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ON THE DEFINITION OF A QUADRATIC FORM

Svetozar Kurepa

Abstract. In the first part of this paper we give a simple proof of the following wellknown
theorem [3]: If a function ¢ : X — C satisfies the parallelogram law and the homogeneity property
g(Az) = |M\%q(z) (A € C,z € X), then there exists a sesquilinear form L : X x X — C such that
o() = L(z;z) (x € X).

If X is a real vector space then a quadratic form on X is to be defined as a function
¢ : X — Rthe complexification (¢gc(¢c(z+iy) = q(x)+4q(y); z,y € X) of which has the homogeneity
property

ge(Az) = [M?qe(2) (A€ 0,z € Xe =X X X).

In the second part of this paper we continue the study of quadratic forms on modules over
algebras studied in [6], [7] and [4]. We assume as in [4] that the algebra A has the identity element
and that it as the regularity property: For any ¢ € A there exists a natural number n such that
t+mn and t + n + 1 are invertible in A.

1. On the definition of a quadratic form

If X is a complex vector space and L : X x X — C a sesquilinear form, then
a function

(1) q(z) = L(z,z)  (z € X)

has properties:

(2) gz +y)+al@—y)=2¢() +2(y) (z,y € X),
(3) g(\z) = [MPq(z) (A€ Ciz € X).

Proof. 1. Halperin in 1963 (The New Scottish Book) asked whether for a
function ¢ : X — C which satisfies (2) and (3) there exists a sesquilinear form such
that (1) holds. The positive answer to this question was given in [3] and the proof
was simplified in [5]. Here we give even simpler proof of this fact.
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THEOREM 1 [3]. If X is a complex vector space and a function ¢ : X — C
satisfies conditions (2) and (3) then a functional L : X x X — C defined by

4)  Liz,y) = (a(z +y) — gz —y)) /4 +ile(e +iy) — gz —iy))/4 (z,y € X)
is sesquilinear and (1) holds true.

We need three lemmas for the proof of this theorem. Although lemmas 1, 2
are well-known we prove them here for the convenience of a reader.

LeEmMA 1. If a function q : X — C satisfies the parallelogram law (2), then a
function

S(,y) =gz +y) —qlz—y)  (r,y €X)
is biadditivem symmetric and 4q(z) = S(z,z) (z € X).
Proof. From (2) for z = y = 0 we get ¢(0) = 0; for x = 0 we get q(—y) = q(y)
i.e. ¢ is an even function. By taking x = y in (2) we get ¢(2z) = 4q(z).
For z,y,u € X we have:
S(x+y,2u) =q(x+y+2u) —qr+y—2u)
=q((@+u)+ (y+u) +q((z+u) - (y+u)
—q((z—u) + (y —w) —q((x —u) = (y —u))
= (2q(z +u) + 2q(y + w)) = 2¢(z — u) + 29(y — u))
=25(x,u) +2S(y, u).

From here for y = 0 and = = z we get S(z,2u) = 25(z,u) which for z =z +y
leads to
S(x+y,u) =S(z,u)+ S(y,uw). O

LeMMA 1. If g : X — C satisfies (2) and (3) then the function L : X x X — C
defined by (4) is biadditive, q(x) = L(x,z) (v € X) and

(6) L(iz,y) = il(z,y),  L(z,iy) = —iL(z,y)  (z,y € X).

Proof. Using (4) and (3) for A =i we have
4L(iz,y) = (qiz + y) — q(iz — y)) +i(q(iz +iy) — q(iz —iy))
=q(z —iy) —q(z +iy) +ilg(x +y) — q(z —y)) = 4iL(z,y),
4L(z,iy) = (¢(z +iy) — q(z —iy)) +i(g(z +i - iy) — q(z —i - iy))
=q(z +1iy) — q(z —iy) +i(q(z —y) — q(z +y)) = —4iL(z,y). O

LEMMA 3 [5]. If f : C — C is an additive function and

F=RPFA/N) (AeC,X#0)

then
fA) = f(1)ReXr (A€ O).
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Proof. A function g(A\) = f(1) ReX — f()) is additive and

9(1) =0, g(\) = [APg(1/A), X#0.
If A # 0 then

o =+ 0 = 1437 (115 ) = 1+ (1= ) = - (125) =

1+ A 14+ )
2 <1+>\

A A>:_mga+u»=AWMun=ﬁu»

14+ A

—[14+ A2

Thus g = 0 and (8) follows. O
Proof of Theorem 1. For any z,y € X define
(9) f(\) = L(A\z,y) + L(z, \y) (Ae ).
Obviously, A = f(}) is an additive function. By use of (3) for A = 0 we have
4L(Az,y) = q(Az +y) — q(Az — y) +i(g(Az + iy) — q(Az — iy))
= |M[(a(z +y/N) — a(z — y/N) +ila(z +y/X) — q(z —iy/))]
= 4\?L(z,y/\).

