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ON GENERAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

Du�san D. Adamovi�c and Jovan D. Ke�cki�c

Abstract. This paper is concerned with the form of the general solution of the equation
(1), and the Theorem of Section 1 gives an answer which is somewhat di�erent from the classical
Picard result. Not only is the proof elementary, but the requests for the coeÆcients are much
less restrictive; see the assumption (A0). On the other hand, we had to introduce the additional
assumption (A0). Several examples are constructed in order to throw more light on the importance
of those two assumptions.

0. Consider the di�erential equation

(1) y(n) + a1(x)y
(n�1) + � � �+ an(x)y = 0;

where the real functions a1; . . . ; an are de�ned on an open interval I � R. This
supposition regarding the coeÆcients a1; . . . ; an and the interval I will be assumed
throughout this paper.

The well-known theorem (see, for example, [1], [2] or [3]) states that if all the
functions a1; . . . ; an are continuous on I , then there exists a (linearly independent)
system y1; . . . ; yn of solutions of (1) on I such that the general solution of (1) is
given by their linear combination, i.e. by

y(x) =

nX
k�1

Ckyk(x) (x 2 I ; C1; . . . ; Cn arbitrary constants):

The usual (standard) proof of this theorem is based upon the classical Picard's
existence and uniqueness theorem; more precisely, upon its special case for linear
di�erential equations.

This basic question regarding the form of the general solution of (1) is once
again treated in this paper, and we give in the Theorem of Section 1 an answer
which is somewhat di�erent from the classical answer cited above. Namely, our
requests for the coeÆcients a1; . . . ; an are much less restrictive (assumption (A1)),
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but we had to introduce the additional assumption (A2). Besides, the proof is
elementary. Sections 2 and 3 are devoted to the investigation of the e�ects of (A1)
and (A2) on the Theorem. Several examples are constructed to show e.g. that the
condition (A1) cannot be omitted from the Theorem, and that the same conclusion
is probably also true for (A2). The facts established by those examples are then
summarized in Propositions 1 and 2.

The Theorem of Section 1, together with its proof, may be used to provide a
theoretical background for the representation (too often taken for granted) of gen-
eral solutions of linear di�erential equations in elementary courses which avoid the
existence and uniqueness theorems. Besides, when a system y1; . . . ; yn of solutions
of (1) with the property (A2) is found (by guesswork, inspection, or some other
ad-hoc method, as it often happens in practice) according to our Theorem it may
safely be concluded that (2) is the general solution of (1), provided that (A1) is
ful�lled.

1. As usual, we say that F is a primitive function of f on I , if F 0(x) = f(x)
for all x 2 I . If a function f has a primitive function on I , we shall say, as in [5], that
it has the PI -property. Similarly. following the usual practice, we say that a system
u1; . . . ; un of real functions de�ned on an open interval I � R is linearly dependent
if there exist constants C1; . . . ; Cn, not all zero, such that

Pn
k=1 Ckuk(x) = 0 for

all x 2 I ; otherwise, it is linearly independent. If we suppose that the functions
u1; . . . ; un have (n � 1)-st derivatives on I then in order that they be linearly
dependent it is necessary, but not suÆcient, that their Wronskian vanishes for all
x 2 I , i.e. that

W (u1; . . . ; un) =

��������

u1(x) u2(x) un(x)
u01(x) u02(x) u0n(x)
...

u
(n�1)
1 (x) u

(n�1)
2 (x) u

(n�1)
n (x)

��������
= 0 (x 2 I);

In the case when all the coeÆcients of the equation (1) are continuous on I , then
by a known result (based on the mentioned existence and uniqueness theorem) the
above condition is also suÆcient for the system u1; . . . ; un of n solutions of (1) to
be linearly dependent.

In the proof of the main theorem and of the propositions which follow we
shall use the following auxiliary results.

