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A FIRST ORDER ACCURACY SCHEME

ON NON-UNIFORM MESH

Mirjana Stojanovi�c

Abstract. It is proved that the exponentially �tted quadratic spline di�erence scheme
derived in [5] and applied to the singularly perturbed two-point boundary value problem

"y00 + p(x)y0 = f(x); 0 < x < 1; 0 < "� 1;

y(0) = �1; y(1) = �1; p(x) � p > 0:

has the �rst order of uniform convergence on non-uniform mesh. In order to achieve the uniform
�rst order accuracy the special "almost uniform mesh" which satis�es the condition hi = hi�1 +
Mhi�1max(xi; ") was constructed. The results are illustrated by numerical experiments.

Introduction. In [5] is given an exponentially �tted quadratic spline di�er-
ence scheme for solving singularly perturbed two-point boundary value problem

(1) Ly = "y00 + p(x)y0 = f(x); 0 < x < 1; 0 < "� 1; y(0) = �0; y(1) = �1;

where �0, �1 are given constants on uniform mesh. The scheme has the uniform
�rst order accuracy.

In this paper we introduce for the scheme derived in [5] a non-uniform mesh
0 = x0 < x1 < � � � < xn = 1, hi = xi+1 � xi in order to increase the number of
points in the boundary layer.

There are two possibilities to obtain a small truncation error inside the layer,
namely, to choose a �ne mesh there, or-what is less trivial-to choose a di�erence
formula reecting the behaviour of the solution inside the layer. By chaining the
�tting factor ([5]) we have not succeeded to �nd a di�erence formula which on non-
uniform mesh, for pi = const would give truncation error equal to zero, or small
enough.
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So we choose the mesh which satis�es the condition,

hi = hi�1 +Mhi�1max(xi; ")

to preserve the same order of uniform accuracy which has been obtained on uniform
mesh.

The scheme [5] has the form

(2) Rhvi = Qhfi; i = 1(1)n� 1; v0 = �0; vn = �1;

where Rhvi = r�i vi�1 + rci vi + r+i vi+1, Q
hfi = q�i fi�1 + qci fi + q+i fi+1. The

coeÆcients of the scheme (2) are

r�i =
1

hi

�
cth %i + 1

cth %i

�
; r�i =

1

hi�1

�
cth %i�1 � 1

cth %i�1

�
; rci = �r�i � r+i ;

q�i =
1

pi�1

1

cth %i�1
; qci =

1

pi

1

cth %i
; q+i = 0; %i =

pihi
2"

pi = p(xi), fi = f(xi), where xi is the node-point of the subinterval [xi; xi+1),
i = 1(1)n� 1.

For the scheme above the following results have been obtained by using the
comparison function approach. The proof was derived in a fashion analogous to the
construction presented in [1] and consists of observing the two comparison function
'i = �2 + x and  = exp (��x="), where � is a constant to be chosen. The
following lemma bounds the behaviour of the solution y(x) of (1) and is used in the
comparison function proof to bound the truncation error.

The division into two comparison functions is a consequence of properties of
the exact solution.

Lemma 1. [1] Let f; p 2 C3[0; 1]. Then the solution of (1) has the form

y(x) = u(x) + w(x), where

(3) u(x) = �"y0(0) exp(�p(0)x=")=p(0)

(4) jw(i)(x)j �M(1 + "�i+1 exp(�2Æx=")); i = 0(1)n; j"y0(0)j �M;

and M and Æ are constants independent of " and h.

Thus,

(5) jy(x)j �M(exp (�p(0)x=")) + jw(x)j:

Let zi = y(xi) � vi where vi is the approximate and y(xi) is the exact solution of
the problem (1). With �i is denoted the truncation error of the scheme (2). The
scheme (2) satis�es the maximum principle [7].

Lemma 2. (Maximum principle) Let fvig be a set of values at the grid points

xi satisfying v0 � 0, vk � 0, and Rhvi � 0, i = 1(1)n� 1. Then vi � 0, i = 0(1)n.
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Corollary 1. If k1(hi; ") � 0, k2(hi; ") � 0 are such functions that

Rh(k1'i + k2 i) > Rh(�zi) = ��i then jzij � k1j'ij+ k2j ij.

