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FREDHOLM THEORY AND SEMILINEAR EQUATIONS WITHOUT

RESONANCE INVOLVING NONCOMPACT PERTURBATIONS,

II. APPLICATIONS

P. S. Milojevi�c

1. Introduction. In this paper we shall give applications of the abstract
theory developed in Part I [9] to nonlinear Hammerstein integral equations and
to linear and nonlinear boundary value problems for semilinear elliptic equations.
Due to the generality of the class of (pseudo) A-proper maps, we are able to treat
nonlinear perturbations that depend also on the highest order derivatives, in con-
trast to the most of earlier known results. Moreover, our proofs are direct, i.e. do
not require any reduction to an equivalent problem (using some type of inversion
procedure), and are constructive (via �nite-dimensional approximations) when the
induced maps are A-proper. For applications to hyperbolic equations, we refer to
[10].

2. Fredholm alternative to Hammerstein integral equations. Let
Q � Rn be a bounded domain, F : Q � Rn ! Rn and K(t; s) be a n � n matrix,

i.e. K : Q�Q! Rn2 . Let L2 = L2(Q;R
n) and consider the Hammerstein integral

equation

(2.1) x(t)�
Z
Q

K(t; s)F (s; x(s)) ds = h(t); (t 2 Q; h 2 L2)

Regarding F , we assume

(2.2) F (t; x) satis�es the Caratheodory condition, i.e. it is measurable in t for each
�xed x 2 Rn and is continuous in x for each �xed t 2 Q, and, for some � 2 R,
� > 0 suÆciently small, 0 < pk < 1, sk 2 L2=pk (Q;R) and m 2 L2(Q;R),

jF (s; x)� �xj � �x +

nX
k=1

sk(s)jxj1�pk +m(s):
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De�ne C : L2 ! L2 by Cx(t) = �
R
QK(t; s)x(s) ds and assume that K 2 L2(Q �

Q;Rn2). Since C is compact, r = dimN(I � C) <1 and let fz1; . . . ; zrg � L2 be
a basis of the null space N(I � C�), i.e., they are linearly independent and

(2.3) zi(t)� �

Z
Q

K(s; t)zi(s) ds = 0 (t 2 Q; i = 1; . . . ; r):

Suppose also that for each x 2 L2

(2.4)

Z
Q

(

Z
Q

K(t; s)[F (s; x(s)) � �x(s)] ds)zi(t) dt = 0; 1 � i � r:

Set Mx(s) = ��1CF (s; x(s)) on L2. Since (M � C)x(t) =
R
Q

K(t; s)[F (s; x(s)) �
�x(s)] ds, the range R(M � C) � N(I � C�)? = R(I � C) by (2.4). Moreover,
M : L2 ! L2 is compact and Eq. (2.1) is equivalent to

(2.5) x�Mx = h(h 2 L2):

Theorem 2.1 (Fredholm alternative). Let (2.2) hold. Then
(a) If the equation x�Cx = 0 has a unique zero solution, Eq. (2.1) is approxima-

tion-solvable w.r.t. any �0 for L2 for each f 2 L2, or
(b) if N(I � C) 6= f0g and (2.4) holds, then Eq. (2.1) is solvable for a given

h 2 L2 if and only if

(2.6)

Z
Q

h(s)zi(s) ds = 0; (1 � i � r)

in which case there is a connected closed subset S of (I �M)�1(h) whose
covering dimension at each point is at least r.

Proof. Set A = I � C, N = M � C and T = A � N . Then A : L2 ! L2
is Fredholm of index zero with codimR(A) = r. Moreover, T is A-proper w.r.t.
any projection scheme �0 = fXn; Png for L2 and the quasinorm jN j is suÆciently
small (cf. [8]). Moreover, as in [8], we get that R(N) � R(A) = N(A)�?. Hence,
the conclusions follow from Theorems 2.3 and

Remark 2.1. Without the dimension assertion, Theorem 2.1 has been proved
in [8] with i jN j > 0 and, existentially, in Kachurovsky [6] when jN j = 0. When
F (s; x(s)) = x(s), it reduces to the classical Fredholm alternative.

