z))' + (1 - \alpha)z(k_a * f)'(z)}{\alpha z(k_a * f)'(z) + (1 - \alpha)(k_a * f)(z)} \prec h(z) \text{ for } \alpha \geq 0. \end{aligned}$$

Note 1. When $\alpha = 0$ this class coincides with the class $S_a(h)$ studied in [4] and when $\alpha = 1$ this is the same class as $K_a(h)$ in [3]. Also $M_1(\alpha; (1-z)(1+z)^{-1})$ is the class introduced by Pascu and Podaru [6].

THEOREM 1. For $0 < \alpha \leq 1$ we have $M_a(\alpha; h) \subset M_a(0; h) = S_a(h)$.

Proof. Let
$$f \in M_a(\alpha; h)$$
 and $p(z) = \frac{z(k_a * f)'(z)}{(k_a * f)(z)}$. Then
 $\alpha z(z(k_a * f)'(z))' + (1 - \alpha)z(k_a * f)'(z)$
 $= \alpha z(k_a * f)(z)p'(z) + \alpha zp(z)(k_a * f)'(z) + (1 - \alpha)p(z)(k_a * f)(z)$
 $= (\alpha zp'(z) + p(z)(ap(z) + (1 - \alpha)))(k_a * f)(z);$
 $az(k_a * f)'(z) + (1 - \alpha)(k_a * f)(z) = (ap(z) + (1 - \alpha))(k_a * f)(z)$

Hence

$$\frac{\alpha z(z(k_a * f)'(z))' + (1 - \alpha)z(k_a * f)'(z)}{\alpha z(k_a * f)'(z) + (1 - \alpha)(k_a * f)(z)} = \frac{\alpha z p'(z) + p(z)(\alpha p(z) + (1 - \alpha))}{\alpha p(z) + (1 - \alpha)}$$
$$= \frac{z p'(z)}{p(z) + (\alpha^{-1} - 1)} + p(z) \prec h(z)$$

because $f \in M_a(\alpha; h)$. Since $0 < \alpha \leq 1$, an application of Theorem A gives $p(z) \prec h(z)$ in E which implies $f \in S_a(h)$.

THEOREM 2. Let $f \in M_a(\alpha; h)$. Then for $0 < \alpha \leq 1$ we have

$$F(z) = \alpha^{-1} z^{1-1/\alpha} \int_0^z t^{1/\alpha - 2} f(t) dt \in M_a(\alpha; h).$$

Proof. Differentiating $F(z) = \alpha^{-1} z^{1-1/\alpha} \int_0^z t^{1/\alpha-2} f(t) dt$ with respect to z and simplifying we get $\alpha z F'(z) + (1-\alpha)F(z) = f(z)$. This, by convolution with $k_a(z)$, gives

$$\alpha z (k_a * F)'(z) + (1 - \alpha)(k_a * F)(z) = (k_a * f)(z)$$

where we used the fact that $k_a * zF'(z) = z(k_a * F)'(z)$. Taking logarithmic derivative with respect to z and multiplying by z we get

$$\frac{\alpha z (z(k_a * F)'(z))' + (1 - \alpha) z(k_a * F)'(z)}{\alpha z (k_a * F)'(z) + (1 - \alpha) (k_a * F)(z)} = \frac{z(k_a * f)'(z)}{(k_a * f)(z)}$$

78

The member on the right hand side is subordinate to h(z) since $f \in M_a(\alpha; h) \subset S_a(h)$ by the previous theorem. Also $F(z) = \gamma(z) * f(z)$ where $\gamma_\alpha(z) = \sum_{n=1}^{\infty} \frac{1/\alpha}{1/\alpha+n-1} z^n$. Since $(k_a * f)(z) \neq 0$, $(k_a * f)'(z) \neq 0$ in $E - \{0\}$ and $\alpha > 0$ we have $(k_a * F)(z) = \gamma_a(z)(k_a * f)(z) \neq 0$, hence $(k_a F)'(z) \neq 0$ in $E - \{0\}$. Thus $F \in M_a(\alpha; h)$.

We now obtain an estimate for the modulii of the coefficients, $|a_n|$ where $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in M_a(\alpha; h)$

THEOREM 3. Let $f(z) = z + \sum_{i=2}^{\infty} a_i z^i$ be in $M_a(\alpha; h)$ Then

(1)
$$|a_i| \leq \frac{|h_1|(1+|h_1|)\cdots(i-2+|h_1|)}{((i-1)\alpha+1)a(a+1)\cdots(a+i-2)}, \quad i \geq 2),$$

where $h(z) = 1 + h_1 z + \cdots$.