Lemma 1. For the equation

(3) y0 + a(x)y = 0;

where the function a is de�ned on I, the following two conditions are equivalent:

(i) the function a has the PI -property.
(ii) the equation (3) has at least one solution y0 such that y0(x) 6= 0 for all

x 2 I. Each of the conditions (i) and (ii) implies that for every nontrivial solution

y of the equation (3) we have y(x) 6= 0 for all x 2 I.
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The following condition is e�ectively weaker than the above two:

(iii) there exists a solution y0 of (3) with the property that all solutions of (3)
are given by

y(x) = Cy0(x) (x 2 I ; C arbitrary constant):

Proof. Suppose that A is a primitive function of a on I . Then for each function
y di�erentiable on I , the function u de�ned by

(4) y(x) = e�A(x)u(x) (x 2 I)

is di�erentiable on I . Substituting (4) into (3), we conclude that this function y,
(3) is equivalent to u0(x) = 0 (x 2 I), which in turn is equivalent to u(x) = C
(x 2 I), where C is an arbitrary constant. Hence, y is a solution of (3) if and only
if

(5) y(x) = Ce�A(x) (x 2 I ; C = const);

which can be written in the form y(x) = Cy0(x) (x 2 I ; C arbitrary constant),
where y0(x) = e�A(x) 6= 0 (x 2 I). This proves the implication (i) ) (ii) and also
(i) ) (iii).

If the equation (3) has a solution y0 such that y0(x) 6= 0 (x 2 I), then

a(x) = �y00(x)=y0(x) = �(log jy0(x)j)
0 (x 2 I);

(ii) ) (i).

The next assertion of Lemma 1 follows directly from (5).

Finally, in order to shaw that (iii) is weaker than (i), or (ii), let I = R, and
de�ne the function a on R by:

(6) a(x) = �1=x2 (x > 0); a(x) = 0 (x � 0)

In this case the equation (3) has the solution y0 de�ned by

y0(x) = exp (�1=x) (x > 0); y0(x) = 0 (x � 0);

which is easily veri�ed. If y is any solution of (3), then

y(x) = Cexp (�1=x) (x > 0); y(x) = D (x � 0);

where C, D are constant. But lim
x!0+

y(x) = 0 = D, and hence y(x) = Cy0(x) (x 2

I), where C is an arbitrary constant. The condition (iii) is therefore ful�lled, but
the function a de�ned by (6) does not have PR-property (by Darboux's theorem,
or because y0 vanishes for some x 2 R, but is not identically zero).

Lemma 2. (i) For any system

(7) y1; . . . ; yn

of solutions of (1), we have

d

dx
W (y1; . . . ; yn) + a1(x)W (y1; . . . ; yn) = 0 (x 2 I):
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(ii) If there exists a system (7) of solutions of (1), such that

(8) W (y1; . . . ; yn) 6= 0 for all x 2 I;

then the function a1 has the PI-property. Conversely, if a1 has the PI -property and

if there exists a system (7) such that W (y1; . . . ; yn) 6= 0 for at least one x 2 I, then
this system of solutions satis�es (8).

(iii) If a1 has the PI-property, then the Wronskian of an arbitrary system (7)
of solutions (1) is given by

W (y1; . . . ; yn) = CW (y01 ; . . . ; y
0
n) (x 2 I)

where y01 ; . . . ; y
0
n is one particular system of solutions and C is a constant.

Proof. Statement (i) is proved in the usual manner. Statements (ii) and (iii)
follow from (i) and Lemma 1.

We now formulate and prove the main result of this paper.