3. Nonlinear nonresonance perturbations of regular elliptic prob-

lems. In this section we shall consider the following semilinear elliptic boundary
value problems without resonance (at zero or in�nity)
(3.1) Au� F (x; u;Du; . . . ; D2mu) = f(x) in Q
(3.2) Au�G(x; u;Du; . . . ; D2m�1)u� F (x; u;Du; . . . ; D2mu) = f(x) in Q
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(3.3) Bj(x;D)u = 0 on @Q, j = 1; . . . ;m,

where the boundary @Q is smooth and Au =
X

j�j�2m

a�(x)D
�u(x) is an elliptic

operator acting on V = fu 2 W 2m
p (Q) jBju = 0 and Q; 1 � j � mg, the space

of functions satisfying "coercive" (i.e. Lopatinski-Schapiro) boundary conditions
Bju = 0 on @Q for some p 2 (1;1), with a� 2 C(Q) for j�j = j(�1; . . . ; �n)j =
�1+ � � �+�n = 2m and a� 2 L1(Q) for j�j < 2m. Assume that A : V ! Lp(Q) is
Fredholm of index zero which is the case under suitable conditions on the boundary
operators fBjg. Let s2m be the number of distinct derivatives of order � 2m.

Regarding F and G, we assume
(3.4) F : Q � Rs2m ! R satis�es the Caratheodory condition and there is M > 0

suÆciently small and h 2 Lp(Q) such that

jF (x; �)j � h(x) +M
X

j�j�2m

j��j for a.e. x 2 Q and each � 2 Rs2m:

(3.5) G : Q � Rs2m�1 ! R satis�es (3.4) on Q � Rs2m�1 and, for each u 2
W 2m�1
p (Q), B(u) = G(x; u;Du; . . . ; D2m�1u) is a continuous linear map

from Lp into itself and such that

lim sup
jjujj2m!1

jjB(u)jj < 1

jjA�1jjLp!Lp

De�ne: N : V ! Lp by Nu = F (x; u; . . .D2mu). Then boundary value problems
(3.1), (3.3) and (3.2), (3.3) are equivalent to the operator equations

(3.6) Au�Nu = f

and

(3.7) Au�B(u)u�Nu = f:

When A is injective, we have

Theorem 3.1. A : V ! Lp be injective and A-proper w.r.t. � = fXn; Yn; Qng
for (V; Lp) and (3.4){(3.5) hold. Then
(a) If A�N : V ! Lp is (pseudo) A-proper w.r.t. � , BVP (3.1), (3.3) is (solvable)

approximation-solvable for each f 2 Lp.
(b) If N : V ! Lp is k-ball contractive, k < 1, then BVP (3.2), (3.3) is

approximation-solvable for each f 2 Lp.

Proof. (a) By (3.4), jjNujj � a + bjjujj for each u 2 V and some a and
b. Since b is suÆciently small, the conclusions follow from Theorem 2.1 in [9].
(b) De�ne a map U : V � V ! Lp by U(u; v) = B(u)v. For each v 2 V �xed, the
map U(�; v) = B(�) v : V ! Lp is completely continuous by the continuity of u !
G(x; u; . . . ; D2m�1) from W 2m�1

p into Lp and the compactness of the embedding

V ,!W 2m�1
p . Moreover, for each u 2 V �xed, the map U(u; �) = B(u)(�) : V ! Lp
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is also completely continuous. Hence, T1u = Au � B(u)u and T = T1 � N are
A-proper w.r.t. � by Proposition 3.1 in [9]. Thus, the conclusion follows from
Theorem 3.3 in [9] . �

Let us now look at some special cases. Suppose
(3.8) There is a constant k1 suÆciently small such that

jF (x; �; �)� F (x; �; �0)j �
X

j�j�2m

j�� � �0�j

for a.e. x 2 Q and all � 2 Rs2m�1 , �; �0 2 Rs0
2m , s02m = s2m � s2m�1.

Corollary 3.1. Let A be as in Theorem 3.1, and (3.4), (3.5) and (3.8)
hold. Then BVP's (3.1), (3.3) and (3.2), (3.3) are approximation-solvable for each
f 2 Lp.

