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SOME SPECIAL CASES OF PARALLEL DISPLACEMENTS

IN RECURRENT FINSLER SPACES

Irena �Comi�c

Abstract. Some special cycles of line elements in the recurrent Finsler space Fn are con-
sidered. If the vector is parallely transported along one of the cycles of lineelements the di�erence
between the original vector and the one obtained after parallel transportation is expressed by
some of the curvature tensor. The method used here is the generalisation of that, used by Varga
[1], for the non-recurrent Finsler space.

1. Introduction. Let us consider Finsler space Fn in which the metric
function is F (x; _x) and the metric tensor is de�ned by

g��(x; _x) = 2�1 _@� _@�F
2(x; _x):

De�nition 1.1. The Finsler space is called recurrent and is denoted by Fn

when there exist vector �elds �(x; _x) and �(x; _x) homogeneous of degree zero in
_x such that [2]

(1.1) g��j = @ g�� � F _@Æ g�� �
� Æ
Æ  � � �Æ

�  gÆ� � � �Æ
�  g�Æ = � g��

(1.2) g��j = F _@Æ g�� (Æ
Æ
 �A Æ

Æ )�A Æ
�  g�� �A

Æ
�  gÆ� = � g��

(1.3) Dg�� = g�� jdx
 + g�� jDl



(1.4) Dl = dl + �
�
Æ � dx

� +A


Æ � Dl
�;

where D denotes the absolute di�erential which corresponds to the change of the
lineelement from (x; _x) to (x+ dx; _x+ d _x) and "Æ" means the contracton by l. The
connection coeÆcients � � and A are determined under conditions

� �
�� = � �

��(1.5)

A�� = A��:(1.6)
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From (1.1) and (1.5) � �
�� may be determined in the unique way and similarly

(1.2) and (1.6) determine A�� . The connection coeÆcients obtained in this way
are generalisations of the Cartan connections in the case of a non recurrent Finsler
space (when � = 0 and � = 0).

Using the notation fT��g+ f��g = T�� + T�� � T�� we have [3]

(1.7) 2� �
�� = f@ g�� � F _@Æ g�� �

�Æ
Æ  � � g��g+ f��g

(1.8) 2� �
Æ� = 2 �� l

� � F _@Æ g��
�Æ
Æ Æ � (� l� + �0g� � ��l)

(1.9) 2� �
Æ �Æ = 2 Æ �Æ � (2�ol� � ��);

where �� is the Christo�el symbol. Further we obtain

(1.10) 2A�� = fF _@� g� � F _@Æ g� A
Æ

Æ � � �� g�g+ f��g

(1.11) 2AÆ� = �F _@Æ g�A
Æ

Æ Æ � (�Æg� + �l� � ��l)

(1.12) 2AÆ �Æ = �(2�Æl� � ��)

We shall suppose that in Fn all vector and tensor �elds are homogeneous of
degree zero in _x.

Lemma 1.1. If in Fn�
�
j� and ��j� are de�ned by

��j� = @��
� � F _@Æ �

� � �Æ
Æ � + � ��

Æ ��
Æ(1.13)

��j� = F _@Æ �
�(ÆÆ� �A Æ

Æ �) +A �
Æ ��

Æ ;(1.14)

then

��j� = @��� � F _@� �� �
�Æ
Æ � � � �Æ

� ��Æ(1.15)

��j� = F _@Æ ��(Æ
Æ
� �A Æ

Æ �)�A Æ
� ��Æ(1.16)

Proof. From ��j� = (g�Æ�
Æ)j� = g�Æj��

Æ + g�Æ�
Æ
j� by using (1.13) (1,1) and

g�Æ@��
Æ = @��� � �Æ@�g�g�Æ

(1.17) g�Æ _@��
Æ = _@��� � �Æ _@�g�Æ

we obtain (1.15). From

��j� = (g�Æ�
Æ)j� = g�Æj��

Æ + g���
Æj �

by using (1.16) (1.2) and (1.17) we have (1.16).
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Using the notations of (1.13){(1.16) we have

D�� = ��j� dx
� + ��j�Dl

�; D�� = ��j� dx
� + ��j�Dl

� :

Lemma 1.2. In F
n
vector dx is normal to � i� �+ 2l is normal to Dl i.e.