Theorem. Suppose that:

(A1) the function a1 has the PI -property;
(A1) there exists a system (7) of solutions of (1) on I such that

W (y1; . . . ; yn) 6= 0

for at least one x 2 I.
Then the general solution of the equation (1) is given by

y(x) =

nX
k=1

Ckyk(x) (x 2 I ; C1; . . .Cn arbitrary constants):

Proof. Suppose that the conditions (A1) and (A2) are satis�ed, and that y is
a solution of the equation (1) on I . We have

0 =

����������

y(x) y1(x) . . . yn(x)
y(x) y1(x) yn(x)
y0(x) y01(x) y0n(x)
...

y(n�1)(x) y
(n�1)
1 (x) y

(n�1)
n (x)

����������
=

= y(x)W (y1; . . . ; yn) +

nX
k=1

(�1)kyk(x)W (y; y1; . . . ; yk�1; yk+1; . . . ; yn) (x 2 I):

Furthermore, in virtue of Lemma 2, (8) is valid and we obtain

y(x) =

nX
k=1

(�1)k
W (y; y1; . . . ; yk�1; yk+1; . . . ; yn)

W (y1; . . . ; yn)
yk(x) (x 2 I):

Again, according to Lemma 2, the coeÆcients of y1; . . . ; yn are constants, and
therefore

y(x) =

nX
k=1

Ckyk(x) (x 2 I ; C1; . . .Cn = const.):
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Conversely, it is readily veri�ed that any function y, de�ned by (9) is a solution
of the equation (1) on I .

Remark 1. The above theorem and its proof were given for n = 2, in a
rudimentary form, in [4].

2. Now that the Theorem is established, we see that in the proof given above
we made use of the assumptions (A1) and (A2). The question for each of those
assumptions is, of course, whether it is essential for the validity of the theorem,
and also what happens if it is suppressed. The Proposition 1 given at the end of
this section provides an answer for the assumptions (A1). It is based upon the
following four examples.

Example 1. Consider the equation

(10) y(n) + a(x)y(n�1)(x) = 0 (x 2 R)

where the function a is de�ned on R by (6). As we know (proof of Lemma 1) this
function does not have the PR-property. On the other hand, the equation (10) has
solutions y1; . . . ; yn on R de�ned by

y1(x) =

Z x

0

dx1

Z x1

0

dx2� � �

Z xn�2

0

�(t)dt

y2(x) = 1; y3(x) = x; . . . ; yn(x) = xn�2
(x 2 R)

where �(x) = e�1=x (x > 0), �(x) = 0 (x � 0), which are linearly independent on
R. Indeed, the functions y2; . . . ; yn are clearly independent on R, whereas linear
dependence of the form

C1y1(x) +

nX
k=2

Ckx
k�2 = (x 2 R; C1 6= 0)

would imply, after n� 1 di�erentiations, that y
(n�1)
1 (x)e�1=x = 0 (x > 0), which is

absurd.

The Wronskian of this system vanishes for x = 0, since y1(0) = y01(0) = � � � =

y
(n�1)
1 (0) = 0, but its value di�ers from 0 for x > 0, since all the functions form a
linearly independent system on (0;+1), and the coeÆcients of (10) are continous
for x > 0. Clearly, all the solutions of the equation (10) are given by

y(x) =

nX
k=2

Ckyk(x) (x 2 R; C1; . . . ; Cn = const.):

Example 2. We now consider the equation

(11) y(n) + b(x)y(n�1) = 0 (x 2 R)

where b is de�ned on R by

(12) b(x) = �x�2sgnx (x 6= 0); b(0) = 0;
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and again does not have the PR-property. The functions y1; . . . yn de�ned on R by

(13)
y1(x) =

Z x

0

dx1

Z x1

0

dx2� � �

Z xn�2

0

�(t)dt

y2(x) = 1; y3(x) = x; . . . ; yn(x) = xn�2 (x 2 R)

with �(x) = exp (x�1sgnx) (x 6= 0), �(0) = 0, are linearly independent solutions
of (11). Their Wronskian vanishes at x = 0, and does not vanish for x > 0, but
in this case the general solutions of (11) cannot be written in the form (9), since
there is no choise of constants C1; . . . ; Cn which leads to the following solution:

(14) y0(x) = (sgn x)y1(x)

of (11).

