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ON THE DEFINITION OF A QUADRATIC FORM

Svetozar Kurepa

Abstract. In the �rst part of this paper we give a simple proof of the following wellknown
theorem [3]: If a function q : X ! C satis�es the parallelogram law and the homogeneity property
q(�x) = j�j2q(x) (� 2 C; x 2 X), then there exists a sesquilinear form L : X �X ! C such that
q(x) = L(x;x) (x 2 X).

If X is a real vector space then a quadratic form on X is to be de�ned as a function
q : X ! R the complexi�cation (qc(qc(x+iy) = q(x)+q(y); x; y 2 X) of which has the homogeneity
property

qc(�z) = j�j2qc(z) (� 2 C; z 2 Xc = X �X):

In the second part of this paper we continue the study of quadratic forms on modules over
algebras studied in [6], [7] and [4]. We assume as in [4] that the algebra A has the identity element
and that it as the regularity property: For any t 2 A there exists a natural number n such that
t+ n and t+ n+ 1 are invertible in A.

1. On the de�nition of a quadratic form

If X is a complex vector space and L : X �X ! C a sesquilinear form, then
a function

(1) q(x) = L(x; x) (x 2 X)

has properties:

q(x + y) + q(x� y) = 2q(x) + 2q(y) (x; y 2 X);(2)

q(�x) = j�j2q(x) (� 2 C;x 2 X):(3)

Proof. I. Halperin in 1963 (The New Scottish Book) asked whether for a
function q : X ! C which satis�es (2) and (3) there exists a sesquilinear form such
that (1) holds. The positive answer to this question was given in [3] and the proof
was simpli�ed in [5]. Here we give even simpler proof of this fact.
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Theorem 1 [3]. If X is a complex vector space and a function q : X ! C
satis�es conditions (2) and (3) then a functional L : X �X ! C de�ned by

(4) L(x; y) = (q(x + y)� q(x� y))=4 + i(q(x+ iy)� q(x� iy))=4 (x; y 2 X)

is sesquilinear and (1) holds true.

We need three lemmas for the proof of this theorem. Although lemmas 1, 2
are well-known we prove them here for the convenience of a reader.

Lemma 1. If a function q : X ! C satis�es the parallelogram law (2), then a
function

S(x; y) = q(x + y)� q(x� y) (x; y 2 X)

is biadditivem symmetric and 4q(x) = S(x; x) (x 2 X).

Proof. From (2) for x = y = 0 we get q(0) = 0; for x = 0 we get q(�y) = q(y)
i.e. q is an even function. By taking x = y in (2) we get q(2x) = 4q(x).

For x; y; u 2 X we have:

S(x+ y; 2u) = q(x+ y + 2u)� q(x+ y � 2u)

= q((x+ u) + (y + u)) + q((x+ u)� (y + u))

� q((x� u) + (y � u))� q((x � u)� (y � u))

= (2q(x+ u) + 2q(y + u))� (2q(x� u) + 2q(y � u))

= 2S(x; u) + 2S(y; u):

From here for y = 0 and x = z we get S(z; 2u) = 2S(z; u) which for z = x+y
leads to

S(x+ y; u) = S(x; u) + S(y; u): �

Lemma 1. If q : X ! C satis�es (2) and (3) then the function L : X�X ! C
de�ned by (4) is biadditive, q(x) = L(x; x) (x 2 X) and

(6) L(ix; y) = iL(x; y); L(x; iy) = �iL(x; y) (x; y 2 X):

Proof. Using (4) and (3) for � = i we have

4L(ix; y) = (q(ix+ y)� q(ix� y)) + i(q(ix+ iy)� q(ix� iy))

= q(x� iy)� q(x+ iy) + i(q(x+ y)� q(x� y)) = 4iL(x; y);

4L(x; iy) = (q(x+ iy)� q(x � iy)) + i(q(x+ i � iy)� q(x� i � iy))

= q(x+ iy)� q(x� iy) + i(q(x� y)� q(x+ y)) = �4iL(x; y): �

Lemma 3 [5]. If f : C ! C is an additive function and

f(�) = j�j2f(1=�) (� 2 C; � 6= 0)

then
f(�) = f(1)Re� (� 2 C):
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Proof. A function g(�) = f(1)Re�� f(�) is additive and

g(1) = 0; g(�) = j�j2g(1=�); � 6= 0:

If � 6= 0 then

g(�) = g(1 + �) = j1 + �j2g
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= �j�j2g(1 + 1=�) = �j�j2g(1=�) = �g(�):

Thus g = 0 and (8) follows. �

Proof of Theorem 1. For any x; y 2 X de�ne

(9) f(�) = L(�x; y) + L(x; �y) (� 2 C):

Obviously, �! f(�) is an additive function. By use of (3) for � = 0 we have

4L(�x; y) = q(�x + y)� q(�x� y) + i(q(�x+ iy)� q(�x � iy))

= j�j2[(q(x + y=�)� q(x� y=�)) + i(q(x+ y=�)� q(x� iy=�))]

= 4j�j2L(x; y=�):

In the same way we get L(x; �y) = j�j2L(y=�; y).