� dx
 = 0, (� + 2 l)Dl

 = 0:

Proof. From g��l
�l� = 1 we get Dg��l

�l� + g��l
�Dl� = 0.

Using (1.3), (1.1) and (1.2) we have

(1.18) � dx
 = 0, (� + 2 l)Dl

 = 0:

from which the statement follows.

An obvious consequence of (1.18) is:

Lemma 1.3. If the vector l is parallely transported from (x; _x) to (x+ dx; _x+
d _x) i.e. Dl = 0 then � dx

 = 0, which means that dx is normal to �.

For any vector �eld ��(x; _x) we have

(1.19) D �� = d�� + w�
� (d)�

�

where

(1.20) w�
� (d) = � ��

� dx
 +A

�
� Dl



From (1.4) we obtain

(1.21) DlÆI

Æ = dl + �

�
Æ �dx

� ;

where IÆ = Æ

Æ �A


Æ Æ .

Let us suppose that [IÆ ] is a regular matrix whose inverse is [J� ]

(1.22) I

Æ J

�
 = Æ�Æ

From (1.21) it follows Dl� = (dl� + �
��
Æ dx

)J��.

Further from l� = F�1 _x� and

(1.23) dl� = (@F
�1dx � F�2ld _x

)x� + F�1 _x�

we have
Dl� = J��[(�

��
Æ  � F�1l�@F )dx

 + (Æ� � ll
�)d _x ]:

2. Connection coeÆcients � and C. w�
� (d) appearing in (1.19) and (1.20)

may be written in the form

(2.1) w�
� (d) = �

�
� dx

 + C
�

� d _x
 :
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The connection coeÆcients � � and A from (1.20) are uniquelly determined
under conditions (1.1), (1.2), (1.5) and (1.6). They are given by (1.7){(1.12). We
are going to obtain relations between � , C and � � and A. For that reason we shall
equate the right hand side of (1.20) and (2.1) and use the relations (1.18), (1.23)
and obtain

�
�

� dx
 + C�

�d _x
 = � ��

� dx
 +A

�
� Dl

 + ��� [�dx
 + (� + 2l)Dl ]

or

(2.2)
�

�
� dx

 + C�
�d _x

 = (� ��
� + ����)dx



[A�
�� + ��� (�� + 2l�)]J

�
�[(�

��
Æ  � F�1l�@F )dx

 + F�1(Æ� � ll
�)d _x ];

where ��� = ��� (x; _x) is any tensor homogeneous of degree zero in _x. By equating
the coeÆcients becide dx and d _x we obtain

(2.3) ��
� = ��� + ���� + [A�

� + ��� (�� + 2l�)]J
�
�(�

��
Æ  � F�1l�@F );

(2.4) C
�

�  = [A �
� � + ��� (�� + 2l�)]J

�
�F

�1(Æ� � ll
�)

Lemma 2.1. The relation

(2.5) C�
� _x

 = FC�
�Æ = 0

is valid for any ��� .

The proof is obvious from (2.4).

For ��� = 0, (2.3) and (2.4) become [4]

�
�

�  = � ��
�  +A�

��J
�
�(�

��
Æ  � F�1l�@F )(2.6)

C�
� = A�

��J
�
�F

�1(Æ� � ll
�)(2.7)

Formulae (2.6) and (2.7) are not practical for calculation because they contain
the term J��, for which all we know is the relation (1.22).

