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EXTENSIONS OF SOME FIXED POINT THEOREMS

OF RHOADES, �CIRI�C, MAITI AND PAL

A.C. Babu and B.B. Panda

In a recent paper Rhoades [6] has shown, for a selfmap T of a Banach space

satisfying the contractive de�nitions of �Ciri�c [1] or of Pal and Maiti [5], that if the
sequence of Mann iterates converges then it converges to a �xed point of T . In
this note we propose to draw the same conclusion in some of these cases even for
subsequential limit points, i. e. every subsequential limit point of the sequence of
Mann iterates will be a �xed point of T . Further we shall derive the conclusions of
Rhoades in the case of mappings satisfying even weaker conditions. Our �nal result
will be concerned with the extension of a result of Maiti and Babu [4] to mappings
satisfying conditions similar to those in Rhoades [6, Theorem 3]. This is closed in
spirit to the main result of Diaz and Metcalf [2].

Let T be a selfmapping of a Banach space X . The Mann iterative process
associated with T is de�ned in the following way. Let x0 2 X , and set xn+1 =
(1 � cn)xn + cnTxn for n > 0, where fcng satis�es: (i) c0 = 1, (ii) 0 < cn � 1
for n > 0, (iii)

P
cn diverges. In this note we place the additional restriction that

(iv) lim
n!1

cn = h > 0.

A generalization of a contractive de�nition of �Ciri�c which has been used by
Rhoades [6] is
(1) d(Tx; Ty) � qmaxfcd(x; y); d(x; Tx) + d(y; Ty); d(x; Ty) + (y; Tx)g where

c > 0, 0 � q < 1.

We shall use, instead, a mapping T satisfying
(2) d(Tx; Ty) � qmaxfcd(x; y) + d(x; Tx) + d(y; Ty); cd(x; y) + d(x; Ty)+

+d(y; Tx)g

and show that the results of Rhoades carry over to such mappings.

It is clear that (1) ) (2). To see that the reverse implication may not be
true, consider X = fx; y; zg, Tx = y, Ty = z, Tz = z, d(x; y) = 1:7, d(x; z) = 1:8,
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d(y; z) = 1:3, q = 0:28, c = 1. Clearly (X; d) is a metric space and T is a selfmap
satisfying (2), but not (1), because 1:3 = d(y; z) = d(Tx; Ty) and

qmaxfd(x; y); d(x; Tx) + d(Y; Ty); d(x; Ty) + d(y; Tx)g =

= :28maxf1:7; 1:7+ 1:3; 1; 8+ 0g = 0:84:

We now prove Rhoades' theorem in the case of mappings satisfying (2). This
we state as our

Theorem 1. Let X be a closed convex subset of a normed space, T a selfmap-

ping of X satisfying (2) on X, fxng the sequence of Mann iterates associated with

T , where fcng satis�es (i), (ii) and (iv). If fxng converges in X, then it converges

to a �xed point of T .

Proof. Let z 2 X satisfy lim
n!1

xn = z. Then

d(z; T z) � d(z; xn+1) + d(xn+1; T z) � d(z; xn+1) + (1� cn)d(xn; T z) + cnd(Txn; T z) �

� d(z; xn+1) + (1� cn)d(xn; T z) + cnq �maxfcd(xn; z) + d(xn; Txn)+

+d(z; T z); cd(xn; z) + d(xn; T z) + d(z; Txn)g:

Using d(xn; xn+1) = cnd(xn; Txn) and

d(z; Txn) � d(z; xn) + d(xn; Txn) = d(z;Xn) + d(xn; xn1)=cn

and letting n!1 we get

d(z; T z) � (1� h)d(z; T z) + hgmaxfd(z; T z); d(z; T z)g= (1� h+ hq)d(z; T z)

which is absurd since q < 1 unless d(z; T z) = 0. Thus z = Tz and z is a �xed point
of T .

Pal and Maiti [5] have studied mappings T satisfying (3) For each x; y 2 X ,
at least one of the following conditions holds:

(a) d(x; Tx) + d(y; Ty) � �d(x; y), 1 � � < 2,
(b) d(x; Tx) + d(y; Ty) � �fd(x; Ty) + d(y; Tx) + d(x; y)g, 1=2 � � < 2=3,
(c) d(x; Tx) + d(y; Ty) + d(Tx; Ty) � fd(x; Ty) + d(y; Tx)g, 1 �  < 3=2,
(d) d(Tx; Ty) � Æmaxfd(x; y); d(x; Tx); d(y; Ty); (d(x; Ty) + d(y; Tx))=2g,

0 < Æ < 1.