To carry out a comparison function proof it is necessary to �nd lower bounds
for Rh'i and R

h i to bound j�ij, thus determining k1 and k2 and hence giving an
error estimate.

The proof of the uniform convergence on non-uniform mesh consists of Tay-
lor's expansions of the truncation error of the scheme (2) and operators in the point
(hi; hi). This way we separately observe the equidistant part and the part which
multiplies (hi�1; hi) with derivation of order hi�1. The proof for uniform part is
given in [5]. Here is shown that the non-uniform parts are of lower order than uni-
form parts, but with the mentioned condition on the mesh. So the order of uniform
convergence achieved on the uniform mesh is preserved.

Lemma 3. If the non-uniform mesh is regular, then there are constants M
and � independent of " an hi, so that the following inequalities hold:

(6)

(a) Rh'i �Mhi=" for hi � ",
(b) Rh'i �M for hi � ",
(c) Rh i �M(�i(�)hi=")=" for hi � ",
(d) Rh i �M(�i(�))=hi for hi � ",
(e) Rh i=exp (��hi�1=") �M(�i�1(�))=hi for hi � "

�(�) = exp (��hi="), where � is a constant be to chosen; hi = max(hi; hi�1).

Proof (a), (b) Rh'i = �hi�1r
�

i + hir
+
i = (cth %i)

�1 + (cth %i�1)
�1 and the

estimate

(7) cth %i�1 = cth %i + 0(M(hi�1 � hi)"=h
2
i ) for hi � ":

yields

Rh'i �Mhi=" for hi � "; and Rh'i �M for hi � ":

One can check that

(8) Rh i = r+i (exp (��xi�1=")[(r
�

i (exp (��hi�1=")� 1))=r+i +

+ exp (��hi�1=")(1� exp (��hi="))]:

By expanding this operator into Taylor's series we obtain

Rh i(hi; hi�1) = Rh i(hi; hi) + (hi�1 � hi)
dRh i
dhi�1

(hi; hi)

+
1

2
(hi�1 � hi)

2 d
2Rh i
dh2i�1

(hi; hi + �(hi�1 � hi)); 0 < � < 1:

Rh i(hi; hi) is estimated in [5]. These estimates are the same as in Lemma 3 when
hi = h.

The estimates (c), (d) are obtained by estimating the individual factors in
(8) for the three cases



158 Stojanovi�c

(i) hi=" � c, (ii) hi=" � C, and (iii) c � hi=" � C, (For appropriately chosen
c and C.)

For (i) and c suÆciently small

(9)
dRh i
dhi�1

(hi; hi) = �i(�)(��="hi)(��i � (�i=cth �i) +M(�hi=")):

This implies ����dR
h i

dhi�1
(hi; hi)

���� �M2�i(�)="
2:

Thus,

jRh i(hi; hi)j �Mhi�i(�)="
2 + (hi�1 � hi) �M1�i(�)="

2; for hi � c":

With our condition on the mesh this is obvious, but in fact this estimate does
not require any condition on the mesh. (All estimates are given for cth �i, and they
are valid for cth �i�1 because of (7)). The following estimate also holds

(10) �i�1 = �i + 0(M(hi�1 � hi)="):

For (ii) and for C suÆciently large

1� exp(��hi=") �M1; 1� exp (��hi�1=") �M2;

jr+i j �M3=hi;
r�i
r+i

=
hi
hi�1

�
2 exp (�2�i�1)

1� exp (�2�i�1)
�

cth �i
cth �i�1(cth �i + 1)

:

If " ! 0, then cth �i=(cth �i�1(cth �i + 1)) ! 1=2. Then the expression in
brackets in (8) is bounded by M4exp (��hi�1="). So we have (d):

jRh ij > M5(�i(�))hi:

(iii) (c and C are now �xed) and for hi suÆciently small

r�i =r
+
i = exp (�2�i�1) + 0(M6); r+i �M7=hi; 1� ri(�) �M8;

and we obtain jRh ij > M9(�i(�))hi. The expression (e) we obtain by dividing (d)
by exp (��hi�1=").