Proof. Let
$$\frac{\alpha z (z(k_a * f)'(z))' + (1 - \alpha)z(k_a * f)'(z)}{\alpha z (k_a * f)'(z) + (1 - \alpha)(k_a * f)(z)} = p(z) = 1 + p_1 z + \cdots$$

Since $f \in M_a(\alpha; h), p(z) \prec h(z) = 1 + h_1 z + h_2 z^2 + \cdots$. It is well known that $|p_i| \leq |h_1|$ for all $i \geq 2$. Now,

(2)
$$\alpha z(z(k_a * f)'(z))' + (1 - \alpha)z(k_a * f)'(z) = p(z)(\alpha z(k_a * f)'(z) + (-\alpha)(k_a * f)(z))$$

and $k_{\alpha}(z) = z(1-z)^{-a} = z + \sum_{i=2}^{\infty} b_i z^i$ where $b_i = a(a+1)\cdots(a+i-2)/(i-1)!$. By actual computation we have

$$\alpha z (z(k_a * f)'(z))' + (1 - \alpha) z(k_a * f)'(z) = z + \sum_{i=2}^{\infty} i((i - 1)\alpha + 1)a_i b_i z^i;$$

$$p(z)(\alpha z k_a * f)'(z) + (1 - \alpha)(k_a * f)(z)) =$$

$$= (1 + p_1 z + \cdots) \left(z + \sum_{i=2}^{\infty} ((i - 1)\alpha + 1)a_i b_i z^i \right).$$

Now comparing the coefficients on either side of (2) we get

$$i((i-1)\alpha + 1)a_ib_i = p_{i=1} + p_{i-2}a_2b_2(\alpha + 1) + p_{i-3}a_3b_3(2\alpha + 1) + \dots + p_1a_{i-1}b_{i-1}((i-2)\alpha + 1) + a_ib_i((i-1)\alpha + 1)).$$

Let (1) be true for all i = 2, ..., n - 1. In other words

(3)
$$|a_i b_i| \le \frac{|h_1| (1+|h_1|) \cdots (1+|h_1| (i-2)^{-1})}{(i-1)((i-1)\alpha+1)}$$
 for $i = 2, 3, \dots, n-1$

Now for i = n we have

$$\begin{split} n(n-1)\alpha + 1)a_{n}b_{n} &= p_{n-1} + p_{n-2}a_{2}b_{2}(\alpha + 1) + p_{n-3}a_{3}b_{3}(2\alpha + 1) = \cdots \\ & \cdots + p_{1}a_{n-1}b_{n-1}((n-2)\alpha + 1) + a_{n}b_{n}((n-1)\alpha + 1); \\ (n-1)((n-1)\alpha + 1)a_{n}b_{n} &= p_{n-1} + p_{n-2}a_{2}b_{2}(\alpha + 1) + \cdots \\ & \cdots + p_{1}a_{n-1}b_{n-1}((n-2)\alpha + 1); \\ (n-1)((n-1)\alpha + 1) \mid a_{n}b_{n} \mid \leq \mid h_{1} \mid + \mid h_{1} \mid (\alpha + 1) \mid a_{2}b_{2} \mid + \cdots \\ & \cdots + \mid h_{1} \mid ((n-2)\alpha + 1) \mid a_{n-1}b_{n-1} \mid \leq \mid h_{1} \mid + \mid h_{1} \mid |^{2}/2 \cdot (1 + \mid h_{1} \mid) + \cdots \\ & \cdots + \mid h_{1} \mid 2/(n-2) \cdot (1 + \mid h_{1} \mid) \cdots (1 + \mid h_{1} \mid / (n-3)) \\ &= \mid h_{1} \mid (1 + \mid h_{1} \mid)(1 + \mid h_{1} \mid / 2) \cdots (1 + \mid h_{1} \mid / (n-2)). \end{split}$$

Hence

$$|a_n b_n| \leq \frac{|h_1| (1+|h_1|)(1+|h_1|/2) \cdots (1+|h_1|/(n-2))}{(n-1)((n-1)\alpha+1)}$$

which means (3) is true for i = n provided it is true for $i = 2, 3, \dots, n-1$. It is easy to see that (1) is true for i = 2 and hence it is true for all $i \ge 2$.

Remark. The results above generalize many results found in [3, 4] and [6].

Now we define another new class of functions $R_a(\alpha; h)$ which generalizes both the class $C(\alpha; h)$ of Pascu [5] and the class $C_a(h)$ in [4].