From (1.21) we obtain

(2.8) d _x = F (Æ� �A


Æ �)Dl
� � F�

�
o Æ dx

Æ � _xFdF�1

Substituting (2.8) into (2.2) we have

��
� � FC�

�Æ�
�Æ
o  = � ��

�  + ����(2.9)

FC�
�Æ(Æ

Æ
 �A �

Æ ) = A�
� + ��� (� + 2 l)(2.10)

In the case of non recurrent Finsler space where � = 0, � = 0, A Æ
Æ  = 0

the equations (2.9) and (2.10) have the from

(2.11) ��
� � FC�

�Æ�
�Æ
o  = � ��

� 
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(2.12) FC�
� = A�

� + 2��� l

For ��� = 0 (2.12) takes the well known form FC�
� = A�

� . In the further

calculation we shall use the formulae [4]

Fj = @F � F _@ÆF�
�Æ
Æ  = 2�1F� :

3. Parallel displacenxent of vector along the cycle of lineelements.

Let us consider the cycle of lineelements as they are presented on the picture

Let us �x the point P with the local coordinates x� in Fn. By Tn(P ) we
shall denote the set of all _x in P which form a tangent space. In Tn(P ) we can
construct a basis which containes the tangent vectors r� (� = 1; 2; . . . ; n) on the
coordinate curves x� = C� , � = 1; 2; . . . ; � � 1; � + 1; . . . ; n. Let us consider two
in�nitesimal vectors PP1 and PP2 which respectivly have the form PP1 = dx�r�,
PP2 = Æx�r�. If the vector PP1 is parallely transported along PP2 we get the point
P3 and if PP2 is parallely moved along PP1 we get P

0
3. In this case the lineelement

are not parallel, only the basic vectors are. The coordinates of the point P3 are
x�+ dx�+ Æxa+ Ædxa, where Ædxa = �w�

� (Æ)dx
� and the coordinates of the point

P 0
3 are x� + Æx� + dxa + dÆxa where dÆxa = �w�

� (d)Æx
� . In the general case P3

and P 0
3 are not the same points and the vector P3P

0
3 is the torsion vector in Fn. It

has the coordinates


� = dÆxa � Ædxa = w�
� (Æ)dx

� � w�
� (d)Æx

�

In Fn with the connection coeÆcients � � and A we obtain


� = A�
�(dx

��l � Æx�Dl):

If Dl = 0 and �l = 0, then 
� = 0 and the points P3 and P 0
3 have the

same coordinates. In that case we have an in�nitesimal parallelogram PP1P2P3.

Let us consider how the basic vectors change if they are parallely transported
along PP1P3 and PP2P

0
3P3.

By the parallel transportation of r� from P (x; _x) to P1(x + dx; _x + d _x) we
obtain in P1r� + dr�, where Dr� = dr� � w�

�(d)r� = 0.
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By the parallel transportation of r� from P (x; _x) to P2(x+ Æx; _x+ Æ _x) in P2
we get r� + Ær�, where �r� = Ær� � w�

�(d)r� = 0.

If the vector r� + dr� at P1 is parallely transported to P3(x + dx + Æx +
Ædx; _x+ d _x + Æ _x+ Æd _x) at P3 we have the vector r� + dr� + Æ(r� + dr�), where

Ædr� = Æw�
�(d)r� + w�

Æ(d)wÆ
�(Æ)r� :

If the vector r� + Ær� at P2 is parallely transported to P 0
3(x + Æx + dx +

dÆx; _x+ Æ _x+ d _x+ dÆ _x) at P 0
3 we get the vector r� + Ær� + d(r� + Ær�) where

dÆr� = dw�
�(Æ)r� + w�

�(Æ)wÆ
�(d)r� :

If the vector r� + Ær� + dr� + dÆr� at P 0
3 is parallely transported to P3 we

obtain in P3 the vector r�+Ær�+dr�+dÆr�+rr� where rr� describes the change
of r� along P 0

3P3 and has the form

rr� = �
�

� r�(Æd� dÆ)x + C
�

� r�(Æd� dÆ) _x :

The di�erence between vectors which are obtained by parallel transportation
of r� along PP2P

0
3P3 and PP2P3 is denoted by Dr�. Then we have

Dr� =� (Æd� dÆ)r� +rr� =(3.1)

� (Æd� dÆ)r� + �
�

� r�(Æd� dÆ)x + C
�

� r�(Æd� dÆ) _x :