Theorem 1. Let f; p 2 C3[0; 1]. Let fvig, i = 0(1)n be a set of values of

the approximate solution of problem (1) obtained by using scheme (2), on the mesh

which satis�es the condition hi = hi�1 +Mhi�1max(xi; "). Then the following

estimate holds:

(11)

�
jy(xi)� vij �Mhi(1 + exp(�Æxi=")) for hi � "
jy(xi)� vij �Mhi(1 + exp(�Æxi�1=")) for hi � ":

Proof. The truncation error of y is the sum of the truncation errors of functions
u an w

�i(y) = �i(u) + �i(w):
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We separately give the proof for functions w(x) and u(x). We start with w(x). The
truncation error is de�ned as

�i = Rhy(xi)�Q(L(y(xi)) for i = 1(1)n� 1:

For y(x) suÆciently smooth the standard Taylor expansion of �i for " �xed has the
form (see [1]):

�i(y) = �0i y(xi) + �1i y
0(xi) + �2i y

00(xi) + � � �+R:

One can easily verify that, for the scheme (2) �0i and �1i are equal to zero, but we
must estimate �2i .

�2i =
hi
2

�
1 +

1

cth %i

�
+
hi�1
2

�
1�

1

cth %i�1

�
�

"

pi�1cth %i�1
�

"

picth %i
+

hi�1
cth %i�1

After ordering these terms we obtain

�
(2)
i =

(hipicth %i � 2")

2picth %i
+

(hi�1pi�1cth %i�1 � 2")

2pi�1cth %i�1
+
hi
2

1

cth %i
+
hi�1
2

1

cth %i�1

�
(2)
i =

wi

2picth %i
+

wi�1

2pi�1cth %i�1
+
hi
2

1

cth %i
+
hi�1
2

1

cth %i�1

For wi we can estimate jwij � h2i =(hi + ") (see [4] ). And we obtain

j�2i j �Mh2i =" for hi � "; j�
(2)
i j �Mhi for hi � ":

This implies

j�
(2)
i (wi)j �Mh2i (1 + exp (�Æxi=")=")=" for hi � "

and
j�
(2)
i (wi)j �Mhi(1 + exp (�Æxi=")=") for hi � "

Now we must estimate �
(3)
i

�
(3)
i =

hi
6

�
1 +

1

cth %i

�
�
hi�1
6

�
1�

1

cth %i�1

�
+
"hi�1
pi�1

1

cth %i�1
�
h2i�1
2

1

cth %i�1

and we have

j�
(3)
i j �Mh2i for hi � " and j�

(3)
i j �Mh2i for hi � ":

Thus,

j�
(3)
i (wi)j �Mh2i (1 + exp (�Æxi=")="

2) for all hi and ":

We can prove that the non-elaborated parts of �i(y) are of a minor order. In
a similar way we can estimate the remainder terms.

Applying Lemma 3 and Corollary I we obtain the �nal estimate for w(x).
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Estimate for u(x) = exp (�p(0)x="). The proof is based on the relation
�i(y) = Rhyi � QhLy = Rhui � Rhvi = �r � �q . (See [1]). We �rst consider the
case when hi � ".

Expanding this truncation error in Taylor's series at the point (hi; hi) we
obtain

�(hi; hi�1) = �(hi; hi) + (hi�1 � hi)
d�i
dhi�1

(hi; hi)+

+
(hi�1 � hi)

2

2

d2�i
dh2i�1

(hi; hi + �(hi�1 � hi)); 0 < � < 1:

The part �i(hi; hi) = �r(hi; hi) + �q(hi; hi) is de�ned on uniform mesh and is
estimated in [5]. This estimate is the same as (11), when hi = h.

Now we can estimate the �rst derivation of �i on the power hi�1.

d�i
dhi�1

(hi; hi) =
d�r
dhi�1

(hi; hi)�
d�q
dhi�1

(hi; hi):

We shall estimate these parts separately.

