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SOME PROPERTIES OF THE COMBINATIONAL MEASURE

OF COMPLEXITY OF BINARY WORDS

S. Stojanovi�c and B. Vidakovi�c

Abstract. We state and prove some basic properties of the measure C(x) introduced in
Vidakovi�c [4], and draw a parallel between this and known ine�ective measures of complexity.

Introduction

The theory of algorithmical complexity of �nite binary words that has been
rather developed since the pioneering works of Kolmogorov [I] and Chaitin [2] main-
ly deals with ine�ective measures of complexity. The best one can do is to approxi-
mate an ine�ective measure by a general recursive function, but the approximation
would not be constructive. The combinational complexity of a binary word f of
length 2n is de�ned by combinational complexity of the Boolean function repre-
sented by the word x. The measure introduced this way is e�ective and it can be
extended to words of arbitrary length. Many of its features are similar to those of
the known ine�ective measures.

Notation and de�nitions

Let us suppose the given alphabet is A = f0; 1g, and Xn to be the set of
all words of length n; X = [nXn will denote the set of all �nite words and
x; y; z elements of X . l(x) is the length of the word x. To record a pair of
words x = x1x2 . . .xn and y in a form of one word, we use the coding xy where
x = x1x1x2x2 . . .xnxn01. By a

k we denote the product of concatenating a k times.
By F (X) 4 G(X) we denote the predicate (9C)(8x)F (x) � G(x) + C.

The complexity of the word x with respect to a partially recursive function
F is the number KF (x) = minfl(p) jF (p) = Xg. There exists an optimal partially
recursive function F 0 such that for any other partially recursive function G and
for any x one has KF0(x) � KG(x) + C, where C depends only on G. Instead of
KF0(x) we write K(x); the basic properties of this measure can be found in [6].
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Let Fn be the set of all Boolean functions of n variables and &, _, : be
respectively the conjunction, disjunction and negation symbols. They make the
base B0. Let further � be an oriented acyclic graph. We shall say that a vertex of
� is of type (p; q) if the input degree of that vertex is p and the output degree is
q. We shall consider only graphs all of whose vertices are of type (0; 1) (inputs),
(1; 1) (negation), (2; 1) (conjunction and disjunction), (1; p), p � 2 (branching), or
(p; 0), p = 1; 2 (outputs); see �g. 1.

Fig. 1

Vertices of type (1,0), (1,1), (2,0) or (2,1) will be called interior and each of
them realizes a Boolean function of n arguments. We shall say that the graph �
realizes f if one of its inside vertices realizes f . The graph � obtained from the
function f by a given synthesis algorithm A will be denoted �f;A. Let v be the
lexicographical coding v : f1; 2; . . . ; 2ng ! X2n . For each word x = x1x2; . . . ; x2n 2
X2n there is a unique function f 2 Fn such that f(v(i)) = xi, i = 1; 2; . . . ; 2n. For
that reason in the sequel we shall not distinguish between words of length 2n and
corresponding Boolean functions. If j� j denotes the number of interior vertices of
the graph � then LA(x) = j�x;Aj is the combinational complexity of the Boolean
function x with respect to the synthesis algorithm A.

De�nition 1. [4] Combinational complexity of the word x 2 X2n with respect
to the synthesis algorithm A is the number CA(x) = nLA(x).

Remark. The multiplier n is necessary to ensure the introduced measure of
complexity be in accordance with the already existing measures.

The apparent diÆculty that the introduced measure depends on the choice
of the synthesis algorithm is disposed by the following

Theorem 1. There exists an algorithm A0 (the searching algorithm) such
that for any other algorithm B and x 2 X2n one has

CA0
(x) � CB(x)

Proof. There is only �nitely many acyclic graphs with n inputs and a �xed
number of interior vertices. Also it is possible to check if some of their interior
vertices realize x. Since the base B0 is complete this searching procedure eventually
terminates. �

We shall denote DA0
(x) simply by C(x).
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Remark. The function C(x) is a constructive function, but even for small
lengths of words, for example for n = 4 (l(x) = 24) we have to check a large number
of graphs. For n = 5 it is still possible to solve the problem with a computer (it
takes a few hours of machine working time). But for n > 8 the e�ective calculation
of the function value C(x) is practically impossible.

The basic properties of the measure C(x)

Theorem 2. For "almost all" words x 2 X2n one has C(x) > 2n.