Thus the function (9) satis�es conditions of Lemma 3 so that f(�) = f(1)Re�,
i.e.

(10) L(�x; y) + L(x; �y) = 2L(x; y) Re� (� 2 C;x; y 2 X):

If � = it (t 2 R), then (10) and Lemma 2 imply

(11) L(tx; y) = L(x; ty) (t 2 R; x; y 2 X):

If � = t (t 2 R), then (10) implies

L(tx; y) + L(x; ty) = 2tL(x; y)

which together with (11) leads to

(12) L(tx; y) = tL(x; y) (t 2 R; x; y 2 X):

Now if � = � + i� (�; � 2 R) then the biadditivity of L (Lemma 1) and (12)
imply:

L(�x; y) = L(�x+ i�x; y) = L(�x; y) + L(i�x; y)

= �L(x; y) + iL(�x; y) = �L(x; y) + i�L(x; y) = �L(x; y):

L(x; �y) = L(x; �y + i�y) = L(x; �y) + L(x; i�y)

= L(x; �y)� iL(x; �y) = L(�x; y)� iL(�x; y) =

= �L(x; y)� i�L(x; y) = �L(x; y): �
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The complexi�cation Xc of a real vector space X is de�ned as a set X �X
with algebraic operations:

(x; y) + (x0; y0) = (x+ x0; y + y0) (x; x0; y; y0 2 X);

(� + i�)(x; y) = (�x� �y; �x + �y0) (�; � 2 R; x; y 2 X):

We write (x; y) = x+ iy (x; y 2 X).

If B : X�X ! R is a bilinear form then its complexi�cationBc : Xc�Xc ! C
is de�ned by

Bc(x+ iy; x0 + iy0) = B(x; x0) +B(y; y0) + i(B(y; x0)�B(x; y0)):

If B is symmetric then

Bc(x+ iy; x+ iy) = B(x; x) +B(y; y) (x; y 2 X)

Theorem 2. Let X be a real vector space and q : X ! R any function and
B : X �X ! R a function de�ned by

(13) B(x; y) = (q(x+ y)� q(x� y))=4 (x; y 2 X)

Then, the function B is bilinear if and only if the compexi�cation qc:

(14) qc(x + iy) = q(x) + q(y) (x; y 2 X)

of q has the following homogeneity property

(15) qc(�z) = j�j2qc(z) (� 2 C; z 2 Xc)

Proof. For � = � + i� (�; � 2 R) and z = x+ iy (x; y 2 X) from (15) we get:

(16) (�2 + �2)(q(x) + q(y)) = q(�x� �y) + q(�x + �y):

From (16) for � = � = 1 we �nd that q satis�es the parallelogram law (2)
so that by Lemma 1 the function B is biadditive, symmetric and q(x) = B(x; x).
Furthermore (14) and (2) imply

qc(u+ v) + qc(u� v) = 2qc(u) + 2qc(v)

for all u; v 2 X . Now (17), (15) and Theorem 1 imply that the functional L :
Xc �Xc ! C de�ned by

L(u; v) = (qc(u+ v)� qc(u� v))=4 + i(qc(u+ iv)� qc(u� iv))=4

is sesquilinear on Xc. If u = x and v = y are vectors in X , then

L(x; y) = (q(x+y)+q(0)�q(x�y)�q(0))=4+i(q(x)+q(y)�q(x)�q(y)) = B(x; y):

Thus B(tx; y) = L(tx; y) = tL(x; y) holds for any t 2 R and all x; y 2 X .
This and B(x; y) = B(y; x) imply that B is bilinear. �
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Using Therem 1 we see that one can de�ne a quadratic form on a complex
vector space X as a function q : X ! C which satis�es the parallelogram law (2)
and has the homogeneity property (3).

According to Theorem 2 a quadratic form on a real vector space X can be
de�ned as a function q : X ! R such that its complexi�cation qc de�ned by
(14) satis�es the homogeneity property (15). As it is well-known for a function
q : X ! R de�ned on a realvector space which satis�es the parallelogram law (2)
and the homogeneity property

q(tx) = t2q(x) (t 2 R; x 2 X)

in general there does not exist a bilinear form B : X � X ! R such that q(x) =
B(x; x) (x 2 X) (See: [2], [1]).

Remark 1. If f; F : R! R are additive functions such that

(18) f(t) = t2f(1=t); F (t) = �t2F (1=t); (t 2 R; t 6= 0)

then f(t) = f(1)t and F (ts) = tF (s) + sF (t), i.e. f is continuous and F is a
derivation on R, hence F is not continuous unless F = 0.

