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1. Introduction. Nonlinear Fredholm theory began with the works of
Lasota [9] and Lasota-Opial [10] for (multivalued) compact maps and has attracted
the attention of many authors. Since then, extensions of the �rst Fredholm theorem
and of the Fredholm alternative in a weaker form (i. e. without the dimension
assertion) have been obtained for various classes of nonlinear maps, like compact,
(set) condensing, of types (S) and (S+), monotone and A-proper ones (cf. [3,
4, 5, 6, 18, 19, 23]). In contrast to the works of other authors, in [11-15] we
began developing a Fredholm theory for (pseudo) A-proper type of maps that are
asymptotically close to a suitable map (cf. (2.2)) and, in particular, have a positive
quasinorm (cf. (2.2)).

The purpose of this paper is twofold. First, in Section 2, we prove a rather
general extension of the �rst Fredholm theorem for equations of the form

(1.1) Tx = f (x 2 X; f 2 Y )

where X and Y are normed, linear spaces and T : X ! Y is either (pseudo) A-
proper or a uniform limit of A-proper maps. When T = A+N is pseudo A-proper
with A : D(A) � X ! Y linear and N nonlinear with quasinorm N � 0, we also
prove a weaker form of the Fredholm alternative for semilinear equations

(1.2) Ax+Nx = f (x 2 D(A); f 2 Y ):

In case when A+N is a continuous A-proper map, we prove a complete Fredholm
alternative (Theorem 2.3). Second, in Section 3, using these results, we study the
solvability of Eq. (1.2) with dimker(A) � 1 when there is no resonance at in�nity.
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Moreover, the case of nonlinear A is also studied. Due to the generality of the
A-proper like maps, the obtained results are applicable to many di�erent classes
of nonlinear maps mentioned above. We also note that, using a degree theory for
multivalued maps, the results of this paper are also valid for multivalued maps T
and N . Applications of the theory to integral and partial di�erential equations are
given in Part II (this issue).

2. Fredholm theory. Let fEng and fFng be sequences of �nite dimensional
spaces and fVng and fWng be sequences of continuous linear maps with Vn mapping
En intoX injectively andWn mapping Y onto En. Suppose that dist (x; VnEn)! 0
as n ! 1 for each x 2 X , dimXn = dimYn for each n and Æ = max jjQnjj <
1. Then � = fEn; Vn;Fn;Wng is said to be an admissible scheme for (X;Y ).
In particular, let fXng and fYng be �nite dimensional subspaces of X and Y
respectively, and Pn : X ! Xn and Qn : Y ! Yn be linear projections onto Xn

and Yn with Pnx! x andQny ! y for each x 2 X and y 2 Y . If Vn = PnjXn = In,
then �0 = fXn; Pn;Yn; Qng is a projectionally complete scheme for (X;Y ).

Let D � X , T : D ! Y and Tn � WnTYn : Dn = V �1n (D) ! Fn. Recall
[21].

De�nition 2.1. A map T : D ! Y is A-proper (pseudo A-proper) w.r.t. �
if Tn is continuous for each n and, whenever fVnkunk junk 2 Dnkg is bounded
and jjTnkunk �Wnkf jj ! 0 as k ! 1 for some f 2 Y , then some subsequence
Vnk(i)unk(i) ! x (there is an x, respectively) with Tx = f .

We say that the equation Tx = f is feebly approximation (f. a.) solvable w.r.t.
� if Tnun = Wnf for some un 2 Dn, n � 1, and some subsequence Vnkunk ! x
with Tx = f . The theory of (pseudo) A-proper maps is well developed and we refer
to, e.g., [14{16, 21{23], where one can �nd also many examples of such maps.

Our �rst result is the following generalized �rst Fredholm theorem.

Theorem 2.1. Let A, T : X ! Y be nonlinear maps such that

(2.1) There are an n0 � 1 and a function c : R+ ! R+ such that c(r) ! 1 as
r !1 and jjWnAxnjj � c(jjxjj) for x 2 Vn(En) and n � n0.

(2.2) T is asymptotically close to A, i.e.

jT �Aj = lim sup
jjxjj!1

jjTx�Axjj

c(jjxjj)
< 1=Æ:

(2.3) There is an R > 0 such that either A is odd on XnB(0; R) or, for each
r � R, the Brouwer degree deg (Tn + �Gn; Bn(0; r); 0) 6= 0 for all large n,
some bounded map G : X ! Y and all � 2 (0; �0) with �0 small. Then

(a) If T is A-proper w.r.t. � and � = 0 in (2.3), Eq. (1.1) is f.a. solvable for
each f 2 Y .

