PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 42 (56), 1987, pp. 43-45

CONVOLUTIONS OF MEROMORPHIC UNIVALENT FUNCTIONS WITH POSITIVE COEFFICIENTS

B.A. Uralegaddi

Abstract. Let $f(z) = 1/z + \sigma a_n$, $a_n \ge 0$ and $g(z) = 1/z + \sigma b_n$, $b_n \ge 0$. We investigate certain properties of the convolution $1/z + \sigma a_n b_n$ where f(z) and g(z) are meromorphically starlike.

1. Introduction. Let Σ be the class of functions $f(z) = 1/z + \sigma a_n$ which are regular in the punctured disk $E = \{z : 0 < |z| < 1\}$ with a simple pole at z = 0. Σ_s be the subclass of Σ consisting of functions which are univalent in E. A function f(z) in Σ is said to be starlike of order α ($0 \le \alpha < 1$) if $\operatorname{Re} zf'(z)/f(z) < -\alpha$ for |z| < 1. This class is denoted by $\Sigma^*(\alpha)$. It is well known that $\Sigma^*(\alpha) \subset \Sigma_s$. Let σ be the subclass of Σ consisting of functions of the form

(1)
$$f(z) = 1/z + \Sigma a_n z^n, \quad a_n \ge 0$$

Set $\sigma_s = \Sigma_s \cap \sigma$ and $\sigma^*(\alpha) = \Sigma^*(\alpha) \cap \sigma$.

Let f(z) be given by (1). Then

(2)
$$\sum (n+\alpha)a_n \le 1-\alpha$$

is a necessary and sufficient condition for the function f(z) to be in $\sigma^*(\alpha)$ [3]. Since $\sigma^*(\alpha) \subset \sigma_s$, a sufficient condition for functions of the form (1) to be univalent is that

(3)
$$\sum na_n \le 1.$$

Also the condition (3) is necessary for univalence, because $f'(r) = -1/r^2 + \sum na_n r^{n-1} = 0$ for some r (< 1) if $\sum na_n > 1$. Hence functions of the form (1) are univalent if and only if they are starlike. Thus $\sigma^*(0) = \sigma_s$.

AMS Subject Classification (1980): Primary 30C45.

Key words and phrases: Meromorphic Univalent functions, Starlike of order α , convolution.

^{*)} If otherwise not stated, \sum means $\sum_{n=1}^{\infty}$

The covolution or Hadamard product of two functions

$$f(z) = 1/z + \sigma a_n$$
 and $g(z) = 1/z + \sigma b_n$

is defined by $f(z)^*g(z) = 1/z + \sigma a_n b_n$. In [1] Robertson proved the following result. Let $f(z) = 1/z + \sigma a_n$ and $g(z) = 1/z + \sigma b_n$ be univalent in 0 < |z| < 1. Then the convolution $1/z + \sigma a_n b_n$ is also univalent in 0 < |z| < 1 and even starlike. The above convolution property can be easily obtained for the class $\sigma^*(\alpha)$, by using the coefficient inequality (2).

Let $f(z) = 1/z + \sigma a_n$, $a_n \ge 0$ and $g(z) = 1/z + \sigma b_n$, $b_n \ge 0$ be starlike in 0 < |z| < 1. In this paper we obtained some properties of convolution $1/z + \sigma a_n b_n$.

In [2] Schield and Silverman obtained some properties of convolutions of univalent function of the form $f(z) = z - \sum_{n=1}^{\infty} |a_n| z^n$.

2. Convolution properties

THEOREM 1. Let $f(z) = 1/z + \sigma a_n$, $a_n \ge 0$ and $g(z) = 1/z + \sigma b_n$, $b_n \ge 0$ be in $\sigma^*(\alpha)$. Then $f(z)^*g(z) \in \sigma^*(2\alpha/(1+\alpha^2))$.

Proof. From (2) we have

$$\sum (n+\alpha)a_n \le 1-\alpha$$
 and $\sum (n+\alpha)b_n \le 1-\alpha$.

In view of (2) we have to find the largest $\beta = \beta(\alpha)$ such that $\sum (n+\beta)a_nb_n \leq 1-\beta$. We have to show that

(4)
$$\rightarrow n + \alpha 1 - \alpha a_n \text{ and } \rightarrow n + \alpha 1 - \alpha b_n$$

imply that

$$\rightarrow n + \beta 1 - \beta a_n b_n$$
 for all $\beta = \beta(\alpha) = 2\alpha/(1 + \alpha^2).$

From (4) we obtained by means of Cauchy-Schwarz inequality

$$\rightarrow n + \alpha 1 - \alpha \sqrt{a_n} \sqrt{b_n}.$$

Hence it suffices to show that

$$\frac{n+\beta}{1-\beta}a_nb_n \le \frac{n+\alpha}{1-\alpha}\sqrt{a_n}\sqrt{b_n}, \quad \beta = \beta(\alpha) = \frac{2\alpha}{1+\alpha^2}, \ n = 1, 2, \dots$$

or $\sqrt{a_n}\sqrt{b_n} \leq \frac{n+\alpha}{n+\beta} \left(\frac{1-\beta}{1-\alpha}\right)$ for each *n*. Hence it suffices to show that $\frac{1-\alpha}{n+\alpha} \leq \frac{n+\alpha}{n+\beta} \frac{1-\beta}{1-\alpha}.$

That is $\beta \le 1 - \frac{(n+1)(1-\alpha)^2}{(n+\alpha)^2 + (1-\alpha)^2}.$

Since the right-hand side of the above inequality is an increasing function of n, taking n = 1 we get the result. The results is sharp with equality for

$$f(z) = g(z) = \frac{1}{z} + \frac{1-\alpha}{1+\alpha}z.$$

COROLLARY 1. For f(z) and g(z) as in Theorem 1, we have $h(z) = 1/z + \sigma \sqrt{a_n} \sqrt{b_n} \in \sigma^*(\alpha)$.

The result follows from the inequality (5). It is sharp for the same functions as in Theorem 1.

THEOREM 2. Let $f(z) \in \sigma^*(\alpha)$ and $g(z) \in \sigma^*(\beta)$; then $h(z) = f(z)^*g(z) \in \sigma^*((\alpha + \beta)/(1 + \alpha\beta))$.

The proof is similar to that of Theorem 1.

COROLLARY 2. Let $f(z) \in \sigma^*(\alpha)$, $g(z) \in \sigma^*(\beta)$ and $h(z) \in \sigma^*(\Gamma)$; then $f(z)^*g(z)^*h(z) \in \sigma^*((\alpha + \beta + \Gamma + \alpha\beta\Gamma)/(1 + \alpha\beta + \beta\Gamma + \Gamma\alpha))$.

REFERENCES

- M. S. Robertson, Convolutions of Schlicht functions, Proc. Amer. Math. Soc. 13 (1962), 585-589.
- [2] A. Schild, H. Silverman, Convolutions of univalent functions with negative coeficients, Ann. Urniv. Mariae Curie-Sklodowska Sect. A 29 (1975), 99-106.
- [3] B. A. Uralegaddi and M. D. Ganigi, Certain class of meromorphically starlike functions with positive coefficients, in Pure Appl. Math. Sci., to appear.

Department of Mathematics Karnatak University Dharwad, 580003 India

(Received 10 06 1986)