We now improve Theorem 2 of Rhoades [6] by showing that the subsequential
limit points of the sequence of Mann iterates are also �xed points of T .

Theorem 2. Let X be a Banach space, T a selfmapping of X satisfying (3).
Let fxng be the sequence of Mann iterates associated with fcng satisfying (i), (ii),
and (iv). Then the subsequential limit points of fxng are �xed points of T . We

assume that in case T satis�es (3) (c),  > 1 + h=2 and Æ < h in case T satis�es

(3) (d).
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Proof. Let xni
! � as i ! 1. In case T satis�es (3)(a) putting x = xn and

y = xn+1 we get

d(xn; Txn)+d(xn+1+Txn+1) � cnd(xn; Txn); or d(xn+1; Txn+1) � (�cn�1)d(xn; Txn):

Now 1 � � < 2 and 0 < cn � 1 implies �1 < �cn � 1 < 1. If for some n,
�cn � 1 � 0 we shall have d(xn+1; Txn+1) = 0 or xn+1 = Txn+1. Now xn+2 =
(1 � cn+1)xn+1 + cn+1Txn+1 = xn+1. Proceeding similarly xn+1 = xn+i for all
i � 1 and � = xn+1 and � = T�. Hence we shall assume that for all n, �cn� 1 > 0.
Now �cn � 1 ! �h � 1 as n ! 1. Putting �1 = �h � 1 we see that 0 � �1 < 1
since � < 2 and h � 1, and so we can �nd an integer n01 such that for all n � n01,
�cn � 1 > (1 + �1)=2. In case T satis�es (3)(b), putting x = xn, y = xn+1 we get

d(xn; Txn) + d(xn+1; Txn+1) � �fd(xn; Txn+1) + d(xn+1; Txn) + d(xn; xn+1)g �

� �fd(xn; xn+1) + d(xn+1; Txn+1) + (1� cn)d(xn; Txn) + cnd(xn; Txn)g =

= �fcnd(xn; Txn) + d(xn+1; Txn+1) + d(xn; Txn)g

or,

d(xn+1; Txn+1) �
�(1 + cn)� 1

1� �
d(xn; Txn):

Now,
lim
n!1

(�(1 + cn)� 1)=(1� �) = (�(1 + h)� 1)=(1� �)

and is < 1 i� �(1+h)�1 < 1�� or i� � < 2=(2+h) and, since 0 < h � 1, we have
2=3 � 2=(2+h) < 1. Since � < 2=3 by hypothesis, taking �2 = �(1+h)�1=(1��),
we can �nd n02 such that for n � n02, (�(1 + cn)� 1)=(1� �) < (1 + �2)=2. Now
consider the case when the mapping T satis�es (3) (c). Putting x = xn, y = xn+1,
we get

d(xn; Txn) + d(xn+1; Txn+1) + d(Txn; Txn+1) � fd(xn; Txn+1) + d(xn+1; Txn)g �

� fd(xn; xn+1) + d(xn+1; Txn+1) + (1� cn)d(xn; Txn)g =

= fcnd(xn; Txn) + d(xn+1; Txn+1) + (1� cn)d(xn; Txn)g =

= fcnd(xn+1; Txn+1) + d(xn; Txn)g:

Thus d(Txn; Txn+1) � ( � 1)fd(xn; Txn) + d(xn+1; Txn+1)g. Hence,

d(xn+1; Txn+1)� d(xn+1; Txn) � ( � 1)fd(xn; Txn) + d(xn+1; Txn+1)g or,

d(xn+1; Txn+1)� (1� cn)d(xn; Txn) � ( � 1)fd(xn; Txn) + d(xn+1; Txn+1)g or,

(2� )d(xn+1; Txn+1) � ( � 1 + 1� cn)d(xn; Txn) = ( � cn)d(xn; Txn) or,

d(xn+1; Txn+1) � ( � cn)=(2� ) � d(xn; Txn):

Now, ( � cn)=(2 � ) ! ( � h)=(2 � ) and
 � h

2� 
< 1 if  � h < 2 �  or i�

2 < 2 + h or, i�  < 1 + h=2, which is true. Therefore denoting ( � h)=(2 + )
by �3 < 1, we can �nd n03 such that for n � n03, (� cn)=(2� ) < (1+�3)=2. In
case T satis�es (3) (d), putting x = xn, y = xn+1 we get

d(xn+1; Txn+1) � Æmaxfd(xn; xn+1); d(xn; Txn); d(xn+1; Txn+1);