(b) If T+�G is A-proper w.r.t. � for each � 2 (0; �0) and T satis�es condition
(�) (i.e. whenever Txn ! f with fxng bounded, then Tx = f for some
x), then T is surjective, i.e. T (X) = Y .
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(c) If T is pseudo A-proper w.r.t. � and � = 0 in (2.3), then T (X) = Y .

Proof. We shall �rst consider the case when A is odd on XnB(0; R) in (2.3).
Then parts (a) and (c) have been proved in [11, 12] and [15], respectively. The
validity of part (b) has been announced in [12, 15] (cf. also [14]) without proof and
we shall prove it now using a �nite dimensional antipodes theorem of Borsuk.

Let f 2 Y be �xed. Then, since the map Bx = Tx � f has the same
properties as T , it suÆces to show that Tx = 0 is solvable. Let " > 0 be such that
jT�Aj+2" < 1=Æ and r � R such that c(r) � 1 and jjTx�Axjj � (jT�Aj+") c(jjxjj)
for each jjxjj � r. Since G is bounded, there is �1 2 (0; �0) such that �1jjGxjj < "
for all jjxjj = r. Then, for each � 2 (0; �1) and jjxjj = r, we have

jjTx+ �Gx �Axjj � (jT �Aj+ 2")c(r) < c(r)=Æ:

Let � 2 (0; �1) be �xed. Then, for each n � 1,

(2.4) Tn(u) + �Gn(u) 6= �(Tn(�u) + �Gn(�u)) for u 2 @Bn(0; r); � 2 [0; 1]:

If not, then there would exist an un 2 @Bn(0; r) and � 2 [0; 1] such that (Tn +
�Gn)(un) = �(Tn + �Gn)(�un) for some n. Hence,

1

1 + �
(An � Tn � �Gn)(un) +

�

1 + �
(Tn + �Gn �An)(�un) = Anun

and therefore

c(jjVnunjj) � jjAnunjj �
Æ

1 + �
jj(T + �G�A)Vnunjj+

Æ�

1 + �
jj(T + �G�A)(�Vnun)jj <

< c(jjVn; unjj);

a contradiction. Hence, (2.4) holds and consequently, for each n � 1 there is an
un 2 @Bn(0; r) such that Tnun + �Gnun = 0 by the Borsuk antipodes theorem.
Since T+�G is A-proper, a subsequence Vnkunk ! x 2 B(0; r) with Tx+�Gx = 0.
Next, let �k 2 (0; �1), �k ! 0 and Txk + �kGxk = 0 for some xk 2 B(0; r). Since
G is bounded, Txk ! 0 and Tx = 0 for some x 2 X by condition (�).

Next, let us suppose in (2.3) that for each r � R and � 2 [0; �0], deg (Tn +
�Gn; Bn(0; r); 0) 6= 0 for all large n. When � = 0, this happens if, for example, T is
odd on XnB(0; R) or if (Tx;Kx) � 0 for jjxjj � R and some additional conditions
on K : X ! Y � and � (cf., e.g., [14, 21]). Part (a) has been proved in [12] in these
special cases and, using similar arguments, we shall now give a uni�ed proof of the
parts (a)-(c).

Let f 2 Y be �xed and de�ne Bx = Tx � f , x 2 X . Then B satis�es (2.2)
and let � > 0 be such that jB � Aj + 2" < (1 � �)=Æ. Then there is an r > R
such that c(r) � maxf1; 2Æjjf jj=�g and jjBx�Axjj � (jB �Aj+ ")c(jjxjj) for each
jjxjj � r. Let �1 2 (0; �0) be such that �1jjBxjj < " for all jjxjj = r. Then, for each
� 2 [0; �1) and jjxjj = r we have

jj(B + �G�A)xjj � jjBx �Axjj+ " > (jB �Aj+ 2")c(r) < (1� �)c(r)=Æ:
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Let � 2 [0; �1) be �xed. Then, for jjxjj = r,

(2.5)
jjWn(T + �G�A)x� tWnf jj � jjWn(T + �G�A)x�Wnf jj + jjWnf jj

� Æ(jB �Aj+ 2")c(r) + c(r)�=2 < (1� �=2)c(r):