Example 3. We now extend the above example to show tha it is not possible
to construct a linearly independent system Y1; . . . ; Yn of solutions of (11) such that
its general solution is y(x) =

Pn
k=1 CkYk(x) with constants C1; . . . ; Cn. Indeed,

since the general solution of (11) is given by

(15) y(x) =

8>>>><
>>>>:

C
(1)
1 y1(x) +

nX
k=2

Ckyk(x) (x � 0)

C
(2)
1 y1(x) +

nX
k=2

Ckyk(x) (x < 0)

where C
(1)
1 ; C

(2)
1 ; C2; . . . ; Cn are arbitrary constants, anyone of solutions Y� of that

equation must have the form

Y�(x) =

8>>>><
>>>>:

C
(1)
1;�y1(x) +

nX
k=2

Ck;�yk(x) (x � 0)

C
(2)
1;�y1(x) +

nX
k=2

Ck;�yk(x) (x < 0)

(� = 1; . . . ; n)

for some constants C
(1)
1;� ; C

(2)
1;� ; Ck;� (k = 2; . . . ; n; � = 1; . . . ; n). If a linear combi-

nation of those functions, namely if

Y (x) =

nX
�=1

C�Y�(x) =

8>>>><
>>>>:

y1(x)
Pn

�=1 C�C
(1)
1;� +

nX
k=2

yk(x)
nX

�=1

C�Ck;� (x � 0)

y1(x)
Pn

�=1 C�C
(2)
1;� +

nX
k=2

yk(x)

nX
�=1

C�Ck;� (x < 0);

where the general solution of (11), then for any real numbers D
(1)
1 ; D

(2)
1 ; D2; . . . ; Dn

there would have to exist such values of the constants C1; . . . ; Cn to ensure that

Y (x) =

8>>>><
>>>>:

D
(1)
1 y1(x) +

nX
k=2

Dkyk(x) (x > 0);

D
(2)
1 y1(x) +

nX
k=2

Dkyk(x) (x < 0):
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Since the functions y1; . . . ; yn are linearly independent both on (0;+1) and
(�1; 0), this means that there would have to exist C1; . . . ; Cn such that

nX
�=1

C�C
(1)
1;� = D

(1)
1 ;

nX
�=1

C�C
(2)
1;� = D

(2)
1 ;

nX
�=1

C�Ck;� = Dk (k = 2; . . . ; n):

However this system of n + 1 equations in n unknowns C1; . . . ; Cn need not have

solutions for arbitrary given numbers D
(1)
1 ; D

(2)
1 ; D2; . . . ; Dn, no matter how the

numbers C
(1)
1;� ; C

(2)
1;� ; Ck;� (k = 2; . . . ; n; � = 1; . . . ; n) are previously chosen, imply-

ing that the general solution of (11) cannot be written in the form (9).

This example also shows that the assumption (A1) cannot be omitted from

the following slightly weaker form of our Theorem: (T ) Under the conditions (A1)
and (A2) there exists a system of n solutions of (1) such that the general solution

of (1) is the linear combination of functions of this system.

Example 4. We again use the equation (11), with (12), and the solutions
y0; y1; . . . ; yn�1 de�ned by (13) and (14) to establish one more possibility. Namely,
since

(�1)y0(x) + 1 � y1(x) + 0 � y2(x) + � � �+ 0 � yn�1(x) = 0 (x > 0);

1 � y0(x) + 1 � y1(x) + 0 � y2(x) + � � �+ 0 � yn�1(x) = 0 (x < 0)

the Wronskian of this system vanishes for x 6= 0. But we also have y1(0) = y01(0) =

� � � = y
(n�1)
1 (0) = 0, and so it also vanishes for x = 0. In order to show that this

system is linearly independent, suppose that there exist constants C1; . . . ; Cn, not
all zero, such that

(16) C1y0(x) + C2y1(x) + � � �+ Cnyn�1(x) = 0 (x > 0); (x 2 R):

Since y0; y1; . . . ; yn�1 are linearly independent, this would imply that

(17) C2
1 + C2

2 > 0:

On the other hand, (16) can be split into

(C1 + C2)y1(x) + C3y2(x) + � � �+ Cnyn�1(x) (x > 0);

(�C1 + C2)y1(x) + C3y2(x) + � � �+ Cnyn�1(x) (x < 0)

and di�erentiating the last two equalities n� 1 times we get

(C1 + C2)e
�1=x = 0 (x > 0); (�C1 + C2)e

�1=x = 0 (x < 0)

and consequently C1 + C= � C1 + C2 = 0, i.e. C1 = C2 = 0, contradicting (17).

The conclusions established by the preceeding examples are now combined
into the following.

Proposition 1. Suppose that n 2 N and that the function a1 does not have

the PI-property.
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(i) The equation (1) may (Example 1) or may not (Example 3) have a system

of solutions (7) such that its general solution is given by (9).
(ii) There may exist a system of solutions (7) of the equation (1) whose Wron-

skian vanishes at some, and does not vanish at other points of I. Besides, in this

case each of the following two cases is possible:

(a) the general solution of (1) is given by (9) (Example 1);
(b) the general solution cannot be written in the form (9) (Example 2).
(iii) There may exist a linearly independent system of n solutions of the equa-

tion (1) whose Wronskian vanishes for all x 2 X (Example 4)

3. In the preceeding section we have examined various situations which may
arise if the assertion (A1) is dropped. Conversely, we now assume that (A1) is
ful�lled, and we give two examples to illustrate two possibilities which may take
place in this case.

Example 5. Consider the equation

(18) y(n) + d(x)y = 0 (n � 2; x 2 R);

where d is the Dirichlet function, i.e. d(x) = 1 (x rational) and d(x) = 0 (x
irrational). The coeÆcient a1 of y

(n�1) in (18) has the PR-property. We prove that
the unique solution of (18) is given by y0(x) = 0 (x 2 R).

Conversely, suppose that there exists a solution Y of (18) such that Y (x0) > 0,
say, for some x0 2 R. But then there would exist an interval J = (�; �) 3 x0
such that Y (x) > Y (x0)=2 (x 2 J) and hence the set of values which the function
d(x)Y (x) takes when x 2 J would be equal to S[f0g, where ; 6= S � (Y (x0)=2;1).
This would mean that the function d(x)Y (x) = �(Y (n�1)(x))0 does not have the
PR-property, which is absurd. Hence, the unique solution of (18) is y0(x) = 0
(x 2 R), and so any system of solutions of that equation must be linearly dependent.

Example 6. If c(x) = �6=x2 (x 6= 0), c(0) = 0, then for n � 2, the coeÆcient
of y(n�1) in the equation

(19) y(n) + c(x)y(n�2) = 0 (x 2 R)

has the PR-property. This equation has the system of solutions

(20) y1(x) = xn+1; y2(x) = (sgnx)xn+1; y3(x) = 1; yn(x) = xn�3 (x 2 R)

which is linearly independent on R, but whose Wronskian vanishes for all x 2 R.
Indeed, since

1 � y1(x) + (�1)y2(x) + 0 � y3(x) + � � �+ 0 � yn(x) = 0 (x > 0)

1 � y1(x) + 1 � y2(x) + 0 � y3(x) + � � �+ 0 � yn(x) = 0 (x < 0)

we conclude that W (y1; . . . ; yn) = 0 for all x 6= 0. On the other hand, y1(0) =

y01(0) = � � � = y
(n�1)
1 (0) = 0, implying that W (y1; . . . ; yn) = 0 for x = 0. In order
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to show that this system is linearly independent, put
Pn

k=1 Ckyk(x) = 0 (x 2 R)
where C1; . . . ; Cn are constants. This splits into

(C1 + C2)x
n+1 + C3 + � � �+ Cnx

n�3 = 0 (x > 0)

(C1 � C2)x
n+1 + C3 + � � �+ Cnx

n�3 = 0 (x < 0)

and so C1 + C2 = C1 � C2 = C3 = � � � = Cn = 0, i.e. C1 = C2 = � � � = Cn = 0.