1=2 � [d(xn; Txn+1) + d(xn+1; Tx)]g;
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Since d(xn; xn+1) = cnd(xn; Txn) and

d(xn; Txn+1) + d(xn+1; Txn) � d(xn; xn+1) + d(xn+1; Txn+1) + (1� cn)d(xn; Txn) =

= cnd(xn; Txn) + d(xn+1; Txn+1) + (1� cn)d(xn; Txn) =

= d(xn; Txn) + d(xn+1; Txn+1)

we have

d(Txn; Txn+1) � Æmaxfcnd(xn; Txn); d(xn; Txn); d(xn+1; Txn+1); 1=2[d(xn; Txn)+

+ d(xn+1; Txn+1)]g = Æmaxfd(xn; Txn); d(xn+1; Txn+1); 1=2[d(xn; Txn)+

+ d(xn+1; Txn+1)]g = Æmaxfd(xn; Txn); d(xn+1; Txn+1)g:

Now

d(Txn; Txn+1) � d(xn+1; Txn+1)� d(xn+1; Txn) = d(xn+1; Txn+1)� (1� cn)d(xn; Txn):

In case

d(xn+1; Txn+1)� (1� cn)d(xn; Txn) � Æd(xn; Txn); d(xn+1; Txn+1) �

� (1 + Æ � cn)d(xn; Txn);

and in case d(xn+1; Txn+1)� (1� cn)d(xn; Txn) � Æd(xn+1; Txn+1), we get

(1� Æ)d(xn+1; Txn1) � (1� cn)d(xn; Txn) or

d(xn+1; Txn+1) � (1� cn)=(1� Æ) � d(xn; Txn):

Therefore, d(xn+1; Txn+1) � max(1 + Æ + cn; (1 + cn)=(1 � Æ) � d(xn; Txn)). Now
as n!1,

max(1 + Æ � cn; (1� cn)=(1� Æ))! max(1 + Æ � h; (1� h)=(1� Æ))

and 1+ Æ�h < 1 i� h > Æ and (1�h)=(1� Æ) < 1 i� (1�h) < (1� Æ) i.e. i� Æ < h.
Now max(1 + Æ � h; (1 + h)=(1 � Æ)) = �4 < 1 and so we can �nd an integer n04
such that for all n � n04, max(1 + Æ � cn; (1� cn)=(1� Æ)) < (1 + �4)=2. Let

max((1��1); (1+�2); (1+�3); (1+�4)) = 2� < 2 and m = maxfn01; n02; n03; n04g:

Hence for n � m, d(xn+1; Txn+1) � � d(xn; Txn) � � � � � �n+1�md(xm; Txm)! 0
as n ! 1. Now d(Txni

; �) � d(Txni
; xni

) + d(xni
; �) ! 0 as ni ! 1. For the

pair xni
and � at least one of (a), (b), (c) or (d) of (3) is true. Therefore at least

one of these must be true in�nitely often for the pair �, xni
, i = 1; 2; . . . ;. Thus

for a subsequence of fnig, which, by relabelling we denote by fnig, only one of the
inequalities (a), (b), (c) or (d) of (3) is true. In the case 3 (a) by putting x = xni

,
y = �, we obtain d(xni

; Txni
)+d(�; T �) � �d(xni

; �) and letting ni !1 we obtain
d(�; T �) � 0, whence d(�; T �) = 0 implying � = T�. In the case 3 (b) we get, by
putting x = xni

, y = �,

d(xni
; Txni

) + d(�; T �) � �fd(xni
; T �) + d(�; Txni

) + d(xni
; �)g
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and letting ni !1, d(�; T �) � �d(�; T �), which is true only when d(�; T �) = 0 or
� = T�. In the case 3 (c) we get

d(xni
; Txni

) + d(�; T �) + d(Txni
; T �) � fd(xni

; T �) + d(�; Txni
)g

and using d(xni
; T �) � d(xni

; Txni
) + d(Txni

; T �) we have,

d(xni
; T �) + d(�; T �) � fd(xni

; T �) + d(�; Txni
)g

Letting ni !1 we get, 2d(�; T �) � d(�; T �), which is impossible unless d(�; T �) =
0 or � = T�. In the case 3 (d) we have

d(�; T �) � d(�; xni
) + d(xni

; Txni
) + d(Txni

; T �) � d(�; xni
) + d(xni

; Txni
)+

Æmaxfd(xni
; �); d(xni

; Txni
); d(�; T �); 1=2[d(xni

; T �) + d(�; Txni
)]g:

Letting ni ! 1, we get, d(�; T �) � Æmaxfd(�; T �); 1=2d(�; T �)g or,
d(�; T �) � Æd(�; T �), which is impossible unless d(�; T �) = 0 or � = T�.

