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DISTORTION THEOREMS FOR FRACTIONAL CALCULUS
OF CERTAIN ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Sang Keun Lee, Shigeyoshi Owa, Tadayuki Sekine and Milutin Obradovic¢

Abstract. We give some distortion theorems for fractional calculus of analytic functions
with negative coefficients belonging to a certain generalized class T} (j, «) introduced by Owa and
Lee [5].

Introduction. Let T} be the class of functions of the form

(1) fz)=2z- Z anz" (an > 0;ke N ={1,2,3,...})
n=k+1
which are analytic in the unit disk U = {z | z |< 1}.
For f(z) in T}, we define
D°f(z) = f(2),D'f(2) = Df(2) = 2f'(2),
Dif(z) =D(D’"'f(z))  (jEN).
The above differential operator D’ was introduced by Salagean [8].

With the differential operator D7, a function f(z) in T} is said to be in the
class Ty (j, «) if and only if

Re{DIf(z)/z} >a  (j € NU{0})

for some (0 < a < 1), and for all z € U.

In order to show our distortion theorems for fractional calculus of functions
in Tx(j, ), we need the following lemma due to Owa and Lee [5].

LEMMA. Let the function f(z) be in the class Ty,. Then f(2) is in the class
Ty (j, ) if and only if Y07, nla, <1—a.
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2. Distortion theorems for fractional calculus. Many essentially equiv-
alent definitions of the fractional calculus, that is the fractional derivatives and the
fractional integrals, can be found in the literature ([1,2, 6] and [7]. We find it
convenient to recall here the following definitions which were used recently by Owa

(3, 4]).

Definition 1. The fractional integral of order A is defined by

o 1 [T S©
DG = iy |, e

where A > 0, f(z) is an analytic function in a simply conneted region of the z-plane
containing the origin and the multiplicity of (z — £)*~! is removed by requiring
log(z — &) to be real when (z — &)

Definition 2. The fractional derivative of order A is defined by

oL d [T 1@
DO =y ), e

where 0 < A < 1, f(2) is an analytic function in a simply connected region of the z-
plane containing the origin and the multiplicity of (z—¢&)~ is removed by requiring
log(z — &) to be real when (z — &) > 0.

Definition 3. Under the hypotheses of Definition 2, the fractional derivative
of order (n + A) is defined by

DA f(2) =d"DX(2)/dz"  (0<A<1; ne€ NU{0}).
Now, we prove

THEOREM 1. Let the function f(2), defined by (1), be in the class T (j, ).
Then

i | 2 |12 L(k+2)T(2+ ) (1 -a) .
@ 102012 pEl {1 - TR A e,

A/ i | 2 1A L(k+2)(2+ M\ (1 - a)
@) IDIDUE) < F(2+>\){1 T(k+2+N)(k+ 1) 1 |Z|k}

For A\>0, 0<i<j, and z € U. The equalities in (2) and (3) are attained for the
function f(z) given by

(4) f(2)=2z—(1—a)k+1)I
Proof. We note that
= T+ 1DT(24+ )

(6)  TE+NDINDf(2) =2 - :ZH T(n+ 1+

zanzn
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Defining the function ¢(n) by

on) =Tn+1T2+N)/T(n+1+N) (n>k+1),
we can see that p(n) is decreasing in n, that is, that
(6) 0<g(n) <pk+1)=T(k+2)T(2+A)/T(k+2+ ).
On the other hand, our Lemma implies
(7) Z nla, <(1-a)(k+1)"07Y  (0<i<y).

n=k+1
Therefore, by using (5), (6) and (7), we have
|IT2+ N2 DINDf(2) > | 2 | —pk+ 1) [z [FF Y n'a,
n=k+1

Tk +2T2+ V(1 -a)
= Th+2+N)(k+ 1)1

| |k+1
which gives (2), and

ITR+N)2DADf(2) < |z | +ek+1) [z [FF Y nla,
n=k+1
T(k+2)0(2 + N (1 - a)

| 2 |k
T(k+2+\)(k+ 1)1

<lz[+

which shows (3)

Further, since the equalities in (2) and (3) are attained for the function f(2)
defined by

Zl A —
DD f(2) = + {I_F(k+2)r(2+>\)(1 A)zk},

L2+ A Tk+2+N)(k+ 1)1
that is, defined by (4), the proof of Theorem 1 is copmleted.

Taking ¢ = 0 in Theorem 1, we have:

COROLLARY 1. Let the function f(z) defined by (1) be in the class Ty (j, ).
Then

_ | z 1A Tk +2) T2+ AN)(1 - «a)

®) D7) 12 (2+>\){1_ T(k+2+ ANk +1)7 |Z|k}’
_ | z 1A Tk+2) 2+ N1 —a)

©) [ D) < (2+>\){1+ T(k+2+ Nk + 1) |Z|k}

for X\ > 0 and z € U. The equalities in (8) and (9) are attained for the function
f(2) given by (4).
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Remark. Letting A — 0 in Corollary, we have the former result by Owa and
Lee [5].

Next, we prove

THEOREM 2. Let the function f(z) defined by (1) be in the class Ty (j, ).
Then

0 D20 |z L - TR VA ) e,

(2-2) T(k+2+A\)(k+1)i~1
i |z |12 T(k+2)T(2+ N1 —a)
(11) | DX(D'f(2) I< T2 -\ {1 BTy ek |k}

for0 <A< 1,0<i<j—1, and z € U. The equalities in (10) and (11) are
attained for the function f(z) given by (4).

Proof . It is easy to see that

(12) PE-NADXDi(z) =2— 3 r(;(; Bf(f ;)A) e
n=k+1

Since the function
Y(n) =TM)I'(2-A)/T(n+1-)) (n>k+1)

is decreasing in n, we have

(13) 0<¢n) <¢Yk+1)=TE+1T2-N/T(k+2-N).
Further, note that our Lemma gives
(14) 3 ntla, < (1-a)(k+1) 0D

n=k+1

for f(z) € Ti(j, ). It follows from (12), (13), and (14) that

T2 - NADADSE) |2 2| ~g(k+ 1) 2 1 Y nitla,
n=k+1
P(k+2T2-N(1—a) | i
N sy e

which implies (10), and that

IT@ = NADXDH(2) < | 2 | +d(k+1) [ 2 [+ Y nitla,
n=k+1

T(k+2)0(2 - \)(1 - )

T(k+2—\)(k+ 1)1

<|z|+ | 2 M
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which gives (11).
Finally, we can see that the equalities in (10) and (11) are attained for the
function f(z) defined by

DMD () = 2 {1_F(k+2)r(2_x)(1_a) k}.

T2 -\ Th+2-N(k+ 1)1~
This completes the proof of Theorem 2.
Making ¢ = 0 in Theorem 2, we have

COROLLARY 2. Let the function f(z) defined by (1) be in the class Ty (j, ).

Then
| 2 [IA T(k+2)0(2 - \)(1 - )
1) 10O - s e |
|z 1A Ik+2)T2 =M1 —a) .
as) 10 s e {1 B RE 0 )

for 0 < A< 1 and z € U. The equalities in (15) and (16) are attained for the
function f(z) given by (4).

Remark 2. Letting A = 0 or A — 1 in Corollary 2, we have the former
theorems due to Owa and Lee [5].
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