Proof. De�ne a map U : V � V ! Lp by

U(u; v) = F (x; u; . . . ; D2m�1u;D2mv):

Then, for each v 2 V �xed, U(�; v) : V ! Lp is continuous, bounded and therefore
compact by the imbedding theorem. Moreover, for each u 2 V �xed, U(u; �) : V !
Lp is k-ball-contractive with k small. Since Nu = U(u; u) for u 2 V , it is k-ball-
contractive and therefore A�N is A-proper w.r.t. � . Hence, Corollary 3.1 follows
from Theorem 3.1. �

Corollary 3.2. Let A be as in Theorem 3.1 and F (x; u; . . . ; D2mu) =
F1(x; u; . . . ; D

2m�1u) + F2(x;Au) such that
(3.9) N1u = F1(x; u; . . . ; D

2m�1u) is continuous form W 2m�1
p into Lp;

(3.10) F2 : Q � R ! R is continuous and there are h 2 Lp and b > 0 such that
for x 2 Q, t; t1; t2 2 R:

jF2(x; t)j � b(jh(x)j + jtj) and (F2(x; t1)� F2(x; t2))(t1 � t2) � 0:

Then BVP (3.1), (3.3) is solvable for each f 2 Lp.

Proof. Let N2u = F2(x;Au) on V . Then A � N1 +N2 : V ! Lp is pseudo
A-proper w.r.t. � = fXn; A(Xn); Qng since N1 is completely continuous and N2 is
A-monotone, i.e. (N2u�N2v;A(u� v)) � 0 on V (cf. [12]). Since jj(N1+N2)ujj �
a+ bjjujj2m for u 2 V with b suÆciently small, the corollary follows from Theorem
3.1 (a). �

Let us now look at (3.1){(3.3) when kerA 6= f0g and there is no resonance at
in�nity. Suppose that F = F1 + F2 satis�es the Carath�eodory condition and

(3.11) There are h1 2 Lp, M1 > 0 and Æ 2 (0; 1) such that

jF1(x; �)j � h1(x) +M1

X
j�j�2m

j�� jÆ for a.e. x 2 Q; all � 2 Rs2m
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(3.12) There are � 2 R, b� � 0 and h2 2 Lp such that for a.e x 2 Q and � 2 Rs2m

jF2(x; �0; �1; . . . �2m)� ��0j � h2(x) +
X

j�j�2m

b�j��j:

Theorem 3.2. Let A� = A � �I : V ! Lp have a continuous inverse and

� = fXn = A�1� (Yn); Yn; Qng be a scheme for (V; Lp). Then
(a) If (3.11){(3.12) hold with the b�'s small and A � N : V ! Lp is (pseudo)

A-proper w.r.t. � , then BVP (3.1), (3.3) is (solvable) approximation-solvable
for each f 2 Lp.

(b) If (3.4) hold N : V ! Lp is k-ball-contractive with k < 1 and B� = B � �I
and A� satisfy (3.5), then BVP (3.2), (3.3) is approximation-solvable for each
f 2 Lp.

Proof. (a) We note �rst that jjQnA�ujj = jjA�ujj � jjA�1� jj jjujj2m for u 2 Xn.
Let Niu = Fi(x; u; . . .D

2mu), i = 1; 2, and N = N1 +N2. By (3.12), Minkowski
and H�older inequalities imply that

jjN2u� �ujj � a+ bjjujj2m for u 2 V

and some a and b. Moreover, N1 : V ! Lp has a sublinear growth by (3.11), and
therefore jjN � �I jj < b. Hence, Theorem 2.1 [9] applies.
(b) Using the arguments similar to those in the proof of Theorem 3.1 (b), we
see that the conclusion follows from Theorem 3.3 [9]. �

Next, suppose that A : D(A) = V � L2 ! L2 is self-adjoint and has the
pure point spectrum consisting of eigenvalues: �1 � �2 � � � � � �k � . . . of �nite,
multiplicities, with no �nite point of accumulation. Assume

(3.13) Let �k < �k+1 and � and  be such that �k < � < �k+1 and 0 �  <
minf� � �k; �k+1 � �g and small. Suppose that for some h2 � L2, a.e.
x 2 Q and all � = (�0; �1; . . . ; �2m) 2 Rs2m

jF2(x; �) � ��0j � j�0j+ h2(x):

(3.14) There are positive constants ", % and M and h1 2 L2 such that
(i) jF2(x; s; �)j �M jsj+ h1(x) for a.e. x 2 Q, s 2 R, � 2 Rs2m�1;
(ii) For some �k < �k+1 and all (x; s; �) 2 Q�R�Rs2m�1 with jsj � %