The vector Dr� can be expressed by the curvature tensors. We have Dr� =
dr� � w�

� (d)r� and

�Dr� = Æ (Dra)� w�
Æ (Æ)DrÆ = Æ dr� � Æ w�

� (d)r��

w�
� (d) Æ r� � w�

Æ (Æ) [drÆ � wÆ
� (d) r� ]:

From the above equation we get

(3.2) (�D �D�)r� = (Æd� dÆ)r� �
�
�r� ;

where
w�

� = [w�
ÆwÆ

� ]� (w�
� )0

[w�
ÆwÆ

� ] = w�
Æ (d)wÆ

� (Æ)� w�
Æ (Æ)wÆ

� (d)

(w�
� )0 = Æw�

� (d) � dw�
� (Æ):

After some calculation we obtain

(3.3) 
�
� = A�

� +B�
� ;

where [5]

(3.4) A�
� = 2�1K�

�
Æ[dx

�Æx ] + (P 0
�
�
Æ �A�

�
�
_@Æ�

�
Æ
�) + 2�1S�

�
Æ[Dl

�lÆ]
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B�
� = A�

�
(ÆD � d�)l + � ��

� (Æd� dÆ)x(3.5)

2�1K�
�
Æ = @[Æ�

��
j�j �

_@��
��
�[�

��
Æ] + � ��

�[�
��
j�jÆ]:

P 0
�
�
Æ =F _@��

�
�
�
(Æ

�
Æ �Ao

�
Æ)�A

�

�Æj +A�
�� _x

� _@Æ�
��
�(3.6)

2�1S�
�
Æ =F _@�A

�
�
�
[(Æ

�
Æ] �A�

jojÆ]) +A�
�
[Aj�j

�
Æ]:

On the other hand from (1.4) and (2.8) using the homogenity of � �

� = F � ��

o

(�rst degree) and A�
o (zero degree) we obtain

(3.7) (Æ�Æ �Ao
�
Æ )(ÆD � d�)lÆ = B� +B

�

where
B
�
=F�1(@[Æ�

��
] �

_@��
��
[ � �i

Æ] [dx
ÆxÆ ]+

( _@Æ�
�

� � _@��

��
Ao

�
Æ � @Ao

�
Æ + _@�Ao

�
Æ�

�

�)[dx �lÆ]+

F _@[ÆAjoj
�
] � _@��

�
o
�
[Ajoj

�
Æ] + [Dl�lÆ]

(3.8) B� = F�1(Æd� dÆ) _x� + _x�(Æd� dÆ)F�1 + F�1� �

�(Æd� dÆ)x

It is known that _x�j� , so from the above equation and (3.4) we obtain

(3.9) 2�1Ko
�
Æ = F�1(@[Æ�

��
] �

_@��
��
[ �

��
Æ] )

Substituting (2.10) into (3.5) we get

(3.10) B�
� = B�

�
(1) +B�

�
2)

where according to (3.7) we have

B�
�
(1) = � ��

� (Æd� dÆ)x + FC�
�
�B

� � ��
� (�Æ + 2lÆ)(ÆD � d�) lÆ;

(3.11) B�
�
(2) = FC�

�
�B

�

From (1.18) we get

(3.12)
�(Æd� dÆ)x + (� + 2l)(ÆD � d�) l + (Æ� dx

 � d� Æx
)+

Æ(� + 2l)Dl
 � d (� + 2l)�l

 = 0

and using (3.18) and (2.5) we have

B�
�
(1) =(�

��
� + C�

�
��

��
 + ��

��)(Æd� dÆ)x(3.13)

C�
�
(Æd� dÆ) _x +B�

�
(1)0

B�
�
(1)0 =��

� [Æ�dx
 � d� Æx

(3.14)

Æ(� + 2l)Dl
 � d (� + 2l)�l

 ]:
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Substituting ��
�
 from (2.9) into (3.13) we have

B�
�
(1) = � �

�
�
(Æd� dÆ)x + C�

�
(Æd� dÆ) _x +B�

�
(1)0

Using (3.9) and the relation

_@��
��
 (Æ�Æ �Ao

�
Æ)� @Ao

�
Æ + _@�A

�
oÆ�

��
 =(3.15)