For Bn = V �1n (B(0; r)) � En we have that B � V �1n (B(0; r)) and @Bn �
V �1n (@B(0; r)). It follows from (2.1) and (2.5) that for each � 2 [0; �1) �xed,
each u 2 @Bn, n � 1, and t 2 [0; 1] we have that

jj(Tn + �Gn)� tWnf jj � jjAnujj � jj(Tn + �Gn �An)u� tWnf jj

� c(jjVnujj)� (1� �=2)c(jjVnujj) = �c(jjVnujj)=2 > 0:

Hence, for each � 2 [0; �1) �xed, (Tn � �Gn)u 6= tWnf for u 2 @Bn, t 2 [0; 1] and
n � 1, and therefore the Brouwer degree deg (Tn + �Gn; Bn;Wnf) 6= 0 for each
n � 1.

Now, if � = 0, it follows that the equation Tnu = Wnf is solvable in
Bn for each n and the conclusion of (a) ((c), respectively) follows from the A-
properness (pseudo A-properness, respectively) of T . In case (b) we have that for
each � 2 [0; �1) �xed the equation Tnu + �Gnu = Wnf is solvable in Bn for each
n, and therefore the equation Tx+ �Gx = f is solvable in B(0; r). As before, the
boundedness of G and condition (*) imply the solvability of Tx = f . �

The following special cases are useful in applications.

Corollary 2.1. Let T = A+N : X ! Y , A satisfy (2.1) and

(2.6) jN j = lim sup
jjxjj!1

jjNxjj

c(jjxjj)
< 1=Æ:

Then the conclusions of Theorem 2.1 hold.

Corollary 2.2. Let T = A +N : X ! Y with QnAx = Ax for x 2 VnEn

and

(2.7) jjAxnjj ! 1 as jjxnjj ! 1 for xn 2 X ;

(2.8) jN j = lim sup
jjxjj!1

jjNxjj

jjAxjj
< 1=Æ:

Then the conclusions of Theorem 2.1 hold.

Proof. It follows from Corollary 2.1 by taking c(jjxjj) = jjAxjj on X . �

Regarding condition (2.1), the following lemma is useful [cf. 12, 23].

Lemma 2.1. Let A : X ! Y be A-proper at f = 0 w.r.t. � and �-positively
homogeneous (i.e., A(tx) = t�Ax for x 2 X, t > 0 and some a > 0). Then, if
Ax = 0 implies x = 0, there is a constant c > 0 and n0 > 1 such that

(2.9) jjWnAxjj � cjjxjj� for x 2 Vn(En); n � n0
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Remark 2.1. Theorem 2.1 and Corollaries 2.1{2.2 are applicable to many
classes of nonlinear maps and, in particular to (generalized) pseudo monotone ones
from X to X� (cf. [4]). This will be discussed in detail elsewhere.

Next, we shall prove a Fredholm alternative in a weaker form for maps of the
form T = A +N , where A is a linear Fredholm map of index zero i.e., the kernel
X0 = N(A) and cokernel of A are of the same �nite dimension and the range R(A)

is closed. We have the direct sums X = X0 � ~X and Y = Y0 � ~Y , ~Y = R(A), and
let L : X0 ! Y0 be a linear isomorphism and P : X ! X0 be a linear projection
onto X0. Then C = LP : X ! Y0 is completely continuous.

Theorem 2.2. [17] (Fredholm alternative). Let A : V � X ! Y be a linear
Fredholm map of index zero with N(A) 6= f0g and A-proper w.r.t. � for (V; Y ). Let
T : X ! Y be nonlinear and such that its range R(T ) � R(A) and jT � Aj < c=Æ
for c suÆciently small. Suppose that either

(a) T satis�es condition (�) and T + �G is A-proper w.r.t. � for each � 2
(0; �0) and some bounded map G : X ! Y ; or

(b) T + C : V ! Y is pseudo A-proper w.r.t. � .
Then the equation Tx = f is solvable if and only if f 2 R(A) (= N(A�)?).

Proof. Since A1 = A+C is injective and A-proper w.r.t. � , there is a constant
c > 0 such that (2.9) holds. Then T1 = T + C is such that jT1 �A1j < c=Æ. If (a)
holds, then T1+�G is A-proper w.r.t. � for each � 2 (0; �0) by the compactness of
C. In either case, the equation T1x = f is solvable for each f 2 Y by Theorem 2.1.
Moreover, if f 2 R(A) and T1x = f , then Cx = f � Tx 2 R(A) and consequently
Cx = 0 and Tx = f . Conversely, if Tx = f is solvable, then f 2 R(A) since
R(T ) � R(A). �

Finally, we shall establish a complete extension of the classical Fredholm
alternative for A-proper maps of the form T = A + N . Recall that the covering
dimension of a normal topological space is equal to n, provided n is the smallest
integer with the property that whenever U is an open covering of X , there exist a
re�nement U 0 of U , which also covers X , and no more than n + 1 members of U 0

have nonempty intersection.