�k + " � F2(x; s; �)=s � �k+1 � ":

Note that (ii) holds if lim
s!�1

F2(x; s; �)=s = f�(x) uniformly with respect to

� 2 Rs2m�1 and f�(x) 2 [�k + "; �k+1 � "] for x 2 Q. Moreover, (3.14) implies
(3.13) with � = (�k + �k+1)=2,  = (�k+1 � �k)=2 and h2(x) = h1(x) + %(M + �).
We have now

Theorem 3.3. Let A : V = W 2m
2 (Q; fBjg) ! L2 be Fredholm of index zero

and self-adjoint in L2. Then
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(a) If (3.11) and (3.13) hold and A�N : V ! L2 is (pseudo) A-proper w.r.t. � =
fXn = A�1(Yn); Yn; Qng, then BVP (3.1), (3.3) is (solvable) approximation-
solvable for each f 2 L2.

(b) If (3.11) and (3.13) hold, N : V ! L2 is k-ball-contractive, (e.g. (3.8) holds),
k < 1, and

(3.15) lim sup
jjujj2m!1

jjB(u)� 1

2
(�k + �k+1)I jj < 1

2
(�k+1 � �k);

then BVP (3.2), (3.3) is approximation-solvable for each f 2 L2.

Proof. (a) The spectral gap of A induced by the gap (�k ; �k+1) is (�k �
�; �k+1��). Hence, A�1� : L2 ! L2 is a bounded self-adfoint map whose spectrum

lies in [(�k��)�1; (�k+1��)�1] and so jjA�1� jj � maxf(���k)�1; (�k+1��)�1g �
1=. Since A is self-adjoint in L2, it follows that 0 <  < jjA�1� jj�1 = minfj�j j� 2
�(A� �I)g.

Next, let Niu = F (x; u; . . . ; D2mu) on V , i = 1; 2. Using Minkowski and
H�older inequalities we get jjN2u � �ujj � jjujj + jjh2jj for u 2 V and jjN1ujj �
mjjujjÆ2m+jjh1jj for somem and all u 2 V . Hence, jjNu��ujj � jjujj+mjjujjÆ2m+b
for u 2 V and the conclusions follow from Theorem 3.1 in [9]. (b) Let � = (�k +
�k+1)=2. Then, as in (a), jjA�1� jj = (�k+1 � �k)=2. Hence, as in Theorem 3.1, the
conclusion follows from Theorem 3.3 in [9]. �

As before, we obtain

Corollary 3.2. Let A be as in Theorem 3.2 and (3.11) and (3.13) hold.
Then, if F = F1 + F2 satis�es (3.8) ((3.9){(3.10), respectively), Theorem 3.2 (a)
holds.

Remark 3.1. Clearly, (3.8) holds if F does not depend on D�u with j�j =
2m. In this setting, Corollary 3.2 was proved existentially by de Figueiredo [4],
while Theorem 3.3 (b) by Kazdan-Warner [7], using completely di�erent arguments.
When F = F2 satis�es (3.8) and (3.14) with m = 1 and A is symmetric and
uniformly elliptic in Q, Corollary 3.2 also extends one of the main existence results
of Fitzpatrick [5]. His proof was based on the Courant min-max principle and
therefore does not extend to the higher order equations. As in [7], we could extend
Theorem 3.2 to systems of equations in (3.1) and (3.2).

4. Nonlinear boundary value problems for semilinear elliptic equa-

tions. Let Q be a bounded open subset of Rn with smooth boundary and

� : R1 ! 2R
1

have a maximal monotone graph in R2 with 0 2 �(0). Let
X = W 2

2 (Q), Y = L2(Q) In this section we shall study the solvability of the
following eigenvalue problems in X .

(4.1)

���u+ F (x; u;ru;�u) = �u+ f in Q
�@u=@n 2 �(u) on @Q:

and

(4.2)

���u+ (u) 3 �u+ f in Q
�@u=@n 2 p(u) on @Q;
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where f 2 L2(Q) and @=@n denotes the outward normal derivative, and  is another
maximal monotone graph in R2. Such problems appear in thermodynamics, uid
dynamics, elasticity, etc.