 $\begin{array}{ll} Definition \ 2. \ \ {\rm Let} \ R_a(\alpha;h) \ {\rm denote \ the \ class \ of \ functions \ } f \in A \ {\rm such \ that} \\ \frac{\alpha z(z(k_a*f)'(z))'+(1-\alpha)z(k_a*f)'(z)}{\alpha z(k_a*\varphi)'(z)+(1-\alpha)(k_a*\varphi)(z)} \prec h(z) \ {\rm for \ some \ } \varphi \in M_a(\alpha;h) \ {\rm and} \ \alpha \geq 0. \end{array}$

Here we prove an inclusion relation and also the fact that this class is closed under a certain integral operator.

THEOREM 4. $R_a(\alpha; h) \subset R_a(O; h) = C_a(h)$ for $0 < \alpha < 1$. Proof. Let $f \in M_a(\alpha; h)$. Seting

$$p(z) = \frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)} \text{ and } q(z) = \frac{z(k_a * \varphi)'(z)}{(k_a * \varphi)(z)},$$

we have

$$\frac{\alpha z(z(k_a * f)'(z))' + (1 - \alpha)z(k_a * f)'(z)}{\alpha z(k_a * \varphi)'(z) + (1 - \alpha)(k_a * \varphi)(z)}$$
$$= \frac{azp'(z) + p(z)\left(\frac{\alpha z(k_a * \varphi)(z)}{(k_a * \varphi)'(z)} + 1 - \alpha\right)}{\frac{\alpha z(k_a * \varphi)'(z)}{(k_a * \varphi)'(z)} + (1 - \alpha)}$$
$$= p(z) + \frac{zp'(z)}{\frac{z(k * \varphi)'(z)}{(k_a * \varphi)(z)} + \left(\frac{1}{\alpha} - 1\right)} \prec h(z)$$

80

since $f \in R_a(\alpha; h)$. Here $q(z) \prec h(z)$ by Theorem 1. Since $\alpha \leq 1$ an application of Theorem B yields $p(z) \prec h(z)$ there by establishing the theorem.

THEOREM 5. $F(z) = \alpha^{-1} z^{1-1/\alpha} \int_0^z t^{1/\alpha-2} f(t) dt \in R_a(\alpha; h)$ whenever $f \in R_a(\alpha; h)$, for $0 < \alpha \le 1$.

Proof. Differentiating F with respect to z we have

$$\alpha z F'(z) + (1 - \alpha)F(z) = f(z)$$

This on convolution with $k_a(z)$ yields

$$\alpha z (k_a * F)'(z) + (1 - \alpha)(k_a * F)(z) = (k_a * f)(z),$$

where we used the identity $(k_a * zF')(z) = z(k_a * F)'(z)$. Again differentiating with respect to z we get

(4)
$$\alpha z(z(k_a * F)'(z))' + (1 - \alpha)z(k_a * F)'(z) = z(k_a * f)'(z), \quad f \in R_a, (\alpha; h).$$

Hence there exist a $\varphi \in M_a(\alpha; h)$ such that

$$\frac{\alpha z (z(k_a * f)'(z))' + (1 - \alpha) z (k_a * f)'(z)}{\alpha z (k_a * \varphi)'(z) + (1 - \alpha) z (k_a * \varphi)(z)} \prec h(z) \text{ in } E.$$

Then by Theorem 2, Φ defined by

(5)
$$\Phi(z) = \alpha^{-1} z^{1-1/\alpha} \int_0^z t^{1/\alpha - 2} \varphi(t) dt$$

is in $M_a(\alpha; h)$ for $1 \ge \alpha > 0$. Differentiating (5) with recpect to z and convoluting the result with $k_a(z)$ yields after simplication

(6)
$$\alpha z (k_a * \Phi)'(z) + (1 - \alpha) (k_a * \Phi)(z) = (k_a * \varphi)(z).$$

Finally (4) and (6) together yield,

$$\frac{\alpha z (z(k_a * F)'(z))' + (1 - \alpha) z(k_a * F)'(z)}{\alpha z (k_a * \varphi)'(z) + (1 - \alpha) (k_a * \varphi)(z)} = \frac{z(k_a * f)(z)}{(k_a * \varphi)(z)}$$

Since $f \in R_a(\alpha; h)$ by Theorem 4 we get $\frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)} \prec h(z)$ for $z \in E$, $0 < \alpha \leq 1$. In the same way as in Theorem 2 we can show that $(k_a * F)'(z) \neq 0$, $(k_a * F)(z) \neq 0$ in $E - \{0\}$ from the fact that $(k_a * f)'(z) \neq 0$, $(k_a * f)(z) \neq 0$ in $E - \{0\}$ for $\alpha > 0$. Thus we get $F \in R_a(\alpha; h)$.