�r(hi; hi�1) = v�i
1

hi�1

�
1�

1

cth �i�1

��
exp

�p0
"
hi�1

�
� 1

�
:

where v�i = exp(�p0xi=").

Throughout the rest of the paper the terms which have been reduced to a
nice form where (6) yields (11) will be generically denoted by N .

d�r
dhi�1

(hi; hi) =

=
v�i
h2i

(cth �i�1 � 1)

cth �i�1

��
exp

�p0
"
hi

�
� 1

��
��i�1 �

�i�1
cth �i�1

� 1

�
+

+
�p0
"
hi

�
exp

�p0
"
hi

��
=
v�i
hi

p0
"

(cth �i�1 � 1)

cth �i�1

��
1 +

1

2

�p0
"
hi

�
+N

�
�
��i�1 �

�i�1
cth �i�1

� 1

�
+

�
1 +

�p0
"
hi

�
+

1

2

�p0
"
hi

�2
+N

��
=

=
v�i
hi

p0
"

(cth �i�1 � 1)

cth �i�1

�
1

2

(p0 � pi�1)

"
hi +O

�
h2i
"2

��
:
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Now we estimate the part �q .

(14)

��q(hi; hi�1) = ��q(hi; hi) + (hi�1 � hi)
d�q
dhi�1

(hi; hi)+

+
1

2
(hi�1 � hi)

2 d
2�q

dh2i�1
(hi; hi + �1(hi�1 � hi)); 0 < � < 1;

��q(hi; hi�1) = v�i
p0
"
�
(p0 � pi�1)

pi�1
�
exp (p0hi�1=")

cth �i�1
d�q
dhi�1

(hi; hi) =
v�i
hi

�p0
"

� (p0 � pi�1)

pi�1

exp (p0hi=")

cth 2�i�1
�

�((p0hicth %i�1)="+ %i�1cth
2%i�1 � %i�1):

The di�erence between (13) and (14) gives

d�r
dhi�1

�
d�q
dhi�1

=
v�i
hi

�p0
"

� (p0 � pi�1)

pi�1
�

1

cth 2%i�1
�

�

�
%i�1cth %i�1(cth %i�1 � 1)� exp

�p0
"
hi

�
�

� (%i�1cth
2%i�1 � %i�1 +

�p
"
hi

�
cth %i�1

�
+

+
v�i
hi

�p0
"

� (cth %i�1 � 1)

cth %i�1
�O(h2i ="

2) =

=
v�i
hi

p0
"

(p0 � pi�1)

pi�1

1

cth 2%i�1

�
� %i�1cth i�1 + %i�1�

�
�p0
"
hi

�
cth %i�1 �

�p0
"
hi

��
1 +

1

2

�p0
"
hi

�
+N

�
�

�
�
%i�1cth

2%i�1 � %i�1 +
�p0
"
hi

�
cth %i�1

��
+ UM =

=
v�i
hi
�
p0
"
�
(p0 � pi�1)

pi�1
�

1

cth 2%i�1
[O(M)] + UM :

The hardest parts of (13) and (14) are cacelled. Thus,

���� d�r
dhi�1

�
d�q
dhi�1

���� �M
h2i
"
v�i ; for hi � ":

The part UM is a part of
d�r
dhi�1

which gives a condition on the mesh.

UM =
v�i
hi

�p0
"

� cth %i�1 � 1

cth %i�1
� O(

h2i
"2
) =

jUM j �Mhiv
�

i ="
3 for hi � ":
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If we substitute these items in (12) we obtain:

(15) j�i(hi; hh�1)j �Mh2i v
�

i ="
2 + (hi�1 � hi)[Mh2i ="+Mhi="

3]v�i +N:

We must set a condition on the mesh in order to achive the �rst order of
uniform convergence.

If we set the condition hi�hi�1 =M1hi�1max(xi; ") the estimate (15) yields

j�i(hi; hh�1)j �Mh2i v
�

i ="
2 �M1hixi [Mh2i ="+Mhi="

3]v�i +N

� (Mh2i ="
2 +M3h

3
i +M3h

2
i ="

2)v�i exp(�Æxi=") +N:

The condition on the mesh is important because the truncation error of the
scheme for uniform mesh is equal to zero for pi = p = const. and r�i =r

+
i =

exp (�2�i�1). But in the case of a non-uniform mesh when we separate the uniform
part we obtain the part in �r which requires a condition on the mesh.