4.1. Let us �rst consider the eigenvalue problem (4.1). Let C = I : X ! Y
be the natural imbedding which is compact by the imbedding theorem. We make
the following assumptions on the nonlinear term
(4.3) F : Q�Rs2 ! R1 satis�es the Caratheodory condition, F = F1 + F2 and

(i) there are positive constants b�, Æ 2 (0; 1) and h1 2 L2 such that
jF1(x; �)j � h1(x) +

P
j�j�2 b�j��jÆ for x 2 Q (a.e.) and � 2 Rs2 .

(ii) There are �1 2 R+, c� > 0 suÆciently small and h2 2 L2 such that
jF2(x; s; �) � �1sj � h2(x) + 

P
j�j�2 c�j��j for x 2 Q (a.e.) and � 2

Rs2�1, s 2 R1.
(4.4) F (x; �; �) is continuous in (x; �) uniformly with respect to � 2 R1 and there

is a constant M > 0 such that

jF (x; �; �1)� F (x; �; �2)j �M j�1 � �2j for x 2 Q (a.e), � 2 Rn; �1; �2 2 R1:

Let D(A) = fu 2 W 2
2 (Q) j � @u=@n 2 �(u) a.e. on @Qg and de�ne Au =

��u for u 2 D(A). We note that D(A) is well de�ned by the trace theorem and
A : D(A) � Y ! Y is a maximal monotone (nonlinear) mapping. It is well known
that ([1]) C(A+ �1I)

�1 is nonexpansive and compact in Y and there is a constant
K such that

(4.5) jjujjX � K(jjAu+ �1ujjY + 1) for x 2 D(A):

Theorem 4.1. Suppose that (4.3) and (4.4) hold. Then there exists an �0 > 0
such that for each � 2 (��0; �0) BVP (4.1) has a solution for each f in L2.

Proof. De�ne Ni : X ! Y by Niu = Fi(x; u;ru;�u), i = 1; 2. Then there
are constants mi depending only on the b0�s and c0�s such that for each u 2 X

jjN1ujj � m1jjujjÆ + jjh1jj and jjN2u� �1ujj � m2jjujj+ jjh2jj:
Since m2 is suitably small, there exists an R > 0 such that Ka < 1 for a =
m+m1R

Æ�1 and therefore N = N1 +N2 satis�es

jjNu� 1ujj � ajjujj+ b for jjujj � R; where b = jjh1jj+ jjh2jj:
Let �0 > 0 be such that K(a+�0) � 1. Then, jjNu� (�1+�)ujj � (a+ j�j)jjujj+ b
for each � 2 (��0; �0) and jjujj � R. Therefore, since N(A + (�1 + �)I)�1 is
M -ball-contractive in Y as in [5], the conclusion follows from Theorem 3.5 [9]. �

4.2. In this section we shall �rst consider a class of general eigenvalue prob-
lems in a Banach space X and then we shall obtain some solvability results for the
nonlinear eigenvalue problem (4.2).

Let T : D(T ) � X ! 2X be an m-accretive mapping (i.e., �I+T is surjective
for each � > 0 and T is accretive) and consider the eigenvalue problem

(4.6) f + �x 2 Tx (f 2 X given):
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By the m-accretivity of T , (4.6) is uniquely solvable for each f if � < 0. Suppose
that � � 0 and �0 > 0 is �xed. Setting � = � + �0, y = �x + f and N = N�0 =
(�0I + T )�1 : X ! X , it is easy to see that (4.6) is equivalent to

(4.7) y � �Ny = f:

Since N is nonexpansive, �N is a �-contractive mapping and therefore (4.7)
is uniquely solvable for each f if � < 1. Hence, it remains to consider the solvability
of (4.6) when � � 1. In view of the above discussion, as an immediate consequence
of Theorem 2.1 (c) in [9] we obtain

Theorem 4.2. Let I � (� + �0)N : X ! X be pseudo A-proper w.r.t. a
scheme � = fXn; Png for some � � 1 and A : X ! X be such that for some c0 > 0
and n0 � 1,

(4.8) jjx� (�+ �0)PnAxjj � c0jjxjj for x 2 Xn; n � n0:

Suppose that

jN �Aj = lim sup
jjxjj!1

jjNx�Axjj
jjxjj <

1

�c
:

Then (4.6) is solvable for each f in X.