Remark. Theorem 4 and Theorem 5 generalize results in [4] and [5].

Now let us establish a representation theorem for function belonging to the class $R_a(\alpha; h)$.

THEOREM 6. A functions f belongs to $R_a(\alpha; h)$ if and only there exists a function $G \in H(E)$ with G(0) = 0 such that $zG'(z)/G(z) \prec h(z)$ in E and an analytic function p(z) with p(0) = 1 and $p(z) \prec h(z)$ in E such that

$$(k_a * f)'(z) = \alpha^{-1} z^{-1/\alpha} \int_0^z p(t) G(t) t^{1/\alpha - 2} dt, \text{ if } \alpha \neq 0;$$

$$(k_a * f)'(z) = p(z) G(z) / z, \text{ if } \alpha = 0.$$

Proof. $f(z) \in R_a(\alpha; h)$ means that there exists, a $\varphi \in M_a(\alpha; h)$ such that

$$\frac{\alpha z (z(k_a * f)'(z))' + (1 - \alpha) z(k_a * f)'(z)}{\alpha z (k_a * \varphi)'(z) + (1 - \alpha) (k_a * \varphi)(z)} \prec h(z).$$

Since $\varphi(z) \in M_a(\alpha; h)$, there exists a G(z) such that

$$\frac{zG'(z)}{G(z)} = \frac{\alpha z (z(k_a * \varphi)'(z))' + (1 - \alpha) z(k_a * \varphi)'(z)}{\alpha z (k_a * \varphi)'(z) + (1 - \alpha) (k_a * \varphi)(z)} \prec h(z).$$

This on integration gives $G(z) = \alpha z(k_a * \varphi)'(z) + (1 - \alpha)(k_a * \varphi)(z)$ and so $\alpha z(z(k_a * f)'(z))' + (1 - \alpha)z(k_a * f)'(z) = p(z)G(z)$ where $p(z) \prec h(z)$. In $\alpha \neq o$, multiplying by $\alpha^{-1}z^{1/\alpha-2}$ and integrating we get

$$(k_a * f)'(z) = a^{-1} z^{-1/\alpha} \int_0^s p(t) G(t) t^{1/\alpha - 2} dt.$$

Conversely, it is easy to see that if f(z) has the above integral representation then $f(z) \in R_a(\alpha; h)$. For $\alpha = 0$ let $G(z) = (k_a * \varphi)(z)$. Then $(k_a * f)'(z) = p(z)G(z)/z$, where $p(z) \prec h(z)$ and the converse is trivially true.

Finally we define a new class $I_a(\alpha; h)$ which coincides with $C_a(h)$ of [4] when $\alpha = 0$. In particular if $\varphi(z)$ coincides with f(z) then $I_a(\alpha; h)$ is nothing but $K_a^{\alpha}(h)$ studied in [3].

Definition 3. Let $I_a(\alpha; h)$ denote the class of functions $f \in A$ such that

$$\frac{\alpha(z(k_a * f)'(z))'}{(k_a * \varphi)'(z)} + (1 - \alpha)\frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)} \prec h(z)$$

for some $\varphi \in S_a(h)$ and $\alpha \ge 0$ in E.

Remark. Though for a = 1 the class $I_a(\alpha; h)$ coincides with $C_a^{\alpha}(h)$ studied in [4] for other values of $a, I_a(\alpha; h)$ is certainly different from $C_a^{\alpha}(h)$.

THEOREM 7. We have the following inclusion relation $I_a(\alpha; h) \subset I_a(0; h) = C_a(h)$.

Proof. Let $f \in I_a(\alpha; h)$. Setting

$$p(z) = \frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)} \text{ and } q(z) = \frac{z(k_a * \varphi)'(z)}{(k_a * \varphi)(z)}$$

we have

$$\frac{\alpha(z(k_a * f)'(z))'}{(k_a * \varphi)'(z)} + (1 - \alpha)\frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)} = \\ = \alpha(zp'(z)/q(z) + p(z)) + (1 - \alpha)p(z) = p(z) + azp'(z)/q(z).$$

Since $f(z) \in I_a(\alpha, h)$ we have $p(z) + azp'(z)/q(z) \prec h(z)$ and $q(z) \prec h(z)$. Now an application of Theorem B yields that $p(z) \prec h(z)$ which imlies $f \in I_a(\alpha; h)$.