Theorem 2.3. [17] (Fredholm alternative). Let A : X ! Y be a continuous
linear Fredholm map of index zero and codimR(A) = m > 0 and N : X ! Y
be continuous and such that jN j < c=Æ, R(N) � R(A) and T = A + N is A-
proper w.r.t. �0 = fXn; Pn;Yn; Qng with X0 � Xn and Y0 � Yn. Then, for each
f 2 R(A)(= N(A�)?), and only such ones, there is a connected closed subset K of
T�1(f) whose dimension at each point is at least m and the projection P maps K
onto Y0.

Proof. Let Vn = Yn \ ~Y , Xn = X0 � Un with dim Un = dim Vn and ~Qn =
Qnj ~Y j. Then T = A +N : X ! ~Y is A-proper w.r.t. �m = fXn; Pn;Vn; ~Qng with
dimXn � dimVn = m, n � 1. For a given f 2 R(A), let Bx = Nx � f . Let " > 0
be such that jN j+ " < c=Æ and R = R(E) > 0 such that

jjNX jj � (jN j+ ")jjxjj for all jjxjj � R:
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We need to show that A+B : X0� ~X ! ~Y is complemented by P . To that end it
suÆces to show (see [2]) that deg ( ~Qn(A+B)jUn ; Un; 0) 6= 0 for all large n. De�ne

the homotopy Hn : [0; 1]� Un ! Vn by Hn(t; x1) = ~QnAx1 + ~QnB(x1) We claim
that there are n0 � 1 and r � R such that if, Hn(t; x1) = 0 for some x1 2 Un with
n � n0 and t 2 [0; 1] then jjx1jj < r. If not, then there would exist x1nk 2 Unk with
jjx1nk jj ! 1 and tk 2 [0; 1] such that Hnk(tk; x1nk ) = 0 for each k. Hence,

cjjx1nk jj � jj ~QnkAx1nk jj � Æ(jN j+ ")jjx1nk jj+ Æjjf jj

and, dividing by x1nk and passing to the limit, we arrive at a contradiction to

jN j + " < c=Æ. Thus, the claim is valid and for each n � n0, and deg ( ~Qn(A +

B)jUn ; Un; 0) = deg ( ~QnAjUn ; Un; 0) 6= 0.

Next, we need to show that P : X0� ~X ! X0 is proper on (A+B)�1(0). To
see this, it suÆces to show that if fxng � X is such that Axn+Bxn ! 0 and fPxng
is bounded, then fxng is bounded since the A-proper map A+B is proper restricted

to bounded sets ([21]). We have that xn = x0n + x1n with x0n 2 X0 and x1n 2 ~X ,
and cjjx1njj � jjAx1njj � (jjN jj + ")jjx1njj + jjf jj for some " > 0 with jN j + " < c
if jjx1njj � R. This implies that fx1ng is bounded as before. Since fx0ng = fPxng
is bounded, it follows that fxng is also bounded. Hence, the conclusions of the
theorem follow from Theorem 1.2 in Fitzpatrick-Massab�o-Pejsachowicz [2]. �

Analogously, a dimension assertion on the solution set of the corresponding
"adjoint" equation treated in Theorem 2.3 in [23] can be proven when the involved
maps are A-proper.

Remark 2.2. Theorem 2.2 extends a result of Petryshyn [23] dealing with weak-
lyA-proper maps. Moreover, Theorem 2.3 includes the weaker form of the Fredholm
alternative (not dealing with the dimension of the solution set) of Kachurovsky [5,
6] for compact maps and of Ne�cas [18, 19] and Hess [3] for maps of type (S), (S+)
and monotone ones, respectively.

Remark 2.3. Using similar arguments, it can be shown that Theorem 2.3
holds for nonlinearities N of superlinear growth, i.e. if N = N1 + N2 with N1,
A-proper, odd, �-homogeneous for some � > 1 and N1x = 0 implies x = 0, and
jjN2xjj � a+ bjjxjjk for some a; b; k < � and all x 2 X .