Pal and Maiti [5] have given some �xed point theorems for mappings T sat-
isfying

(4) For all x; y (x 6= y) at least one of the following conditions holds:

(a) d(x; Tx) + d(y; Ty) < 2d(x; y),
(b) d(x; Tx) + d(y; Ty) < 2=3 � fd(x; Ty) + d(y; Tx) + d(x; y)g,
(c) d(x; Tx) + d(y; Ty) + d(Tx; Ty) < 3=2 � fd(x; Ty) + d(y; Tx)g.
(d) d(Tx; Ty) < maxfd(x; y); d(x; Tx); d(y; Ty); [d(x; Ty) + d(y; Tx)]=2g.

Our next result will show that the subsequential limit points of the sequence
of Mann iterates in some of the above cases are �xed points of T .

Theorem 3. Let X be a Banach space, T a selfmap satisfying (4) (a) or (b).
Let fxng be the sequence of Mann iterates of T with fcng satisfying (i), (ii), and
(iv). Then every subsequential limit point of fxng is a �xed point of T .

Proof. Let xni
! � as ni !1. In case (4) (a) putting x = xn and y = xn+1,

we get

d(xn; Txn) + d(xn+1; Txn+1) < 2d(xn; xn+1) = 2cnd(xn; Txn); or;

d(xn+1; Txn+1) < (2cn � 1)d(xn; Txn):

Since left-hand side is to be positive (otherwise xn+1 = xn+2 = . . . ), cn > 1=2 and
therefore 1 > cn > 1=2, or, 1 > 2cn � 1 > 0. In case (4)(b) is satis�ed, putting
x = xn, y = xn+1, we get

d(xn; Txn) + d(xn+1; Txn+1) < 2=3 � fd(xn; Txn+1) + d(xn+1; Txn) + d(xn; xn+1)g �

� 2=3fd(xn; xn+1) + d(xn+1; Txn+1) + d(xn+1; Txn) + d(xn; xn+1)g:

Using d(xn; xn+1) = cnd(xn; Txn) and d(xn+1; Txn) = (1�cn)d(xn; Txn) we obtain

d(xn; Txn) + d(xn+1; Txn+1) < 2=3 � f(1 + cn) d(xn; Txn) + d(xn+1; Txn+1)g or,

d(xn+1; Txn+1) < (2cn � 1)d(xn; Txn). As before cn > 1=2 and 1 > 2cn � 1 > 0:
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Therefore fd(xn; Txn)g
1

n=1 is a monotonically decreasing sequence bounded below
by zero so it converges to � � 0. For the pairs xni

, �, i = 1; 2; 3; . . . , at least one of
the inequalities 4 (a) or 4 (b) is true. Hence at least one of these inequalities will be
true for an in�nite number of such pairs. In other words we can �nd a subseuqnce
of fnig1i=1 which, for convenience, we relabel as fnig1i=1 such that either 4 (a) is
true for each pair xni

, � or 4 (b) is true.

In case 4 (a) is true, we have, by putting x = xni
and y = �, d(xni

; Txni
) +

d(�; T �) < 2d(xni
; �). Letting ni ! 1, � + d(�; T �) � 0 whence d(�; T �) = 0, or,

� = T�. If the case 4 (b) holds for each pair xni
, �, we have, by putting x = xni

and y = �,

d(xni
; Txni

) + d(�; T �) < 2=3 � fd(xni
; T �) + d(�; Txni

) + d(�; xni
)g �

� 2=3 � fd(xni
; T �) + d(�; xni

) + d(xni
; Txni

) + d(�; xni
)g:

Letting ni !1, �+d(�; T �) � 2=3�fd(�; T �)+�g, implying that � = 0 = d(�; T �).
Hence � = T�.

The structure of the set of subsequential limit points of the sequence of iterates
of the mappings satisfying (4) have been studied by Maiti and Babu [4] who have
proved the following.