It follows that if, for example, A and N are compact with A linear and 1=�
is not an eigenvalue of A, then all the hypotheses of Theorem 4.2, except (4.9), are
satis�ed. Hence, if (4.9) also holds, then (4.6) is solvable. We shall see below that
this situation occurs in studying (4.2).

Assume that � and  : R1 ! 2R
1

have maximal monotone graphs in R2 such
that 0 2 �(0) \ (0) and the domains D(�)(= fy 2 R1 j�(y) 6= ;g) and D()
contain at least one half-line starting at the origin. The classes of monotone graphs
to be considered in (4.2) are de�ned next.

De�nition 4.1. Let � : R1 ! 2R
1

be such that D(�) contains at least one
half-line starting at the origin.

(a) � is said to be asymptotically close to �(1) = �0 < 1 if there is a constant
a � 0 such that to each " > 0 there corresponds an R" such that

jz � �0yj � (a+ ")jyj for each z 2 �(y); y 2 D(�); jyj � R"

and we write j�� �0j = a.

(b) � is said to satisfy condition (+) if to eachM > 0 there corresponds an RM > 0
such that

jzj �M jyj for each z 2 �(y); y 2 D(�) and jyj � RM :

De�ne B(U) = ��u for u 2 D(B) = fu 2 W 2
2 (Q) j � @u=@n 2 �(u(x)) for x 2

@Q a.e.g. Then B is a maximal monotone operator in H = L2(Q) and, for each
� > 0 �xed, there is a constant c > 0 such that

(4.10) jjujj2;2 � cjj ��+ �ujj2 for each u 2 D(B)
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by Theorem 10 in [1]. Moreover, by Corollary 13 in [2], Tu = ��u + (u) with
u 2 fu 2 W 2

2 (Q) j � @u=@n 2 �(u(x)); u(x) 2 D() for x 2 @Q a.e.g is maximal
monotone in H and therefore, for each u 2 H there is a unique function Nu
satisfying

(4.11) ��Nu+ (Nu) + �0Nu 3 u in Q

(4.12) �@Nu=@n 2 �(Nu) on @Q

for any �0 > 0 �xed. Moreover, N = N�0 = (�0I + T )�1 : H ! H is nonexpansive
and jjNujj � jjujj for each u 2 H .

Let us now consider (4.2). It is easy to see that it possesses only the trivial
solution u = 0 if � < 0. Suppose that � � 0 from now on. Then we can write (4.2)
in the operator form as

(4.13) f + �u 2 Tu; u 2 D(T )

which is equivalent to (cf. [3])

(4.14) v � �Nv = f; v 2 L2;

where � = �0 + �, v = �u+ f and N is de�ned by (4.11){(4.12).

In order to apply Theorem 4.2 we need to �nd a mapping A asymptotically
close to N . To that end, the following result is needed.

Proposition 4.1. (a) Let � : R1 ! 2R
1

satisfy condition (+) and G � Rn

be measurable. If u; v 2 L2(G), u(x) 2 D(�) and v(x) 2 �(u(x)) for x 2 G (a.e.),
then there is a c > 0 such that to each M > 0 there corresponds RM > 0 such that
jjujj2 � c(RM +M�1jjvjj2).
(b) Let � : R1 ! 2R

1

be asymptotically close to �(1) = �0 and bounded (i.e. maps
bounded sets into bounded sets). If u; v 2 L2(G), u(x) 2 D(�) and v(x) 2 �(u(x))
for x 2 G (a.e.), then there exists a c > 0 such that to each " > 0 there corresponds
a C" > 0 such that

jjv � �0ujj2 < c((a+ ") jjujj2 + C"):

Proof. Part (a) was proved in [3] and (b) is an extension of Lemma 1.2 in [3].
Setting A = fx ju(x) > R"g, its conclusion follows from

jjv � �0ujj22 =
Z
A

(v(x) � �0u(x))2 dx+

Z
B=G�A

(v(x) � �0u(x))2 dx

�
Z
A

(a+ ")2u2(x) dx +

Z
B

(v(x) � �0u(x))2 dx � c2((a+ ") jjujj22 + C2
" );

where we used at the last step that ju(X)j � R" and � is bounded. �

The following Green's theorem will be used in the sequel: if u(x) � W 2
2 (Q)

and w 2W 1
q (Q) then

�
Z
Q

� � wdx =
X
i

Z
Q

@u

@xi

@w

@xi
dx�

Z
Q

@u

@n
wd�
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where 1 < q � 2 if n = 2 and q = 2n=(n+ 2) if n > 2.