3. Applications. We begin by looking at some applications of the abstract
results in Section 2 to semilinear equations of the form (1.2) with dimkerA � 1
when there is no resonance at in�nity. By this we mean that there is some linear
map C : V � X ! Y such that 0 62 �(A� C), the spectrum of A� C, and N � C
stays away from �(A � C) at in�nity (e.g., (3.1) holds).

Let H denote a real Hilbert space and X and Y be Banach spaces. In the
self-adjoint case we have

Theorem 3.1. Let A : D(A) � H ! H be self-adjoint, V = (D(A); jj � jj0) be
a Banach space densily and continuously embedded in H, C : D(C) � H ! H be
bounded and symmetric with V � D(C) and 0 62 �(A�C). Suppose that N : V ! H
is nonlinear and such that
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(3.1) There are positive constants a, b, c, r and k 2 (0; 1) such that

jjNx� Cxjj � ajjxjj+ bjjxjjk0 + c forjjxjj0 � r

(3.2) 0 < a < minfj� j� 2 �(A � C)g.

Then, if A � N : V ! H is pseudo A-proper w.r.t. �0 = fXn; Pn;Yn; Qng for
(V;H) with Qn(A� C)x = (A� C)x, x 2 Xn, n � 1, it is surjective.

Proof. Note �rst that B = (A�C)�1 : H ! V is continuous. Indeed, by the
closed graph theorem, it suÆces to show that it is closed. Let xn ! x in H and
Bxn ! v in V . Then Bxn ! v in H and Bx = v by the closedness of B in H .
Hence, for each x 2 V

jj(A� C)xjj � jjBjj�1jjxjj0:

Next, since C is bounded and symmetric, A�C is self-adjoint (see Kato [7, Thm. V.
4.3.]) and therefore minfjj�j j� 2 �(A�C)g = jj(A�C)�1jj and ajj(A�C)�1jj < 1
by (3.2). Moreover, for each jjx0jj � r, we have x = (A � C)�1y for some y 2 H
and

jjNx� Cxjj � ajj(A� C)�1yjj+ bjj(A� C)�1yjjk0 + c

� ajj(A� C)�1jj jjyjj+ bjjBjjkjjyjjk + c;

or

jjNx� Cxjj

jj(A� C)jj
� ajj(A� C)�1jj+ bjjBjjk jj(A � C)xjjk�1 + cjj(A� C)xjj�1:

Hence,

jN � Cj = lim sup
jjx0jj0!1

jjNx� Cxjj

jj(A� C)xjj
� ajj(A� C)�1jj < 1

and the conclusion follows from Corollary 2.2. �

Remark 3.1. If there are real numbers � < � such that a �(A)\(�; �) consists
of at most �nitely many eigenvalues, then we can take C = �I , � = (�k +�k+1)=2,
in Theorem 3.1 for some consecutive eigenvalues �k < �k+1 in (�; �). Then (3.2)
holds if a < 
 = (�k+1��k)=2. Indeed, the spectral gap for A��I induced by the
gap (�k ; �k+1) is (�
; 
) and therefore (A��I)

�1 : H ! H is a bounded self adjoint
map whose spectrum lies in (�1=
; 1=
). Hence, jj(A � �I)�1jj = 1=
. Moreover,
the scheme �0 = f(A��I)�1(Yn); Pn;Yn; Qng for (V;H) has the required property
in Theorem 3.1.

Analyzing the proof of Theorem 3.1, we see that the following more general
result holds when A is not selfadjoint.

Theorem 3.2. Let (V; jj � jj0) be densily and continuously embedded in X,
A : V ! Y and C : X ! Y be closed linear maps with A � C : V ! Y bijective.
Suppose that N : V ! Y is nonlinear and

(3.3) There are positive constants a, b and r, with a suÆciently small such that

jjNx� Cxjj � ajjxjj0 + b for jjxjj � r:
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Then, if A�N : V ! Y is pseudo A-proper w.r.t. � for (V; Y ) with Qn(A�C)x =
(A� C)x, x 2 Xn, n � 1, it is surjective.

