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ON A LIMIT THEOREM FOR RANDOM SEQUENCES

Slobodanka Jankovi�c

Abstract. A limit theorem concerning sequences of maxima with random indices is proved
under less restricted conditions than in [3].

Let Xn1 ; Xn2 ; . . . ; Xnkn ; . . . be a sequence of independent, identically dis-
tributed random variables for each n = 1; 2; . . . ; kn !1 when n!1, and let Nn

be a sequence of non-negative random variables independent of Xnk.

Let us introduce the following notations:

PfXnk < xg = Fn(x); k = 1; 2; . . .

Ykn = max
1�k�kn

fXnkg; YNn
= max

1�k�Nn

fXnkg:

In [1], a version of "transfer,' theorem for maxima was proved, which gave
suÆcient conditions under which the weak convergence of distributions of maxima of
a random number of random variables, follows from the convergence of distributions
of maxima with nonrandom index. Namely, it was shown that from the conditions

(A) lim
n!1

PfYkn < xg = F (x), and

(B) lim
n!1

P

�
Nn

kn
< x

�
= A(x), A(0) = 0,

it follows that the following condition (C) is ful�lled

(C) lim
n!1

PfYkn < xg = G(x),

where

G(x) =

1Z
0

((F (x))y dA(y).

A survey on the limit theorems for maxima with random indices could be
found in [2].
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The question whether (B) follows from the conditions (A) and (C) and (A)
from (B) and (C), imposes itself naturally i w connection with the mentioned theo-
rem. That was investigated in [3], where it was shown that the condition (A) follow,
from (B) and (C). However, the proof that (A) and (C) imply (B), was given only
in the following special (though important) case.

Let X1; X2; . . . ; Xn; . . . be a sequence of independent and identically dis-
tributed random variables, Yn = max fX1; . . . ; Xng, such that for some special
choice of normalizing constants an > 0 and bn, the probability distribution of
a�1n (Yn � bn) converges, as n ! 1, to a non-degenerate limit distribution F (x).
Namely, a special case of the initial problem, when Xnk = a�1n (Xk�b) and kn = n,
was considered, and, accordingly, instead of the conditions (A), (B) and (C), the
following conditions took their place:

(A0) lim
n!1

Pf(Yn � bn)=an < xg = F (x), and

(B0) lim
n!1

PfNn=n < xg = A(x), A(0) = 0,

(C0) lim
n!1

Pf(YNn
� bn)=an < xg = G(x), where G(x) =

1Z
0

((F (x))y dA(y).

It was shown that (A0) and (C 0) imply (B0). It should be emphasized that
in this case the class of all possible proper limiting probability distributions (de-
termined by (A0)), is the max-stable (or extremal) class which contains only three
distribution types, while the class determined by the condition (A) is the class of
all probability distributions. Here, we shall prove a version of this theorem under
weaker conditions then (A0) and (C 0). An example, which shows that, if our condi-
tions are not ful�lled, the statement of the theorem need not hold, will follow the
proof of the theorem.

In the sequel we shall consider only proper probability distributions.

It is clear from the condition (C) that the sets of continuity points of F and
G coincide.

By !(F ) we shall denote the upper endpoint of F (x), de�ned by !(F ) =
sup fx : F (x) < 1g.

Theorem. Let the conditions (A) and (C) be ful�lled, let F (x) be continuous

at the upper endpoint and let us suppose that the sequence xn, n = 1; 2; . . . exists,

such thatX
i

(� logF (xi))
�1 = +1; 1 = F (x1) > F (x2) > � � � > F (xn) > � � � ! 0:

Then the condition (B) is ful�lled.

Proof. We shall follow the same method of proof as in [3]. Namely, in order to
prove that the sequenceNn=kn converges, we shall prove that it converges complete-
ly, which is equivalent to stochastic boundedness of the sequence of corresponding
probability distributions, and that the limit is unique.
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Let us suppose that Nn=kn is stochastically bounded. In that case, in order
to prove (B), it suÆces to prove that all convergent subsequences PfNnr=knr < xg
of the sequence PfNn=kn < xg have the same limit. If that were not true, then
the subsequences n0 and n00 of the sequence n would exist, such that

An0(x) = PfNn0=kn0 < xg !
n0!1

A1(x); and

An00(x) = PfNn00=kn00 < xg !
n00!1

A2(x); A1(x) 6= A2(x);

holds. But then, according to the transfer theorem, there would be

(1) G(x) =

1Z
0

((F (x))y dA1(y) =

1Z
0

((F (x))y dA2(y); x 2 R

Let us denote by L1(t) and L2(t) the Laplace transforms of probability distributions
A1(x) and A2(x), respectively. Then, we can rewrite (1) in terms of L1 and L2.

(2) G(x) = L1(� logF (x)) = L2(� logF (x)); x 2 R:

The Laplace transforms L1 and L2 coincide on the set of points fsng, sn =
� logF (xn), n = 1; 2; . . . , which, by assumption satisfy the following conditions

(3)
X
i

(si)
�1 = +1; and 0 = s1 < s2 < � � � < sn < � � � ! +1

Laplace transform is uniquely determined by its values on the set of points
satisfying the condition (3) (see [4], [5]), hence the corresponding probability distri-
butions are uniquely determined too. Therefore, from (2) we deduce that A1 � A2.

It remains to prove the stochastic boundedness of the sequence Nn=kn. Sup-
pose that this does not hold, i. e. that there is some "0 > 0, such that for every
r 2 N , there exists n, such that the following inequality is valid

P

�
Nnr

knr
� r

�
� "0; nr !1 as n!1:

By the condition (A), we have

PfYknr �r < xg !
r!1

F (x)

The sequence
PfYknr �r < xg; r = 1; 2; . . .

tends to zero as r !1, for every x < !(F ). We have

PfYr�knr < xg = (Fnr (x))
r�knr ;

and hence, there exists some "1 > 0, such that for each x < !(F )

lim
n!1

PfY r � knr > xg � "1 > 0:
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From the independence of Nn from Xnk from (3) and (4) and from the fact
that, for j > k,

PfYnk > xg � PfYnj > xg;

it follows that for each x < !(F ), we have

lim
n!1

PfYNn
> xg � lim

r!1
PfYNnr

> xg

� lim
r!1

1X
k=1

Pf max
1�j�k

fXnrjg > xgPfNnr = kg

� lim
r!1

X
k�r�knr

Pf max
1�j�k

fXnrjg > xgPfNnr = kg

= "1 � PfNnr � r � knrg

= "1 � "0 > 0:

When x > !(F ), we get that the limiting probability distribution G has a
jump at the upper endpoint !(F ), contrary to the assumption of the theorem, which
proves the stochastic boundedness of the sequence Nn=kn. The proof is completed.

Example. Let us suppose that

A) F (x) = lim
n!1

PfYkn < xg =

8<
:

0 x < 0
x 0 � x < 1=2
1 x � 1=2

C) G(x) = lim
n!1

PfYkn < xg =

8<
:

0 x < 0
x=2 0 � x < 1=2
1 x � 1=2

the continuity of F , G being violated at the upper endpoint !(F ) = !(G) = 1=2.
Then the corresponding Nn satis�es

P

�
Nn

kn
< x

�
=

8<
:

0 x � 1
1=2 1 < x � n
1 x > n

and consequently

A(x) = lim
n!1

P

�
Nn

kn
< x

�
=

�
0 x � 1
1=2 x > 1

is an improper probability distribution.
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