P 0
o
�
Æ �Ao

�
�
_@Æ�

��
 + �

��
Æ + 2�1Ao

�
Æ �

the formula (3.11) has the form

B�
�
(2) =FC�

�
�f2

�1
Ko

�
Æ [dx


�l

Æ ]+(3.16)

(P 0
o
�
Æ �Ao

�
�
_@Æ�

��
 + �

��
Æ + 2�1

Ao
�
Æ�)[dx


�l

Æ ]+

2�1( _@�Ao
�
[(@

�
Æ] �Ajoj

�
Æ])[Dx


�l

Æ]g:

Theorem 3.1. In the recurrent Finsler space FnDr� and the curvature ten-
sors are connected by:

(�D �D�) r� = �Dr� � r�f2
�1[K�

�
Æ + FC�

�
�Ko

�
Æ][dx


Æx

Æ]+(3.17)

[P 0
�
�
Æ �A�

�
�
_@Æ�

��
 + FC�

�
�(P

0
o
�
Æ �Ao

�
�
_@Æ�

��
 + �

��
Æ + 2�1

Ao
�
Æ�)[dx


�l

Æ ]+

2�1[S�
�
Æ + F

2
C�

�
�
_@�Ao

�
[(Æ

�
Æ] �Ajoj

�
Æ])][Dx


�l

Æ]� r�B�
�
(1)0

Proof. Substituting (3.16), (3.13), (3.14) into (3.10), further (3.10) and (3.4)
into (3.3), (3.4) into (3.2) by using (3.1) we obtain (3.17).

In the non recurrent Finsler space (where � = 0 and � = 0 we have

B�
� 0
(1) = 2��

�(ÆlDl
 � dl�l

):

If we have not only � = 0, � = 0 but the condition ��
� = 0, then the

connection coeÆcients A�
�
 and ��

�
�
 are the Cartans connection coeÆcients and

A�
�
 = FC�

�
 . In this case from (1.11), (1.12) it follows Ao

�
 = 0 the left hand

side of (3.15) reduces to the _@Æ�
��
 and (3.17) has the form

(3.18)
(�D �D�)r� =

�Dr� � r�f2
�1R�

�
Æ[dx

ÆxÆ ] + P 0
�
�
Æ[dx

�lÆ] + 2�1S�
�
Æ[Dl

�lÆ]g:

When the vector ra is parallely transported along PP1P3 and PP2P
0
3P3 then

Dr� = 0, �r� = 0 and in this case from (3.18) we have

�Dr� = �r�f2
�1R�

�
Æ[dx

ÆxÆ ] + P 0
�
�
Æ[dx

�lÆ] + 2�1S�
�
Æ[Dl

�lÆ]g:

In the case of a recurrent Finsler space Fn when Dr� = 0 and �r� = 0 from
(3.17) Dr� has more complicated form.
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4. Special cases- Case 1. Let us consider the case when in Fn, dx
 = 0

and Æx = 0 i. e. when the lineelements P , P1 and P2 have the common center x.

Then we have

P (x; _x); P1(x; _x+ d _x); P2(x; _x+ Æ _x)

P3 = P1 + ÆP1 = (x; _x+ d _x+ Æ _x+ Æd _x);

P 0
3 = P2 + dP2 = (x; _x+ Æ _x+ d _x+ dÆ _x):

In this case we have

Dr� = dr� �A�
�
r�Dl

 ; �r� = Ær� �A�
�
r��l



and

(4.1)
(��D�) r� =(Æd� dÆ) ra � 2�1r� [F _@�A�

�
[Æ

�
Æ] �Ajoj

�
Æ])+

A�
�
[ÆAj�j

�
 ][Dl

�lÆ]�A�
�
r�(ÆD � d�) l :

Substituting A�
�
 from (2.10) and using (3.12) where (Æd � dÆ)x = 0 we

have

(4.2)
�A�

�
� r� (ÆD � d�) l� =� FC�

�
� r� (Æ

�
� �Ao

�
�) (ÆD � d�) l�

� ��
�r� [Æ(� + 2l)Dl

 � d(� + 2l)�l
 ]:

As in this case

(Æ�� �Ao
�
�)Dl

� = dl�; (Æ�� �Ao
�
�)�l

� = Æl�

using the homogenity condition we obtain

(4.3)
(Æ�� �Ao

�
�)(ÆD � d�)l� =F�1(Æd� dÆ) _x� + _x�(Æd� dÆ)F�1+

F _@�Ao
�
(Æ

�
Æ �Ao

�
Æ )(Dl


�l

Æ ��l

�l

Æ]:

Substituting (4.3) into (4.2) and then (4.2) into (4.1) we get

(�D �D�)r� = �Dr� � r� [2
�1S�

�
Æ + F 2C�

�
�
_@�Ao

�
[(@

�
Æ] �Ajoj

�
Æ]][Dl

 �lÆ]�

��
�r� [Æ(� + 2l)Dl

 � d (� + 2l)�l
 ]

where from (3.1) in this case Dr� has the form

Dr� = �(Æd� dÆ)r� + C�
�
r�(Æd� dÆ) _x

In the non-recurrent Finsler space Fn, where we take ��
� = 0, � = 0 )

A�
�
 = FC�

�
 ) Ao

�
 = 0 we have

(4.4) (�D �D�)r� = �Dr� � 2�1r�S��Æ[Dl
 �lÆ]:

In the case when Dr� = 0, �ra = 0 (4.4) gives

Dr� = �2�1r�S�
�
Æ[Dl

 �lÆ]
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Case 2. Let us consider the lineelements

P (x; _x)

P1(x+ dx; _x + Æ _x) with Dl = 0

P2(x; _x + Æ _x) with Æx = 0

P3 = P1 + ÆP1 = (x+ dx; _x + d _x+ Æ _x+ Æd _x); (Æx = 0);

P 0
3 = P2 + dP2 = (x+ dx; _x + Æ _x+ d _x+ dÆ _x):

From DlÆ = 0 we have

(4.5) d _xÆ = �F _xÆdF�1 � � �Æ
dx

 :

From ÆxÆ = 0 we get

(ÆÆ� �Ao
Æ
�)�l

� = ÆlÆ = F�1Æ _xÆ + _xÆÆF�1 )(4.6)

Æ _xÆ = (ÆÆ� �Ao
Æ
�)�l

� � F _xÆÆF�1:

In this case we have

(4.7) a) Dr� = dr� � � ��
� r�Æ _x

 b) �r� = Ær� �A�
�
r��l



From Æx = 0) dÆx = 0 and Dr� has the form

(4.8) �Dr� = �(Æd� dÆ)r� + ��
�
r�Æx

 � C�
�
r�(Æd� dÆ) _x

From (4.7) we obtain

(4.9)

(�D �D�) r� = r� [F _@��
�
�
�
(@

�
Æ �Ao

�
Æ)� @�A�

�
Æ + _@�A�

�
Æ�

�

�

�A�
�
Æ�

�
�
�
 +A�

�
Æ�

�
�
�
 ] dx

 �lÆ+

(Æd� dÆ)r� � ��
�
�
r�Ædx

 +A�
�
r�d�l

 :

From (2.10) using (4.6) and C�
�
� _x

� = 0 we get

A�
�
 r� d�l

 = [FC�
�
� r� (Æ

�
 �Ao

�
)� ��

� (� + 2l)]d�l
 :

From (3.12) in case 2 it follows

B = (� + 2l)d�l
 = �Æ dx

 + Æ�dx
 � d(� + 2l)�l

 :

From Lemma 1.3 it follows that in case

Dl = 0) �dx
 = 0) Æ�dx

 + �Æ dx
 = 0

and B reduces to the form B = �d(� + 2l)�l
 . Then

(4.10)
A�

�
 d�l

 = FC�
�
� r� (@Ao

�
Æ � _@�Ao

�
Æ�

�

�) dx�lÆ�

��
� r�B + FC�

�
Æ r� (dF

�1Æ _xÆ + F�1dÆ _xÆ + d _xÆÆF�1):
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We can add and substract Æd _xÆ , to the last term of (4.10), where from (4.5) we
have