Next, we shall look at Eq. (1.2) with nonlinearities of the form Nx = B(x)x�
Mx, where B(x) : X ! X is a continuous linear map for each x 2 V such that for
some � 62 �(A), A� = A� �I and B�(x) = B(x)� �I satisfy

(3.4) m = lim sup
jjxjj0!1

jjB�(x)jj <
1

jjA�1� jj
:

Theorem 3.3. Let A : D(A) � X ! X be a closed linear map, V = (D(A),
jj � jj0) be a Banach space densily continuously embedded in X and (3.4) hold. Sup-
pose that M : V ! X is nonlinear and T : V ! X, Tx = A(x) � B(x)x �Mx, is
pseudo A-proper w.r.t. � = fXn; Pn;Yn; Qng. Then

(a) If QnA�x = A�x, x 2 X, n � 1, and there are positive constants a, b, c,
r and k 2 (0; 1) such that Æ(a+m) � jjA�1� jj < 1 and

jjMxjj � ajjxjj+ bjjxjjk0 + c for jjxjj0 � r;

then T is surjective
(b) If T1x = Ax�B(x)x is A-proper w.r.t. �0 and

jM j = lim sup
jjxjj0!1

jjMxjj

jjxjj0
<1

is suÆciently small, then T is surjective.

Proof. (a) As in Theorem 3.1, we obtain that

jjA�xjj � jjA�1� jj�1(X!V )jjxjj0; x 2 X:

Moreover, for " > 0 small with (m+ a+ ")jjA�1� jj < 1 there is an R > 0 such that
for jjxjj0 � R

jjB�(x)x +Mxjj � (m+ a+ ")jjxjj+ bjjx0jj
k + c:

Then, setting Nx = B(x)x+Mx and C = �I , the conclusion follows from Corollary
2.2 as in Theorem 3.1.

(b) By (3.4), there is an R > 0 such that jjB�(x)jj < 1=jjA�1� jj for all jjxjj0 �

R. Hence, for such x's, the map B�(x)A
�1
� : X ! X satis�es

jjB�(x)A
�1
� jj � jjB�(x)jj jjA

�1
� jj < � < 1

for some � independent of x. Consenquently, I � B�(x)A
�1
� : X ! X is invertible

and
jj(I �B�(x)A

�1
� )�1jj < 1=(1� �) for jjxjj0 � R:

As before, A�1� : X ! V is continuous and therefore cjjxjj0 � jjA�xjj for x 2 V
and some c > 0. Moreover, for jjxjj0 � R

c1jjxjj0 � jj[I �B�(x)A
�1
� ]�1[I �B�(x)A

�1
� ]A�xjj � jjA�(x) �B�(x)jj=(1� �):
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or

(3.5) c1jjxjj0 � jjA�x�B�(x)xjj for jjxjj0 � R; c1 = (1� �)c:

Since T1x = A�x � B�(x)x = Ax � B(x)x is A-proper, arguing by contradiction
and using (3.5), we obtain an n0 � 1 and c0 � 0 such that

(3.6) c0jjxjj0 � jjQn(A�B(x))xjj for all x 2 XnnB(0; R); n � n0:

Since jM j is suÆciently small, the conslusion follows from Corollary 2.1, where one
needs only to assume (2.1) on XnnB(0; R). �

To give some conditions for the A-properness of T1 and T , we recall that a
ball-measure of noncompactness of a set D � X is de�ned by �(D) = inf fr >
0 jD = [ni=1B(xi; r); xi 2 X and some ng. A map T : D ! Y is k-ball-contractive
if �(T (Q)) � k�(Q) for each Q � D. We have

Proposition 3.1. Let U(x; y) = B(x)y for (x; y) 2 V � V and

(3.7) For each x 2 V , U(x; �) : V ! X is k1-ball-contractive;

(3.8) For each y 2 V , U(�; y) : V ! X is completely continuous.

Suppose that A : V ! X is Fredholm of index zero and M : V ! X is k2-ball-
contractive with k = k1 + k2 suÆciently small. Then T1; T : V ! X are A-proper
w.r.t. �0 for (V;X) with QnAx = Ax on Xn.

Proof. It is known that the map B1 : V ! X , B1(x) = U(x; x) is k1-ball-
contractive by (3.7)-(3.8). Since B1 +M : V ! X is k-ball-contractive, T1 and T
are A-proper w.r.t. �0 (cf. [15]). �

Remark 3.2. Condition (3.7) is implied by the compactness of the embedding
of V into X or by jjB(x)jj(V!X) � k1 for all x 2 V . In applications various natural
conditions imply (3.7)-(3.8).