Proposition 4.2. Let  be asymptotically close to 0 and bounded. Then
jjNujj2;1 �

p
2� �0 jjujj and jjNujj2;2 � c((1 + a + ") jjujj + C") for u 2 H, and

some c > 0 with " > 0 given.

Proof. (Cf. also [3].) Letu 2 H be �xed. Then there exists an w 2 (Nu)
such that

(4.15) �ÆNu+ w + �0Nu = u in Q:

Since � and  are monotone and 0 2 (�(0) \ (0)), we have that
(�@Nu=@n;Nu)L2(@Q) � 0

and (w;Nu)H � 0. Multiplying (4.15) by Nu and using the Green theorem it
follows that

�0jjNujj2 =
Z
Q

(�Nu+ u� w)Nudx = �
Z
Q

jrNuj2 dx+
Z
@Q

@

@n
(Nu)Nud�+

+

Z
Q

(u� w)Nudx � �
Z
Q

jrNuj2 dx+
Z
Q

uNudx:

Hence, �0jjNujj2 + jjrNujj2 � jjujj jjNujj � jjujj2 or,
jjNujj22;1 � (1� �0) jjNujj2 + jjujj2 � (2� �0) jjujj2;

so that jjNujj2;1 � (2� �0)
1=2jjujj for each u 2 H .

Next, it follows from (4.10) and Proposition 4.1 that for a given " > 0

jjNujj2;2 � cjju� wjj � c(jjujj+ (a+ ") jjNujj+ C") � c((1 + a+ ") jjujj+ C"): �

Next we shall prove the existence of a linear mappingA to whichN is asymptotically
close.

Proposition 4.3. Suppose that satis�es condition (+) and  is bounded and
asymptotically close to (1) = 0. Let N be de�ned by (4.11){(4.12) and a linear
mapping A : H ! H be given by�

�Au+ 0Au+ �0Au = u in Q
Au = 0 on @Q:

Then the conclusions of Proposition 4.2 hold for A and for each " > 0 there exists
R" > 0 such that jjNu�Aujj2;1 � c(a+ ") jjujj for each jjujj � R".

Proof. (See also [3].) Since A is de�ned involving maximal monotone graphs
that are special cases of those ones de�ning N , the �rst assertion of the proposition
is valid.

Next, let " > 0 be given and u 2 H �xed. There exists an w 2 (Nu) such
that

��Nu+ w + �0Nu = u in Q; �@Nu=@n 2 �(Nu) on @Q:
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Therefore, Nu�Au = �(Nu�Au)+0Au�w, and, after multiplying this equality
by Nu�Au and using the Green theorem, we obtain that

jjNu�Aujj2 =�
Z
Q

jr(Nu�Au)j2 dx+
Z
@Q

@

@Q
(Nu�Au)Nud�+

+

Z
Q

(0Au� w)(Nu�Au) dx

since Au = 0 on @Q. Since 0 2 �(0), � is monotone and �@Nu=@n 2 �(Nu),
(�@Nu(x)=@n;Nu(x)) � 0 on @Q and therefore,

jjNu�Aujj22;1 =

Z
@Q

@

@n
(NU �Au)Nud� +

Z
Q

(0Au� w)(Nu�Au)dx

� �

Z
@Q

@Au

@n
Nu d� � 0jjNu�Aujj2 +

Z
Q

(0Au�w)(Nu�Au)dx

� jj@Au=@njjL2(@Q) jjNujjL2(@Q) + jj0Nu�wjj jjNu�Aujj:

Moreover, jj@Au=@njjL2(@Q) � cjjujj, jjNu�Aujj � jjNu� Aujj2;1 � cjjujj and, by
Proposition 4.1 (a){(b) for � and  respectively, for M > 0 and " > 0 there are
RM and C" such that

jjNujjL2(@Q) � c(RM +M�1jj@Nu=@njjL2(@Q); jj0Nu�wjj � c((a+ ")jjujj+C"):

Since jjNujj2;2 � c((1 + a+ ") jjujj+ C"), it follows that

jjNu�Aujj22;1 � c(RM +M�1(1 + a+ ") jjujj+ c(a+ ") jjujjC"M�1 + 1):