Proof. Let N(n;m) be the number of minimal graphs of complexity m with
n inputs. It can be shown that N(n;m) � (n+m)2m3m=m!. Each minimal graph
corresponds to only one function. Indeed if a graph is minimal for two function
f1 and f2, then by elimination of the vertex realizing f1 we obtain a graph which,
due to acyclicity, realizes f2, contradicting the minimality hypothesis. Let us now
establish a correspondence between minimal schemes and words in the alphabet
A � A � B0, where A = fx1; . . . ; xn; 1; . . . ;mg, x1; x2; . . . ; xn are inputs, B0 =
f:;&;^g, and 1; 2; . . . ;m are codes of interior vertices. If the element i is preceded
by elements a and b (We assume a = b in the case of :) whose codes are va and vb
and if the element i is of type Bi 2 B0 than we de�ne the i-th letter of the word
s coding our graph to be (va; vb; Bi). From the word s it is possible to reconstruct
the graph up to isomorphism. The number of di�erent words of length m in the
alphabet A�A�B0 is 3

m(n+m)m(n+m)m. The m! di�erent codings of interior
vertices all give rise to isomorphic schemes, so we haveN(m;n) = 3m(n+m)2m=m!.
Let N(m;n) =

Pm
i=1N(i; n); then N(m;n) � (m + n)2m+2=(m + n � 1)2. Since

ln(N(2n=n; n)=22
n

) ! �1, we have N(2n=n; n) = 22
n

! 0, as n ! 1. In other
words, the relative frequency of words from X2n whose complexity does not exceed
2n converges to 0, which proves the theorem. �

Let w(x) =
Pl(x)

i=1 xi be the "weight" of the word x. It can be proved that

"almost all" words x have weight close to l(x)=2, i.e. jw(x) � 2n�1j � n2n=2. Any
considerable deviation of the weight from half-length should decrease the complex-
ity. Indeed

Theorem 3. If x 2 X2n , then C(x jw(x) = s) � n2(minfs; 2n � sg+ 1).

Proof. Let, A be the algorithm of synthesis of PDNF. Let �k be the graph
realizing the elementary conjunction K = x�11 & . . .&x�nn , where �i 2 f0; 1g and

x�ii =

�
xi; �i = 1;
:xi; �i = 0:

Then j�kj = n+ (n� 1), The weight s of the word x is the number of elementary
conjunctions, so j�x;Aj � n+ s(n� 1) + s� 1 � n(s+ 1). This estimation should
be taken for words of small weight. An analogous estimation applies in the case of
big weights we take PCNF which consists of 2n � s elementary disjunctions. �

We note that for every n there exist words x 2 X2n such that C(x) = 0. A
typical example is 111 . . . 1000 . . . 0; the corresponding graph has no interior vertices
and values are "read" o� from the input x1.
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If we order the set X2n respecting the increasing of complexity and denote
C�(2n) = maxfC(x); x 2 X2ng, then the so called "Shannon e�ect" holds for the
measure C(x), i.e.

Fig. 2

k(n)=22
n

! 0 (Fig. 2, Theorem 2). This e�ect shows that the measure C is correctly
de�ned, i.e. that non-complex words are few in number and that the complexity of
most words is close to their length.

The presence of any de�nable regularity decreases the measure of complexity.
For example:

(i) If x = 02
n

or x = 12
n

, then C(x) � 2n.

(ii) If the word x 2 X2n corresponds to a symmetric function, then C(x) �
c � n2, where c depends on the choice of the base. (For bases B0 and F2 one has
respectively c = 52 and c = 5.)

Fig. 3

(iii) If the word x 2 X2n corresponds to a symmetric function, then
#fx jC(x) � 5n2=2� 5ng � 2n.

The statements (ii) and (iii) are proved in [3]. For (i) we have on Fig. 3.
depicted a scheme realizing x = 02

n

. Since j�xj = 2 holds, C(x) � 2n. The case
x = 12

n

is analogous.

Theorem 4. For every word X 2 X2n one has K(x) 4 C(x)(2+O(l(n)=n)).

Proof. Let a word p and a function F be such that F applied to p synthetises
a scheme �x and then x itself. All symbols of the alphabet A (Theorem 2.) are
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codes by words of length l(n+ L(x)), which we denote t. As a code for x one can
take

p = tja01a
00
1s1ja

0
2a

00
2s2j . . . ja

0

L(x)a
00

L(x)sL(x)j;

where a0i; a
00
i 2 A, si 2 B0, i = 1; 2; . . . ; L(x). So

K(x) 4 KF (x) � l(p) = 2l(t) + 2 + L(x)(2l(a) + l(s)) �

� n�1C(x)(2l(C(x)=n+ n) + 2) + 2l(l(C(x)=n) + 2

� C(x)(2 +O(l(n)=n)): �

Theorem 5. For every word X 2 X2n one has K(C(x)) 4 K(x).

Proof. Let F0(px) = x, i.e. K(x) = l(px). Let G be the function which
calculates x using the program px, and then �nds a minimal scheme �x and �naly
calculates C(x). We have

K(C(x)) 4 KG(C(x)) = l(px) = K(x): �

It is of practical interest to have the measure of randomness of binary words
which is easily calculable. It is possible to de�ne nonparametric tests of randomness
of binary words based on the their measure of complexity. The word x is random
if C(x) is close to l(x), that is if

C(x) � l(x)�A(�; l(x));

where A(�; l(x)) is the constant depending on the given signi�cance level � and the
length l(x).
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