The �nal estimate of �i for u(x) is

j�ij �Mh2i ="
2exp (�Æxi="); 0 < Æ < 1 for hi � "

Applying Lemma 3 and the maximum principle we obtain the Theorem.

We now commence the task of treating the error in u(x) when hi � ". Then,
��q = (p0v

�

i =")[�xi�1p
0

1(�1)q
�

i exp (p0hi�1=")� xip
0

2(�2)q
c
i ], where x0 � �1 � xi�1,

and x0 � �2 � xi. We obtain the estimate j�q j � Mexp (��xi�1=") because of

jq�i j �M , and jqci j �M . The maximum principle and Lemma 3 leads to (11).

Taylor's expansion of �r(hi; hi�1) at the point (hi; hi) is

�r(hi; hi�1) = �r(hi; hi) +
hi�1 � hi

1!

d�r
dhi�1

(hi; hi)+

+
(hi�1 � hi)

2

2!

d2�r
dh2i�1

(hi; hi + �3(hi�1 � hi)); 0 < �3 < 1:

The part �r(hi; hi) is estimated in [5]. Using (13) we obtain

jd�r=dhi�1(hi; hi)j �M(1=")(exp (�Æxi=")):

The above estimate and (16) give that assertion (11) is valid for hi � ".

Remark 1. Using the estimate tkexp (�t) � c(�)exp (��t), 0 < t < 1, 0 <
� < 1 (see [2]) we can obtain for hi � " the �nal estimate

jy(xi)� vij �Mhi +M" exp (�Æxi�1="):

Numerical results. The computations reported in this section were done
on Delta 340 (PDP-11/34) computer in fortran IV-plus in double precision with 16
signi�cant �gures.
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We give some numerical, results for our di�erence scheme (2) applied to the
problem given in [3]: "y" � y0 = x, with boundary condition y(0) = 0, y(1) = 0.
This problem has the exact solution:

y(x) = 0:5x2 � "x+ (("� 0:5)=(1� exp (�1="))(1� exp (�x=")):

The test of uniform convergence used in this section was described in [6]. The
notation is also taken from [6].

The coarsest mesh consists of 8 or 16 points arranged in interval [0; 1] by
hi = hi�1 + Mhi�1xi where h0 and M are constants to be chosen. The �ner
meshes are obtained by halving the previous meshes.

Table 1 indicates that the scheme (2) on a non-uniform mesh produces a �rst
order of uniform accuracy. If we choose h0 = 0:05570 and M = 0:04481 we obtain
a mesh which consists of 5 from 16 points arranged at the �rst quarter of interval
[0; 1].

h0 = 0:05570;M = 0:04481:

"nk

1
1/2
1/4
1/8
1/16
1/32
1/64
1/128
1/256
1/512

1

0.101E+00
0.102E+01
0.104E+01
0.108E+01
0.115E+00
0.123E+00
0.125E+00
0.114E+00
0.967E+00
0.950E+00

2

0.100E+00
0.102E+01
0.102E+01
0.104E+01
0.108E+01
0.145E+01
0.122E+00
0.125E+00
0.115E+00
0.100E+00

3

0.100E+01
0.101E+01
0.101E+01
0.102E+01
0.104E+01
0.108E+01
0.115E+01
0.123E+01
0.126E+00
0.115E+00

4

0.100E+01
0.100E+01
0.101E+01
0.101E+01
0.102E+01
0.104E+01
0.108E+01
0.115E+01
0.223E+01
0.127E+00

5

0.100E+01
0.100E+01
0.100E+01
0.101E+01
0.101E+01
0.102E+01
0.105E+01
0.108E+01
0.115E+01
0.124E+01

Py

0.100E+00
0.101E+01
0.102E+01
0.103E+01
0.106E+01
0.164E+01
0.115E+01
0.117E+01
0.115E+01
0.112E+00

Theoretical order of uniform convergence: 1.

