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A NOTE ON CERTAIN CLASS DEFINED BY RUSCHEWEYH

DERIVATIVES

Milutin Obradovi�c and Shigeyoshi Owa

Abstract. The object of this paper is to prove new some results about the class M(n; �)
of analytic functions f(z) in the unit disk, de�ned by Ruscheweyh derivatives Dnf(z). That is, a
property of the classM(n;�) and the subordination theorems for Ruscheweyh derivatives Dnf(z)
are shown.

.

Introduction. Let A denote the class of functions of the form

(1) f(z) = z + a2z
2 + a3z

3 + � � �

which are analytic in the unit disk U = fz :j z j< 1g. Let the functions

fj(z) = z +
1X
n=2

an;jz
n (j = 1; 2)

be in the class A; then we de�ne the convolution product f1 � f2(z) of f1(z) and
f2(z) by

f1 � f2(z) = z +

1X
n=2

an;1an;2z
n:

With the aid of the above convolution product, Ruscheweyh [7] has introduced a
derivative Dnf(z) of f(z) by

Dnf(z) = z(1� z)�(n+1) � f(z) (n 2 N0 = f0; 1; 2; � � � g)

for f(z) 2 A. Note that

Dnf(z) = z(zn�1f(z))(n)=n! (n 2 N0):
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By using the Ruscheweyh derivative Dnf(z), Goel and Sohi [2] introduced a
subclass M(n; �) of A consisting of functions f(z) which satisfy the condition

RefDn+1f(z)=zg > � (n 2 N0)

for some �(0 � � < 1), and for all z 2 U . We observe that the class M(0; �) when
n = 0 is the subclass of A consisting of functions f(z) satisfying the condition
Reff 0(z)g > � for some �(0 � � < 1), for all z 2 U .

Let f(z) and g(z) be analytic un the unit disk U . Then a function f(z) is said
to be subordinate to g(z) if there exists an analytic function w(z) in the unit disk U
satisfying w(0) = 0 and j w(z) j< 1 (z 2 U) such that f(x) = g(w(z)). We denote
by f(z) � g(z) this relation. If g(z) is univalent in U , then the subordination
f(z) � g(z) iz equivalent to f(0) = g(0) and f(U) � g(U).

The concept of subordination can be traced back to Lindel�of [3], but Lit-
tlewood [4] and Rogosinski [6] have introduced the term and discovered the basic
relatons.

2. A property of the class M(n; �). Let us recall the following lemma by
Nehari [5]

Lemma 1. Let the function �(z) be analytic in the unit disk U such that

j �(x) j� 1 for z 2 U . Then

j �0(z) j� (1� j �(z) j2)=(1� j z j2) (z 2 U):

With the aid of Lemma 1, we derive

Theorem 1 Let the function f(z) de�ned by (1) be in the class M(n; �) with
0 � � � 1=2 and n 2 N0. Then, for z 2 U , we have

Re

�
Dn+2f(z)

Dn+1f(z)

�
�

(n+ 2)� 2(n+ 3)(1� �) j z j +(n+ 2)(1� 2�) j z j2

(n+ 2)(1� j z j)f1� (1� 2�) j z jg

Proof . Since f(z) 2M(n; �) implies

Dn+1f(z)=z � (1 + (1� 2(�)z)=(1� z) (z 2 U);

there exists an analytic function w(z) in the unit disk U with w(0) = 0 and j w(z) �
1(z 2 U) such that

(2) Dn+1f(z)=z = (1 + (1� 2�)w(z))=(1� w(z)):

Applying the Schwarz lemma, (2) can be written as

(3) Dn+1f(z)=z = (1 + (1� 2�)z�(z))=(1� z�(z)) (z 2 U);

where �(z) is analytic in the unit disk U and satis�es j �(z) j� 1 for z 2 U . Making
the logarithmic di�erentiations of both sides in (3), and using the identity

(4) z(Dn+1f(z))0 = (n+ 2)Dn+2f(z)� (n+ 1)Dn+1f(z);
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we obtain

z(Dn+1f(z))0

Dn+1f(z)
= 1 +

2(1� �)fz2�0(z) + z�(z)g

(1� z�(z))f1 + (1� 2�)z�(z)g
; or

(5)
Dn+2f(z)