Theorem 4. Let T be a continuous selfmap of a metric space satisfying

(4). Assume further that for x 2 X, O(x; T ) is compact. Than L(x), the set of

subsequential limit points of the sequence of iterates fTnxg is a nonempty, closed,

compact and connected subset of F (T ), the set of �xed points of T . Either L(x)
contains exactly one point or it contains uncountably many points. In case L(x)
contains just one point lim

m!1
Tmx exists and belongs to F (T ). In case L(x) is

uncountable it is contained in the boundary of F (T ).

This theorem is closed in spirit to the main result of Diaz and Metcalf [3]. We
generalize the above theorem along the line of Theorem 3 of Rhoades [5]. Before
that we shall give some de�nitions. Let S, T be selfmappings of a metric space
X . The (T; S) orbit of a point u 2 X is de�ned as I(u; T; S) = f(TS)nu jn =
0; 1; 2; . . .g [ fS(TS)nu jn = 0; 1; 2; . . .g. X is said to be (T; S) orbitally complete
if every Cauchy sequence in I(u; T; S) converges in X for all u 2 X . I(u; T; S) will
denote the closure of I(u; T; S). F (S; T ) will denote the set of common �xed points
of S and T , i. e., F (S; T ) = fx jSx = Txg.

Theorem 5. Let T1 and T2 be continuous selfmaps of (X; d) and p, q �xed

positive integers such that for x 6= y at least one of the following is true:

(a) d(x; T p
1 x) + d(y; T q

2 y) < 2d(x; y),
(b) d(x; T p

1 x) + d(y; T q
2 y) < 2=3 � fd(x; T q

2 y) + d(y; T q
1 x) + d(x; y)g,

(c) d(x; T p
1 x) + d(y; T q

2 y) + d(T p
1 x; T

q
2 y) < 3=2 � fd(x; T q

2 y) + d(y; T p
1 x)g,

(d) d(T p
1 x; T

q
2 y) < maxfd(x; y); d(x; T p

1 x); d(y; T
q
2 y); [d(x; T

q
2 y) + d(y; T p

1 x)]=2g.

Assume that for u 2 X, I(u; T q
2 ; T

p
1 ) is compact. Let L(x) be the set of sub-

sequential limit points of the sequence fxng1n=0 where x0 = u, x2n = (T q
2 T

p
1 )

nx0
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and x2n+1 = T 1
p (T

q
2 T

p
1 )

nx0. Then L(x) is a nonempty, closed, compact and con-

nected subset of F (T p
1 ; T

q
2 ). L(x) contains either exactly one point or uncount-

ably many points. In case L(x) consists of just one point, lim
m!1

xm exists and

belongs to F (T p
1 ; T

q
2 ). In case L(x) is uncountable, it is contained in the boundary

of F (T p
1 ; T

q
2 ).

Proof. The compactness of I(u; T q
2 ; T

p
1 ) ensures the existence of subsequential

limit points of fxng which we shall now show to be common �xed points of T p
1 and

T q
2 . Let cn = d(xn; xn+1). If (a) is satis�ed then d(x2n; x2n+1)+ d(x2n+1; x2n+2) <

d(x2n; x2n+1) showing c2n+1 < c2n. Putting x = x2n and y = x2n�1 we get
c2n�1 > c2n. In case (b) is satis�ed, putting x = x2n and y = x2n+1, we get

d(x2n; x2n+1) + d(x2n+1 + x2n+2) < 2=3 � fd(x2n; x2n+2) + d(x2n; x2n+1)g:

Using d(x2n; x2n+2) � d(x2n; x2n+1) + d(x2n+1; x2n+2) we get c2n + c2n+1 < 2=3 �
(2c2n + c2n+1), whence c2n+1 < c2n. Putting x = x2n and y = x2n�1 we can show
as before that c2n < c2n�1. If case (c) holds, putting x = x2n, y = x2n+1, we get

d(x2n; x2n+1) + d(x2n+1; x2n+2) + d(x2n+1; x2n+2) <

< 3=2 � fd(x2n; x2n+2) + d(x2n+1; x2n+1)g:

Since d(x2n; x2n+2) � d(x2n; x2n+1) + d(x2n+1; x2n+2) we get c2n + 2c2n+1 < 3=2 �
(c2n + c2n+1) which gives c2n+1 < c2n. Putting x = x2n and y = x2n�1 we can
similarly show that c2n < c2n�1. In case (d) is satis�ed putting x = x2n and
y = x2n+1,

d(x2n+1; x2n+2) <

< maxfd(x2n; x2n+1); d(x2n; x2n+1); d(x2n+1; x2n+2); [d(x2n; x2n+2)+

+ d(x2n+1; x2n+1]=2g � maxfd(x2n; x2n+1); d(x2n+1; x2n+2);

[d(x2n; x2n+1) + d(x2n+1; x2n+2)]=2g;

or, c2n+1 < maxfc2n; c2n+1; (c2n + c2n+1)=2g, so that in all possible cases c2n+1 <
c2n. Putting x = x2n, y = x2n�1 we can similarly deduce that c2n < c2n�1. Thus
c2n+1 < c2n < c2n�1 in all possible cases. Hence in all cases fcng is a monotonically
decreasing sequence of reals bounded below by zero and so will converge to � � 0.

The compactness of I(u; T q
2 ; T

p
2 ) ensures existence of cluster, points so let

xni
! � as i ! 1. Since fnig is an in�nite number of integers we can choose

a subsequence consisting only of odd numbers. By relabelling, if necessary, let us
assume that each ni is odd. Since each ni is odd, we have

� = lim
i!1

d(xni
; x1+ni

) = lim
i!1

d(xni
; T q

2xni
) = d(�; T q

2 �):

Similarly,

� = lim
i!1

d(x1+ni
; x2+ni

) = lim
i!1

d(T q
2 xni

; T p
1 T

q
2xni

) = d(T q
2 �; T

p
1 T

q
2 �):

Furthermore
d(�; T p

1 T
q
2 �) � d(�; T q

2 �) + d(T q
2 �; T

p
1 T

q
2 �) = 2�:
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Assuming � 6= T q
2 � and putting x = T q

2 �, y = � in (a), (b), (c) and (d), we get

in (a), d(T q
2 �; T

p
1 T

q
2 �) + d(�; T q

2 �) < 2d(T q
2 �; �) or, 2� < 2�;

in (b), d(T q
2 �; T

p
1 T

q
2 �) + d(�; T q

2 �) < 2=3fd(T q
2 �; T

q
2 �) + d(�; T p

1 T
q
2 �)+

+d(T q
2 �; �)g or 2� < 2=3 � 3� = 2�;

in (c), d(T q
2 �; T

p
1 T

q
2 �) + d(�; T q

2 �) + d(T p
1 T

q
2 �; T

q
2 �) < 3=2 � fd(T q

2 ; T
q
2 �)+

+d(�; T p
1 T

q
2 �)g, or 3� < 3=2� 2� = 3�;

and, in (d),

d(T p

1 T
q

2 �; T
q

2 �) < maxfd(T q

2 �; �); d(T
q

2 �; T
p

1 T
q

2 �); d(�; T
q

2 �); [d(T
q

2 �; T
q

2 �) + d(�; T p

1 T
q

2 )]=2g

or, � < maxf�; �; �; 1=2 � 2�g = �.

The contradiction � < � in all cases above shows that our assumption � 6=
T q
2 � is wrong. Hence � = T q

2 � and � = d(�; T q
2 �) = d(T q

2 �; T
p
1 T

q
2 �) = 0. Hence

T q
2 � = T p

1 T
q
2 �, or, d = T p

1 �. Thus � = T p
1 � = T q

2 � showing that � 2 F (T p
1 ; T

q
2 ).

Let us assume now that there exists an in�nite subsequence of even integers
in (ni)

1

i=1. By relabelling, if necessary, we can assume that each ni is even. In this
case

� = lim
i!1

d(xni
; x1+ni

) = lim
i!1

d(xni
; T p

1 xni
) = d(�; T p

1 �)

and

� = lim
i!1

d(x1+ni
; x2+ni

) = lim
i!1

d(T p
1 xni

; T q
2 T

p
1 xni

) = d(T p
1 �; T

q
2 T

p
1 �):

Further d(�; T q
2 T

p
1 �) � d(�; T p

1 �) + d(T p
1 �; T

q
2 T

p
1 �) = 2�. Putting x = �, y = T p

1 � in
the inequalities (a), (b), (c) and (d), we can derive that the assumption � 6= T p

1 �
leads to � > � proving thereby that � = T p

1 �. Hence d(T
p
1 �; T

q
2 T

p
1 �) = d(T p

1 �; �) = 0
and so T p

1 � = T q
2T

p
1 �, or, � = T q

2 �. Thus � = T p
1 � = T q

2 �. Hence � 2 F (T p
1 ; T

q
2 ).