In the same way we get L(x, \y) = |[\>L(y/\,y).
Thus the function (9) satisfies conditions of Lemma 3 so that f(\) = f(1) Re,

ie.

(10) L(Az,y) + L(z, \y) = 2L(z,y) ReA (A€ C;z,y € X).
If A =it (t € R), then (10) and Lemma 2 imply

(11) L(tz,y) = L(z,ty) (t € R; z,y € X).

If A =1t (t € R), then (10) implies
L(tx,y) + L(z, ty) = 2tL(z,y)
which together with (11) leads to
(12) L(tz,y) = tL(z,y) (teR; z,y e X).

Now if A =0 +i7 (0,7 € R) then the biadditivity of L (Lemma 1) and (12)
imply:
L(Az,y) = L(ox + itz,y) = L(oz,y) + L(itz,y)
) =0oL(z,y) +itL(z,y) = A L(z,y).
L(z,0y) + L(z, iy)
)
)

)

=oL(z,y) +il(tz,y
L(z,\y) = L(z,0y +iTy)

= L(:L’, Uy) - ZL(

T, TY L(O’l‘,y) —iL(T:L’,y) =

=oL(z,y) —itL(z,y) = XL(z,y). O
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The complexification X, of a real vector space X is defined as a set X x X
with algebraic operations:

() +(@y) = (@+2",y+y) (z,2,y,9 € X),
(o +ir)(z,y) = (cx — 1y, 72 +0y') (0,7 €R; z,y € X).

We write (z,y) =z +iy (z,y € X).
If B: XxX — Risabilinear form then its complexification B, : X.x X, = C
is defined by

Be(x +iy, 2’ +iy') = B(z,2") + B(y,y") +i(B(y,z') — B(,y)).
If B is symmetric then

B.(x +iy,x +iy) = B(z,z) + B(y,y) (v,y € X)

THEOREM 2. Let X be a real vector space and q : X — R any function and
B: X x X = R a function defined by

(13) B(z,y) = (¢z +y) —a(z —y))/4 (z,y € X)
Then, the function B is bilinear if and only if the compexification q.:
(14) ez +iy) = q(x) +q(y) (z,y € X)

of q has the following homogeneity property

(15) 0:(A\2) = A\Pqe(2) (A€ C; 2z €X)

Proof. For A\ =0 + it (0,7 € R) and z = z + iy (z,y € X) from (15) we get:
(16) (0% +7)(a(z) + q(y)) = q(oz — 7y) + q(r2 + 0y).

From (16) for o = 7 = 1 we find that ¢ satisfies the parallelogram law (2)
so that by Lemma 1 the function B is biadditive, symmetric and ¢(z) = B(z,z).
Furthermore (14) and (2) imply

Ge(u +v) + ge(u = v) = 2qc(u) + 24.(v)

for all u,v € X. Now (17), (15) and Theorem 1 imply that the functional L :
X, x X, — C defined by

L(u,v) = (qe(u +v) = ge(u — v)) /4 + i(ge(u + iv) — ge(u —iv))/4
is sesquilinear on X.. If u = x and v = y are vectors in X, then
L(z,y) = (¢(z+y)+4(0) —q(z —y) —q(0)) /4+i(q(z) +q(y) —a(z) —a(y)) = B(z,y).

Thus B(tx,y) = L(tz,y) = tL(x,y) holds for any t € R and all z,y € X.
This and B(z,y) = B(y,z) imply that B is bilinear. O
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Using Therem 1 we see that one can define a quadratic form on a complex
vector space X as a function ¢ : X — C which satisfies the parallelogram law (2)
and has the homogeneity property (3).

According to Theorem 2 a quadratic form on a real vector space X can be
defined as a function ¢ : X — R such that its complexification ¢. defined by
(14) satisfies the homogeneity property (15). As it is well-known for a function
g : X — R defined on a realvector space which satisfies the parallelogram law (2)
and the homogeneity property

q(tr) =t*q(z) (t€R, € X)
in general there does not exist a bilinear form B : X x X — R such that ¢(z) =
B(z,z) (z € X) (See: [2], [1]).