On the other hand if f; F : C ! C are additive and if

(19) f(�) = j�j2f(1=�); F (�) = �j�j2F (1=�) (� 2 C; � 6= 0)

then f(�) = f(1)Re� and F (�) = F (i) Im�. In this case both functions f and F
are continuous. In fact, if F (�) = �j�j2F (1=�) holds for all � 2 C, � 6= 0, then a
function f1(�) = F (i�) satis�es the condition

f1(�) = j�j2f1(1=�) (� 2 C; � 6= 0):

By (18) we are given essentially di�erent conditions on functions f and F
while conditions given by (19) can be transformed one to another.

2. Quadratic forms on modules over algebras

By X and X 0 we denote complex vector spaces and by A complex algebra
with unit 1. We assume that the algebra A has the following regularity property
(R):

For any t 2 A there exists a natural number n such that t+ n and t+ n+ 1
are invertible elements in A.

Furthermore we assume that X is a left modul over A and that X 0 is left and
right modul over A.

Theorem 3. Let A, X and X 0 be as above. If q : X ! X 0 is a quadratic
form i.e.

(1) q(x + y) + q(x� y) = 2q(x) + 2q(y) (x; y 2 X)

and if q satis�es the homogeneity condition

(2) q(tx) = tq(x)t (t 2 A; x 2 X)
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then the function M : X �X ! X de�ned by

(3) M(x; y) = (q(x+ y)� q(x� y))=8� i(q(x+ iy)� q(x� iy))=8 (x; y 2 X)

is biadditive, symmetric,

q(x) = M(x; x); M(ix; y) = iM(x; y) (x; y 2 X)

and

(4) M(tx; y) +M(x; ty) = tM(x; y) +M(x; y)t (t 2 A; x; y 2 X):

Furthermore, the function

(5) h(t;x; y) = (M(tx; y)�M(x; ty))=2 (t 2 A; x; y 2 X)

is a Jordan derivation on A, i.e.

h(t Æ s;x; y) = t Æ h(s;x; y) + h(t;x; y) Æ s

holds true, where
t Æ s = ts+ st (t; s 2 A):

The proof of Theorem 3 is obtained by using the following two lemmas.

Lemma 4. (See Lemma 1 in [4]). If an additive function g : A! X 0 for each
invertible element t 2 A satis�es the condition

(7) g(t) = tg(t�1)t

then

(8) g(t) = (tg(1) + g(1)t)=2 (t 2 A):

Lemma 5. If an additive function h : A ! X 0 for each invertible element
t 2 A satis�es the condition

(7) h(t) = �th(t�1)t

then h is a Jordan derivation on A, i.e.

h(t Æ s) = h(t) Æ s+ t Æ h(s) (t; s 2 A):

Proof of Lemma 5. For t 2 A we take a natural number n such that t+n and
t+ n+ 1 are invertible in A. By applying the function h on the identity

(t+ n)�1 � (t+ n+ 1)�1 = (t2 + 2nt+ t+ n2 + n)�1

and by using (9) we get

�(t+ n)�1 � h(t+ n) � (t+ n)�1 + (t+ n+ 1)�1 � h(t+ n+ 1) � (t+ n+ 1)�1 =

= �(t2 + 2nt+ t+ n2 + n)�1 � h(t2 + 2nt+ t+ n2 + n) � (t2 + 2nt+ t+ n2 + n):
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Mulltiply the last relation from the left and from the right by (t+n)(t+n+1)
to get:

h(t2 +2nt+ tn2 +n) = (t+n+1) � h(t+ n) � (t+ n+1)� (t+n) � h(t+ n) � (t+n)

from which by using h(1) = 0 we get

(11) h(t2) = th(t) + h(t)t (t 2 A):

If in (11) we replace t by t+ s we get (10). �

Proof of Theorem 3. Since q is quadratic, the function M de�ned by (3) is
biadditive and q(x) = M(x; x). By using (2) it is easy to �nd

M(ix; y) = iM(x; y); M(x; y) = M(y; x)

and

(12) M(tx; y) = tM(x; t�1y)t:

for any invertible element t 2 A and for all x; y 2 X . If x; y 2 X are �xed, then
the function

g(t) = M(tx; y) +M(x; ty) (t 2 A)

satis�es all conditions of Lemma 4 so that (8) and g(1) = 2M(x; y) imply (4).

By using (2) for the function h de�ned by (5) we �nd

h(t;x; y)� th(t�1;x; y)t

for any invertible t 2 A. By applying Lemma 5 we get (6). �

Remark 2. If X and X 0 are real vector spaces and A is a real algebra with
the regularity property (R), then for a quadratic form which has the homogeneity
property (2) the function

B(x; y) = (q(x+ y)� q(x� y))=4 (x; y 2 X)

is biadditive, symmetric, B(x; x) = q(x) (x 2 X),

B(tx; y) +B(x; ty) = tB(x; y) +B(x; y) (t 2 A; x; y 2 X)

and the function

h(t;x; y) = (B(tx; y)� B(x; ty))=4 (t 2 A; x; y 2 X)

is a Jordan derivation, i.e. h has the property (6). The proof of these fact follows
the proof of Theorem 3.
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