So far we have studied Eq. (1.2) with nonlinearities N asymptotically close
to linear maps (i.e. when condition of type (3.1) holds). It turns out that when
A = I , we can allow more general nonlinearities studied �rst by Perov [20] and
Krasnoselskii-Zabreiko [8]. To introduce this class, we consider a pair of self adjoint
maps B1; B2 : H ! H such that B1 � B2, i.e. (B1x; x) < (B2x; x) for x 2 H ,
and 1 is not in their spectrum �(B1) [ �(B2). Let �(B1) \ (1;1) = f�1; . . . ; �kg
and �(B2) \ (1;1) = f�1; . . . ; �mg, where the �i's and �j 's are eigenvalues of
B1 and B2, respectively, of �nite multiplicities and assume that the sum of the
multiplicities of the �i's is equal to the sum of the �j 's. Then we say that B1 and
B2 form a regular pair.

Recall that ([8]) a (nonlinear) map K : H ! H is said to be fB1; B2g-
quasilinear on a set S � H if for each x 2 S there exists a linear selfadjoint map
B : H ! H such that B1 � B � B2 and Bx = Kx. A map N : H ! H is said
to be asymptotically fB1; B2g-quasilinear if there is a fB1; B2g-quasilinear outside
some ball map K such that

(3.9) jN �Kj = lim sup
jjxjj!1

jjNx�Kxjj

jjxjj
<1:
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It has been shown in [8] that if B1 and B2 form a regular pair, then there is a
constant c > 0 such that for each self-adjoint map B with B1 � B � B2 we have
that

(3.10) jjx�Bxjj � cjjxjj for each x 2 H:

For example, if N : H ! H is such that N 0(x) is self-adjoint for each x in H and
satis�es

(3.11) B1 � N 0(x) < B2 for x 2 H;

thenN is asymptotically fB1; B2g-quasilinear since we can representNx = B(x)x+

N(0), where B(x) =
R 1
0
N 0(tx) dt. Moreover, if Nx = B(x)x + Mx for some

nonlinearM with jM j <1 and B(X) : H ! H is self-adjoint and B1 � B(x) � B2

for each x in H , then N is asymptotically fB1; B2g-quasilinear (cf. [20] for some
other criteria). For equations with such nonlinearities we have

Theorem 3.4. [17]. Let fB1; B2g form regular pair, M;N : H ! H be
bounded and N be asymptotically fB1; B2g-quasilinear with jM +N �Kj < c. Let
B0 : H ! H be self-adjoint with B1 � B0 � B2 and Ht = I�t(M+N)�(1� t)B0,
0 � t � 1. Then

(a) If Ht, is A-proper w.r.t. �0 = fHn; Png for each t 2 [0; 1], then the equation
x�Mx�Nx = f is f.a. solvable for each f 2 H.

(b) If Ht, is A-proper w.r.t. �0 for each t < 1 and H1 is either pseudo A-proper
w.r.t. �0 or satis�es condition (*), then (I �M �N)(H) = H.

(c) Let G : H ! H be such that jjGxjj < ajjxjj on H for some a, and for each
large r, deg (PnB0 + �PnG;B(0; r) \ Xn; 0) 6= 0 for each large n and � > 0
small. Suppose that Ht + �G is A-proper w.r.t. �0 for each t 2 [0; 1] and
� > 0 small and H1 satis�es condition (*). Then (I �M �N)(H) = H.

Proof. Since Nfx = Nx � f has the same properties as N for any t in H , it
suÆces to study the equation x�Mx�Nx = 0. Let �0 > 0 and " > 0 be such that
jM +N �Kj+ "+ a�0 < c.Then there is an r > 0 such that jjMx+Nx�Kxjj �
(jM +N �Kj+ ")jjxjj for each jjxjj � r. Moreover, H(t; x)+�Gx 6= 0 for jjxjj = r,
t 2 [0; 1] and � 2 [0; �0). If not, then there are t 2 [0; 1], jjxjj = r and � 2 [0; �0)
such that H(t; x) + �Gx = 0. Hence,

jjx� tKx� (1� t)B0xjj � tjjMx+Nx�Kxjj+ �jjGxjj < c:

Since K is fB1; B2g-quasilinear, there is a self-adjoint map B� : H ! H such that
Kx = B�x and therefore

(3.12) jjx� tB�x� (1� t)B0xjj < cjjxjj

But B1 � B � B2 for B = tB� + (1 � t)B0 and consequently (3.10) holds. This
contradicts (3.12) and our claim is valid. Hence, the conclusions of (a), (b) and (c)
follow from Theorems .1 and 3.1 [16], respectively. �
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Remark 3.3. Theorem 3.4 is applicable if B0 is compact and M + N is the
sum of a k-ball-contraction and a monotone map, k < 1, or N is compact and
(Mx � My; x � y) � �jjx � yjj2, etc. When B0 and N are compact, M = 0
and jN �Kj = 0, the solvability of x � Nx = f in part (a) has been proven by
Krasnoselskii-Zabreiko [8] and in a less general form by Perov [20], using completely
di�erent arguments.