Remark 1. If f,F : R — R are additive functions such that

(18) fy=8f1/t),  Ft)=-t’F(1/t), (t€R, t#0)

then f(t) = f(1)t and F(ts) = tF(s) + sF(t), i.e. f is continuous and F is a
derivation on R, hence F' is not continuous unless F' = 0.
On the other hand if f, F': C — C are additive and if

(19) F)=RPLA/N), FO) ==APF(1/A)  (A€C, X#0)

then f(A) = f(1)Re A and F(\) = F(i)Im A. In this case both functions f and F
are continuous. In fact, if F(\) = —|A\|?F(1/)) holds for all A € C, X\ # 0, then a
function f;(\) = F(i)\) satisfies the condition

AN =DPAAN)  (AeC, A#£0).

By (18) we are given essentially different conditions on functions f and F
while conditions given by (19) can be transformed one to another.

2. Quadratic forms on modules over algebras

By X and X' we denote complex vector spaces and by A complex algebra
with unit 1. We assume that the algebra A has the following regularity property
(R):

For any t € A there exists a natural number n such that t+n and t +n + 1
are invertible elements in A.

Furthermore we assume that X is a left modul over 4 and that X' is left and
right modul over A.

THEOREM 3. Let A, X and X' be as above. If ¢ : X — X' is a quadratic
form i.e.

(1) az+y)+al@—y) =2q(x) +2q(y) (z,y€X)
and if q satisfies the homogeneity condition

(2) q(tx) = tq(x)t (te A, zeX)
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then the function M : X x X — X defined by
3) M(z,y) = (¢(z +y) —q(z —y))/8 —i(g(x +iy) —q(z —y))/8 (,y € X)
is biadditive, symmetric,

q(z) = M(z,z), Miz,y) =iM(z,y) (z,y € X)
and
(4) M(tz,y) + M (x,ty) =tM(z,y) + M(2,y)t (t € 4; z,y € X).
Furthermore, the function
() h(t;z,y) = (M (t,y) — M(z,ty))/2 (t € A; =,y € X)
is a Jordan derivation on A, i.e.

h(tos;z,y) =toh(s;z,y) + h(t;x,y)os

holds true, where
tos=ts+st (t,s € A).

The proof of Theorem 3 is obtained by using the following two lemmas.

LEMMA 4. (See Lemma 1 in [4]). If an additive function g : A — X' for each
invertible element t € A satisfies the condition

(7) g(t) =tg(t=")t
then
(8) g(t) = (tg(1) + g(1)1)/2 (t € A).

LEMMA 5. If an additive function h : A — X' for each invertible element
t € A satisfies the condition

(7) h(t) = —th(t )t
then h is a Jordan derivation on A, i.e.
h(tos) =h(t)os+toh(s) (t,s€A).
Proof of Lemma 5. For t € A we take a natural number n such that ¢ +n and
t 4+ n + 1 are invertible in A. By applying the function h on the identity
(t+n)t—t+n+1) = +2nt +t+n?+n)!
and by using (9) we get

—(t+n)t-ht4n)-t+n) P+ t+n+ ) At dn+ ) (t+n+1) =
=—(+2mt+t+n’+n) R+ 20t +t+n +n)- (2420t +t +n® +n).
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Mulltiply the last relation from the left and from the right by (t+n)(t+n+1)
to get:

h(t?* +2nt+tn® +n) = (t+n+1)-h(t+n)-(t+n+1)— (t+n)-h(t+n)-(t+n)
from which by using h(1) = 0 we get
(11) h(t?) = th(t) + h(t)t (t € A).

If in (11) we replace ¢t by ¢ + s we get (10). O

Proof of Theorem 3. Since ¢ is quadratic, the function M defined by (3) is
biadditive and ¢(z) = M (z,z). By using (2) it is easy to find

M(iz,y) = iM(z,y), M(z,y) =My, z)
and
(12) M(tz,y) = tM(z,t ‘y)t.

for any invertible element t € A and for all z,y € X. If z,y € X are fixed, then
the function
g(t) = M(tz,y) + M(z,ty) (t € A)
satisfies all conditions of Lemma 4 so that (8) and ¢g(1) = 2M (z,y) imply (4).
By using (2) for the function h defined by (5) we find
h(t;z,y) — th(t™"; 2, y)t
for any invertible ¢t € A. By applying Lemma 5 we get (6). O

Remark 2. If X and X' are real vector spaces and A is a real algebra with
the regularity property (R), then for a quadratic form which has the homogeneity
property (2) the function

B(z,y) = (¢(z +y) —q(z —y))/4 (z,y € X)
is biadditive, symmetric, B(z,z) = ¢(z) (z € X),
B(tz,y) + B(z,ty) =tB(z,y) + B(z,y) (t€ A; z,y € X)
and the function
h(t;z,y) = (B(tz,y) — B(z,ty)) /4 (t € 4; z,y € X)

is a Jordan derivation, i.e. h has the property (6). The proof of these fact follows
the proof of Theorem 3.
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