Æd _xÆ = �ÆF _xÆdF�1 � FÆ _xÆdF�1 � F _xÆÆdF�1�

_@��
�Æ
�[F (@

�
 �Ao

�
)�l

 � F _x�ÆF�1]dx� � ��Æ
�Ædx

�:

Using the homogenity condition of ��
�
Æ in _x (�rst degree) and the relation C�

�
Æ _x

Æ =
0 (4.10) has the form

(4.11)

A�
�
 r� d�l

 = �FC�
�
� r� [ _@i�

�

�(@�Æ �Ao

�
Æ)�

@ Ao
�
Æ + _@�Ao

�
Æ�

�

� ] dx �lÆ � C�

�
Æ r� (Æd� dÆ) _xÆ�

C�
�
� r� �

�

� Æ dx � ��

� r� B:

Substituting (4.11) into (4.9) using (3.6), (3.15), (4.8) and (2.9) we obtain

(4.12)
(�D �D�) r� = �Dr� � r� [P

0
�
�
Æ �A�

�
�
_@Æ�

�

�+

FC�
�
�(P

0
o
�
Æ �Ao

�
�
_@Æ�

�

� + ��

Æ
�
 + 2�1Ao

�
Æ� ] dx

 �lÆ � ��
�r� B:

In the non recurrent Finsler space Fn when ��
� = 0 (4.12) reduces to the

form
(�D �D�) r� = �Dr� � r� P

0
�
�
 Æ dx

 �lÆ:

When Dr� = 0, �r� = 0 from (4.13) it is easy to see that

Dr� = �r� P
0
�
�
Æ dx

 �lÆ:

Case 3. Let us consider the cycle of lintlements

P (x; _x);

P1(x+ dx; _x+ d _x); Dl
� = 0) d _x� = _x�F�1

dF � �
��
�dx

�
;(4.14)

P2(x+ Æx; _x+ Æ _x); �l
� = 0) Æ _x� = _x�F�1

ÆF � �
��
�Æx

�
;(4.15)

P3 = P1 + ÆP1 = (x+ dx+ Æx+ Ædx; _x+ d _x+ Æ _x+ Æd _x);

P
0
3 = P2 + dP2 = (x+ Æx+ dx+ dÆx; _x+ Æ _x+ d _x+ dÆ _x):

From Dr� = dr� � ��
�
�
r�dx

 it follows

(4.16) (�D �D�) r� = (Æd� dÆ) r� � ��
�
�
r(Æd� dÆ)x � 2�1K�

�
Æ[dx

 ÆxÆ ]:

From (4.14), (4.15) and C�
�
 _x

 = 0 it follows

(4.17) C�
�
(Æd� dÆ) _x = C�

�
��

��
� (Æd� dÆ)x� � 2�1FC�

�
�Ko

�
� [dx

� Æx ]:

From (4.17) and (2.9) we obtain

(4.18)
��
�
�
(Æd� dÆ)x = (��

�
 � ��

��) (Æd� dÆ)x+

C�
�
�
(Æd� dÆ) _x + 2�1FC�

�
�Ko

�
� [dx

� Æx ]:
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Substituting (4.18) into (4.16) and using (3.1) we get

(�D�D�) r� = �Dr��2
�1(K�

�
Æ+FC�

�
�K

o
�Æ) [dx

 ÆxÆ ]+��
� � (Æd�dÆ)x

 :

For the case of a non recurrent Finsler space (when � = 0, � = 0) and
��

� = 0 ��
�
 and A�

�
 = FC�

�
 are the Cartans connection coeÆcients. In this

case for Dr� = 0 and �r� = 0 we obtain.

Dr� = �2�1R�
�
Ær� [dx

 ÆxÆ ]

where R�
�
Æ = K�

�
Æ +A�

�
�K�

o
Æ.
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