We now construct the general solution of (19) using the system (20). Consider
�rst the case when n = 2, i.e. the equation

(21) y00 + c(x)y = 0 (x 2 R):

For x > 0 this equation has linearly independent solutions y1, y2 de�ned by
y1(x) = x3, y2(x) = 1=x2, and so by the standard result (or by our Theorem) all
the solutions on (0;+1) of this equation are given by

(22) y(x) = K1x
3 +K2=x

2 (x > 0);

where K1, K2 are arbitrary constants. This means that the restrictions on (0;+1)
of all the solutions of the equation (21) are among the functions (22). But those
solutions must be continuous at x = 0, and so K2 = 0. Hence, any solution of
(22) for x > 0, and also for � 0, must be given by y(x) = K(1)x3 (x � 0), where
K(1) is a constant. Similarly, the restrictions on (�1; 0) of all the solutions of (21)
must be given by y(x) = K(2)x3 (x < 0), where K(2) is a constant. Therefore, the
general solution of (21) is given by

y(x) =

�
K(1)x3 (x � 0)

K(2)x3 (x < 0)
(K(1);K(2) = const):

Now for any n � 2, if y is a solution of (19), then

y(n�2)(x) = z(x) (x 2 R) ^ z00 + c(x) = 0 (x 2 R);

i.e.

y(n�2)(x) = z(x) (x 2 R) ^ z(x) =

�
K(1)x3 (x � 0)

K(2)x3 (x < 0)

wherefrom we obtain the general solution of (l9):

y(x) =

�
C(1)xn+1 + C3 + C4x+ �+ Cnx

n�3 (x � 0)

C(2)xn+1 + C3 + C4x+ �+ Cnx
n�3 (x < 0)

where C(1); C(2); C3; . . . ; Cn are arbitrary constants. However, it is clear that this
solution can also be written in the form y(x) =

Pn
k=1 Ckyk(x) (x 2 R), where

C1; . . . ; Cn are arbitrary constants and y1; . . . ; yn are de�ned by (20).

As before, we combine the conclusion of the last two examples into the fol-
lowing
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Proposition 2. Suppose that al has the PI-property. For any n � 2 it is

possible that:

(i) any system of n solutions of (1) is linearly dependent;

(ii) there exists a system of n linearly independent solutions of (1) whose

Wronskian vanishes for all x 2 I, but the general solution of (1) is again given by

(9).

The above proposition implies that (A2) is not a consequence of (A1).

It would be interesting to investigate whether it is possible that the function
a1 has the PI -property, and that at the same time there is no system y1; . . . ; yn of
solutions of (1) such that the general solution of (1) is given by (9); in other words
whether (A2) may, or may not be omitted from the statement of the Theorem;
strictly speaking, from the weaker form of this theorem, denoted earlier by (T ).
This question remains open.

Remark 2. The following example shows that for any n � 2, (A2) can be

realized when the condition (A1) is satis�ed and the condition of continuity of all

the coe�cients (i.e. the condition of the classical theorem cited at the beginning) is
not.

Let a1 have PI -propqrty, not being continous on I . Then the equation y(n)+
a1(x)y

(n�1) = 0, for any n � 2, has the following system of n solutionsZ x

x0

dx1

Z x2

x0

dx2� � �

Z xn�2

x0

e�A(t)dt; 1; x; . . . ; xn�2;

whose Wronskian di�ers from 0 on I . Here A is a primitive function of a1 on I and
x0 is a point of I .

4. Needless to say, analogous results hold for the nonhomogeneous equations
of the form

y(n) + a1(x)y
(n�1) + � � �+ an(x)y = F (x)

where the function F is de�ned on I . The Theorem is also carried over to �rst
order linear systems of di�erential equations.
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