Hence, for a �xed " > 0 we can choose M and R" large enough so that

jjNu�Aujj22;1 � c2(a+ ") jjujj2 for jjujj > R�: �

Our �rst result now for (4.2) is

Theorem 4.3. Suppose that � satis�es condition (+) and  is bounded and
asymptotically close to (1) = 0 with j � 0j = a suÆciently small. If � � 1 is
not an eigenvalue of

(4.17)

���u+ 0u = �u in Q
u = 0 on @Q;

then (4.2) is solvable in W 2
2 (Q) for each f in H.

Proof. Let N be de�ned by (4.11){(4.12) with �0 > 0 small and � = �+ �0.
By our discussion above it suÆces to solve (4.14) in H for each f and this will be
done using Theorem 4.2. The second inequalities in Propositions 4.2 and 4.3 imply
that A, N : H ! H are compact and continuous, respectively. Hence, I � �N and
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I��A are A-proper w.r.t. a projection scheme � = fXn; Png for H . Moreover, the
null space of I��A is trivial since � is not an eigenvalue of (4.17) and consequently
(4.8) holds. Since a is suÆciently small, we see that (4.9) holds by Proposition 4.3
with " = �0 and therefore (4.14) is solvable for each f by Theorem 4.2. �

A similar result holds if condition (+) is replaced by the asymptotic one. We
have

Theorem 4.4. Suppose that � and  are bounded and asymptotically close to
�0 and 0 respectively with ���0j and j� 0j suÆciently small. If � � 1 is not an
eigenvalue of (��u+ 0u = �u in Q

�@u

@n
= �0u on Q

then (4.2) is solvable in W 2
2 (Q) for each f in H .

The proof of Theorem 4.4 is similar to that of Theorem 4.3 and is based on
the following result.

Proposition 4.4. Suppose that � and y are bounded and asymptotically close
to �0 and y' respectively. Let N be de�ned by (4.11){(4.12) and a linear mapping
A : H ! H be given by

��Au+ 0Au+ �0Au = u in Q

� @Au=@n = �0Au on Q:

Then Proposition 4.2 is valid for A and for each " > 0 there exists R" > 0 such
that jjNu� Aujj2;1 � c(j� � �0j+ j � 0j+ 3")jjujj for each jjujj � R".

Proof. As in Proposition 4.3, the conclusions of Proposition 4.2 are valid for
A. Since @=@n(Nu� Au) = @Nu=@n+ �0Nu, as in the proof the Proposition 4.3
we obtain for each u 2 H that

jjNu�Aujj22;1 =

Z
@Q

@

@n
(Nu�Au) (Nu�Au) d� +

Z
Q

(0Au� w) (Nu�Au)dx

= ��0jjNu�AujjL2(@Q) � 0jjNu �Aujj2 +

Z
@Q

�
@Nu

@n
+ �Nu

�
(Nu�Au)d�+

+

Z
Q

(0Nu� w) (Nu�Au)dx �
������@Nu

@n
+ �0Nu

������
L2(@Q)

jjNu�AujjL2(@Q)+

+ jj0Nu�wjj jjNu�Aujj:

Moreover, jjNu�AujjL2(@Q) � cjjujj, jjNu�Aujj � jjNu�Aujj2;1 � cjjujj and, by
Proposition 4.1, for a given " > 0 there is a C" > 0 such that

jj@Nu=@n+ �0Nuj jL2(@Q) � c((a1 + ") jjNujjL2(@Q) +C") � c((a1 + ") jjujj+C"):

Hence, there exists an R" > 0 such that for each jjujj � R"

jjNu�Aujj22;1 � C2jjujj((a1 + ") jjujj+ C") + C2 jjujj ((a2 + ")u+ C 0")

� C2(a1 + a2 + 3") jjujj2; where a1 = j� � �0j and a2 = j � 0j: �
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Remark 4.1. Theorems 4.3 and 4.4 extend the corresponding results of Dias-
Hernandez [3] involving asymptotically zero maximal monotone graphs � and ,
i.e. j���0j = 0, j�0j = 0, respectively. Their proofs are based on the generalized
�rst Fredholm theorem of Ne�cas [11] for compact asymptotically zero mappings.
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