82

On a Ruscheweyh type generalization of the Pascu class of analytic functions

THEOREM 8. For $\alpha > \beta \ge 0$ we have $I_a(\alpha; h) \subset I_a(\beta; h)$.

Proof. The case $\alpha = 0$ has already been proved in Theorem 7. Hence we can assume $\beta \neq 0$. Suppose that $f(z) \in I_a(\alpha; h)$. Then,

$$\frac{\alpha(z(k_a * f)'(z))'}{(k_a * \varphi)(z)} + (1 - \alpha)\frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)} \prec h(z).$$

Let z_1 be an arbitrary point in E. Then,

(7)
$$\frac{\alpha(z_1(k_a * f)'(z_1))'}{(k_a * \varphi)'(z_1)} + (1 - \alpha) \frac{(z_1(k_a * f)'(z_1))}{(k_a * \varphi)(z_1)} \in h(E).$$

Because of Theorem 7 we have $\frac{z(k_a*f)'(z)}{(k_a*\varphi)(z)} \prec h(z)$. Hence,

(8)
$$\frac{z_1(k*f)'(z_1)}{(k_a*\varphi)(z_1)} \in h(E)$$

Also

$$\frac{\beta(z(k_a * f)'(z))'}{(k_a * \varphi)'(z)} + (1 - \beta)\frac{z(k * f)'(z)}{(k_a * \varphi)(z)} = \\ = \left(1 - \frac{\beta}{\alpha}\right)\frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)} + \frac{\beta}{\alpha}\frac{\alpha(z(k_a * f)'(z))'}{(k_a * \varphi)'(z)} + (1 - \alpha)\frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)}$$

Since $\beta/\alpha < 1$ and h(E) is convex we have

$$\frac{\beta(z_1(k_a*f)'(z_1))'}{(k_a*\varphi)'(z_1)} + (1-\beta)\frac{s_1(k_a*f)'(z_1)}{(k_a*\varphi)(z_1)} \in h(E) \text{ by (7) and (8).}$$

Thus it follows

$$\frac{\beta(z(k_a * f)'(z))'}{(k_a * \varphi)'(z)} + (1 - \beta)\frac{z(k_a * f)'(z)}{(k_a * \varphi)(z)} \prec h(z)$$

which means $f(z) \in I_a(\beta; h)$.

Now, let us state a representation Theorem for functions belonging to the class $I_a(\alpha; h)$ without a proof since it follows the idea of the proof of Theorem 6.

THEOREM 9. A function f(z) belongs to $I_a(\alpha; h)$ if and only if there exists a function $G(z) \in H(E)$ with G(0) = 0 such that $zG'(z)/G(z) \prec h(z)$ in E and an analytic function p(z) with p(0) = 1 and $p(z) \prec h(z)$ in E such that

$$(k_a * f)'(z) = \alpha^{-1} z^{-1/\alpha+1} \int_0^z p(t) G^{1/\alpha}(t) G'(t) dt \text{ if } \alpha \neq 0 \text{ and} (k_a * f)'(z) = p(z) G(z)/z, \text{ if } \alpha = 0,$$

Remark. If a = 1 and h(z) = (1 - z)/(1 + z). Theorem 7, Theorem 8 and Theorem 9 reduce to Theorem 1, Theorem 2 and Theorem 3 respectively of Chichra [1].

Paravatham and Radha

REFERENCES

- P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 67 (1977), 37-43.
- [2] P Eenigenburg, S. S. Miller, P. T Mocanu and M. O. Reade, On a Briot Bouquet differential subordination, Rev. Roumanie Math. Pures Appl. 79 (1984), 467-473.
- K. S. Padmanabhan and R. Manjini, Certain applications of differential subordination, Publ. Inst. Math. (Beograd) (N. S) 39 (53) (1986), 107-118.
- K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc. 37 (1985), 321-330.
- [5] N. N. Pascu, A-close-to-convex functions, Lecture Notes in Mathematics 743, Springer-Verlag. 1976, 331-335.
- [6] N. N. Pascu and V. Podaru On the radius of α-starlikeness for starlike function of order Beta, Lecture Notes in Mathematics 1013. Springer-Verlag 1981, 336-349.

Ramanujan Institute University of Madras Madras, 6000 005 India J. B.A. S. Women's College (Received 26 03 1987) (Affiliated to Univ. of Madras) Madras, 600 018 India