Computed order of uniform convergence: 0.112E+01.

Table 2 contains the same test of uniform convergence for the special mesh
which consists of 7 points at the �rst quarter of the interval [0; 1], and only one on
the rest of it.

h0 = 0:0569;M = 22:0000:

Theoretical order of uniform convergence: 1.

Computed order of uniform convergence: 0.912E+00.
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"nk

1
1/2
1/4
1/8
1/16
1/32
1/64
1/128
1/256
1/512

1

0.957E+00
0.918E+01
0.864E+01
0.104E+01
0.906E+00
0.760E+00
0.715E+00
0.714E+00
0.710E+00
0.709E+00

2

0.980E+00
0.105E+01
0.112E+01
0.120E+01
0.120E+01
0.109E+01
0.935E+00
0.882E+00
0.878E+00
0.875E+00

3

0.100E+01
0.103E+01
0.106E+01
0.113E+01
0.121E+01
0.123E+01
0.116E+01
0.100E+01
0.949E+00
0.945E+00

4

0.100E+01
0.101E+01
0.104E+01
0.109E+01
0.114E+01
0.119E+01
0.125E+01
0.119E+01
0.104E+01
0.980E+00

5

0.100E+01
0.101E+01
0.102E+01
0.104E+01
0.108E+01
0.117E+01
0.119E+01
0.126E+01
0.120E+01
0.105E+01

Py

0.987E+00
0.100E+01
0.100E+01
0.110E+01
0.111E+01
0.109E+01
0.105E+01
0.101E+01
0.955E+01
0.912E+00

The quotient of the di�erence of approximate solutions calculated at the same
points of the two consequent meshes (log2 of that quotient gives the rate of uniform
convergence) is smaller in the boundary layer than at the middle, or at 3=4 of the
interval [0; 1]. Our fortran programm chooses the maximum of that di�erence, and
in this case it tends to the end of the interval. Thus, we obtain weaker results in
the Table 2, because the maximum is calculated on the part of interval which has
small number of points.

We can see it from the next Table 3. If we compute for " = 1=64 the di�erence
between real and approximate solution at the second point of the meshes which have
N subintervals we obtain:

h0 = 0:0569; M = 22:0000

N 32

0.211E-01

64

0.102E-01

128

0.450E-02

256

0.196E-02

512

0.888E-03

1024

0.420E-03

The maximum error for the same " is on the 3=4 of interval [0; 1], and amounts:

N 32

0.125E-00

64

0.606E-01

128

0.268E-01

256

0.117E-01

512

0.530E-02

1024

0.251E-02

We can compare these results with results obtained on the mesh computed
in Table l. when h0 = 0:05570, N = 0:04481, for the same ".

The di�erence between exact and approximate solution in the second point
is:

N 32

0.167E-01

64

0.740E-02

128

0.344E-01

256

0.165E-02

512

0.810E-02

1024

0.401E-03

The maximum error at the third point is given by:

N 32

0.191E-01

64

0.846E-02

128

0.393E-02

256

0.189E-02

512

0.923E-03

1024

0.458E-03
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Table 4. presents some values zs = max
i
jy(xi) � vij where y(x) is exact and

vi is approximate solution for these meshes from Table 1 and Table 2, calculated
for some ".

h0 = �0:05570;M = 0:04481:

"nN

1/512
0.00001

32

0.287E-01
0.306E-01

64

0.135E-01
0.154E-01

128

0.593E-02
0.768E-02

256

0.254E-02
0.384E-02

512

0.112E-02
0.191E-02

1024

0.522E-03
0.952E-03

h0 = 0:0569;M = 22:0000

"nN

1/512
0.00001

32

0.137E+00
0.138E+00

64

0.715E-01
0.734E-01

128

0.359E-01
0.377E-01

256

0.173E-01
0.191E-01

512

0.799E-02
0.961E-02

1024

0.346E-02
0.482E-02

These results and discussion of the Table 3 suggest that it would be the
best to choose a mesh with more points in the boundary layer and after that the
uniform mesh (or some another non-uniform mesh because that part of solution is
independent of condition on the mesh which we set).
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