We have shown, therefore, that all cluster points of fxng1n=1 are common
�xed points of T p

1 and T q
2 . In other words L(x) � F (T p

1 ; T
q
2 ).

Since we have assumed I(x0; T
q
2 ; T

p
1 ) to be compact, we have ; 6= L(x) �

F (T p
1 ; T

q
2 ), Since L(x) is a closed subset of I(x0; T

q
2 ; T

p
1 ), which is compact we

conclude that L(x) is compact. Thus L(x) is a closed and compact subset of
F (T p

1 ; T
q
2 ).

To prove that L(x) is connected we assume the contrary. Hence there exists
a pair of nonempty, disjoint, closed subsets S1 and S2 of L(x) such that S1 [
S2 = L(x). Since S1 and S2 are closed subsets of the compact set L(x), they
are themselves compact. Hence d(S1; S2) > 0. We have shown in the course of the
proof that � = lim

i!1
d(xn; xn+1) = 0. We now proceed to show that d(xn; L(x))! 0

as n ! 1. For, if not, then for some " > 0 there exists a subsequence fnig1i=1
such that d(xni

; L(x)) � " > 0. Since I(x0; T
q
2 ; T

p
1 ) is compact, the sequence

fxni
g1i=1, has a subsequence fxmi

g1i=1 say, converging to � 2 L(x). Therefore
d(xmi

; L(x)) � d(xmi
; �) ! 0 as i ! 1, contradicting our hypothesis. Hence

d(xn; L(x))! 0 as n!1. Thus we can �nd an integer M such that for m �M ,
d(xm; xm+1) < d(S1; S2)=3 and d(xm; L(x)) < d(S1; S2)=3. Given m � M , there
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exists s 2 L(x) = S [ S2 such that d(xm; S1 [ S2) = d(xm; s), since L(x) is
compact. If s 2 S1, then d(xm; S1) � d(xm; s) < d(S1; S2)=3. Therefore, for any
m � M , either d(xm; S1) < d(S1; S2)=3, or, d(xm; S2) < d(S1; S2)=3. But both
these inequalities cannot hold simultaneously, because in that case d(S1; S2) �
d(S1; xm) + d(xm; S2) < 2=3 � d(S1; S2), which is absurd. Next we see that the set
of positive integers m � M for which d(xm; S1) < d(S1; S2)=3 is nonempty since
; 6= S1 � L(x). Similarly the set of positive integers m �M for which d(xm; S2) <
d(S1; S2)=3 is nonempty. Suppose that for m1 > M , d(xmi

; S1) < d(S1; S2)=3.
Then there exist integers n > m1 such that d(xn; S2) < d(S1; S2)=3. Let k + 1 be
the smallest of them. Then d(xk ; S1) < d(S1; S2)=3 and d(xk+1; S2) < d(S1; S2)=3.
Now, one has

d(S1; S2) � d(S1; xk) + d(xk ; xk+1) + d(xk+1; S2) <

< d(S1; S2)=3 + d(S1; S2)=3 + d(S1; S2)=3 = d(S1; S2):

This is absurd. Therefore the assumption that L(x) = S1 [ S2 with S1 and S2
nonempty, disjoint and closed is false. In other words L(x) is connected.

Since L(x) is connected it is either a singleton or is uncountable. In case
L(x) = f�g, we have d(xm; �) = d(xm; L(x))! 0, as m! 1, showing that xm !
�. In case L(x) is uncountable and � 2 L(x) is an interior point of F (T p

1 ; T
q
2 ), then

F (T p
1 ; T

q
2 ) must contain an element xm in its interior. Hence T p

1 xm = xm = T q
2 xm.

Thus xm = xm+1 = xm+2 = . . . . This reduces L(x) to a singleton contrary to
hypothesis. Therefore, in this case L(x) is contained in the boundary of F (T p

1 ; T
q
2 ).

Remark. We can see that similar results hold also for the sequence fxng,
x2n = (T p

1 ; T
q
2 )

nx0, x2n+1 = T q
2 (T

p
1 ; T

q
2 )

nx0.

The authors are grateful to Professor B. E. Rhoades for going through the
manuscript and for his comments which led to an improvement of this paper.
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