Finally, we shall consider Eq. (1.2) when D(A) is not a linear subset of X
and A : D(A) � X ! Y is such that
(3.13)
(A+ C)�1 : Y ! D(A) � X is surjective and jj(A+ C)�1yjj � K(jjyjj+ 1)

for some bounded map C : X ! Y , each y 2 Y and some constant K > 0.
Condition (3.13) is satis�ed if, e.g., Y = X and C = �I , � > 0, and A is m-
accretive (cf. [1]). In applications considered in part II (3.13) holds with Y 6= X .

Theorem 3.5. [17]. Let (3.13) hold and N : D(A) � X ! Y be such that
for some constants a > 0, b > 0 with ÆKa < 1, Æ = max jjPnjj,

(3.14) jjNx� Cxjj � ajjxjj+ b for x 2 D(A):

Suppose that T = I + (N � C)(A + C)�1 + �C(A + C)�1 is A-proper w.r.t. �0 =
fXn; Png for Y and � 2 [0; 1) and T0 satis�es condition (*). Then (A+N)(D(A)) =
Y .

Proof. It is easy to see that Eq. (1.2) is solvable if and only if so is the equation
T0y = f in Y . In view of Corollary 2.1, with A = I and G = �C(A + C)�1, it
suÆces to show that j(N � C)(A + C)�1j < 1=Æ. But, this follows easily from
(3.13){(3.14) since

lim sup
jjyjj!1

jj(N � C)(A+ C)�1yjj

jjyjj
� lim sup

jjyjj!1

b+ ajj(A+ C)�1yjj

jjyjj
� aK < 1=Æ: �

Next, we shall give an extension of Theorem 3.5 when (3.13) does not hold.
We need

De�nition 3.1. A homotopy H : [0; 1] � D ! Y , D � X , is said to satisfy
condition (+) if fxng is bounded in X whenever H(tn; xn)! f , tn 2 [0; 1].

Theorem 3.6. [17]. Let A;N : D(A) � X ! Y and C : X ! Y be
nonlinear maps, C and N be bounded and (A+ C)�1 : Y ! D(A) be bounded and
surjective. Suppose that H(t; x) = Ax + tNx + (1 � t)Cx satis�es condition (+),
Ft = I + t(N � C)(A + C)�1 is A-proper w.r.t. �0 = fYn; Png for each t 2 [0; 1)
and F1 satis�es condition (*). Then (A+N)(D(A)) = Y .

Proof. Let f 2 Y be �xed. Condition (+) implies that the set U = fx 2
D(A) jH(t; x) = tf for some t 2 [0; 1]g � B(0; R1) for some R1 > 0. Then
x = (A+C)�1y 2 U whenever F (t; y) = tf and, since C and N are bounded, there
is an R > 0 such that

jjyjj � jj(N + C)(A+ C)�1yjj � R:
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Hence, F (t; y) 6= tf for (t; y) 2 [0; 1]� @B(0; R). Next, let "k 2 (0; 1) and "k ! 1.
By the A-properness of Ft for t 2 [0; "k], there is an nk = n("k) � 1 such that

PnF (t; y) 6= tPnf for t 2 [0; "k]; y 2 Yn \ @B(0; R); n � nk

and nk1 � nk2 if k1 � k2. Hence, for each k �xed and each n � nk

deg (PnH("k�); B(0; R) \ Yn; Pnf) = deg (I; B(0; R) \ Yn; 0) 6= 0

and therefore PnF ("k; yn) = "kPnf for some yn 2 B(0; R) \ Yn and each n � nk.
Since F"k is A-proper, there is an yk 2 B(0; R) such that F ("k; yk) = "kf . Then
yk + (N � C)(A + C)�1yk = "kf + (1 � "k)(N � C)(A + C)�1yk ! f as k ! 1.
Thus by condition (�) for F1, there is an y 2 Y such that F (1; y) = f and so
x = (A+ C)�1y is a solution of Ax +Nx = f . �
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