Dn+1f(z)
= 1 +

2(1� �)fz2�0(z) + z�(z)g

(n+ 2)(1� z�(z))f1 + (1� 2�)z�(z)g
;

Therefore, from Lemma 1 and (5), it follows that

Re

�
Dn+2f(z)

Dn+1f(z)

�
�1�

2(1� �)fj z2�0(z) j + j z�(z) jg

(n+ 2)(1� j z�(z) j)f1� (1� 2�) j z�(z) jg
;

�1�
2(1� �) j z j (j z j + j �(z) j)

(n+ 2)(1� j z j2)f1� (1� 2�) j z�(z) jg

�1�
2(1� �) j z j

(n+ 2)(1� j z j)f1� (1� 2�) j z jg

=
(n+ 2)� 2(n+ 3)(1� �) j z j +(n+ 2)(1� 2�) j z j2

(n+ 2)(1� j z j)f1� (1� 2�) j z jg

which completes the assertion of the Theorem.

Taking n = 0 in Theorem 1, we have

Corollary 1. Let the function f(z), de�ned by (1), be in the class M(0; �)
for 0 � � � 1=2. Then, for z 2 U , we have

Re

�
1 +

zf 00(z)

f 0(z)

�
�

1� 3(1� �) j z j +(1� 2�) j z j2

(1� j z j)f1� (1� 2�) j z jg
:

3. Subordination Results. We need the following results by Eenigenburg,
Miller, Mocanu and Reade [1].

Lemma 2 Let the function p(z) and h(z) be analytic in the unit disk U such

that p(0) = h(0) = 1. Further, let h(z) be a convex and univalent function in

the unit disk U satisying the condition Ref�h(z) + g > 0 for complex numbers

�;  and for all z 2 U . If p(z); h(z); � and  satisfy the Briot-Bouquet di�erential

subordination

p(z) +
zp0(z)

�p(z) + 
� h(z); then p(z) � h(z) (z 2 U):

Lemma 3. Under the hypotheses of Lemma 2, if the Briot-Bouquet di�erential
equation

q(z) +
zq0(z)

�q(z) + 
= h(z) (q(0) = 1)

has a univalent solution, then p(z) � q(z) � h(z). Furthermore, q(z) is the best

dominant
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Applying the lemmas above, we derive

Theorem 2. Let a function h(z) be convex and univalent in the unit disk

U such that h(0) = 1 and Refh(z)g > 0 for z 2 U . For f(z) belonging to A and

n 2 N0, if

Dn+2f(z)=z � h(z); then Dn+1f(z)=z � h(z) (z 2 U):

Proof . De�ning the function p(z) by

(6) p(z) = Dn+1f(z)=z;

we know that p(z) is analytic in the unit disk U with p(0) = 1. Di�erentiating both
sides of (6), and applying (4), we have

(n+ 2)Dn+2f(z)=z � n(n+ 1)Dn+1f(z)=z = p(z) + zp0(z);

that is
Dn+2f(z)=z = p(z) + zp0(z)=(n+ 2) � h(z):

Consequently, by taking � = 0 and  = n+ 2 in Lemma 2, we complete the proof
of Theorem 2.

Letting n = 0 in Theorem 2, we have

Corollary 2. Under the hypothesis in Theorem 2,

if

f 0(z)xf 00(z)=2 � h(z); then f 0(z) � h(z) (z 2 U):

Further, by putting h(z) = f1 + (1� 2�)zg=(1� z) in Theorem 2, we have

Corollary 3. [2] For 0 � � � 1 and n 2 N0, we have M(n + 1; �) �
M(n; �).

Finally, we prove

Theorem 3. Under the hypotheses of Theorem 2, if the Briot-Bouquet dif-

ferential equation

q(z) + zq0(z)=(n+ 2) = h(z) (q(0) = 1)

has a univalent solution, then

(7) Dn+1f(z)=z � q(z) � h(z)

Furthermore, q(z) is the best dominant.

Proof . If we replace p(z by Dn+1f(z)=z and take � = 0 and  = n + 2 in
Lemmas 2 and 3, we see that the result follows from (7).
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