
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 42 (56), 1987, pp. 21{27

BOUNDS FOR THE NUMBER OF PERFECT MATCHINGS

IN HEXAGONAL SYSTEMS

Ivan Gutman and Jerzy Cioslowski

Abstract. Upper bounds for the number of perfect matchings in hexagonal systems are
deduced, which depend on the number of vertices and edges. The results are obtained using graph
spectral theory.

A hexagonal unit cell is a plane region bounded by a regular hexagon. A
hexagonal system is a �nite connected plane graph with no cut-vertices in which
every interior region is a hexagonal unit cell. A perfect matching of a hexagonal
system H is a set of (disjoint edges of H which cover all vertices of H).

Perfect matchings in hexagonal systems have been studied in a number of re-
cent publications [6{11]. In addition to this, both perfect matchings and hexagonal
systems play an important role in theoretical chemistry [5] and there are numerous
chemical papers concerned with this matter (for review and further references see
[4, 5]).

The number of vertices edges and perfect matchings of a hexagonal system
H will be denoted by n, m and k, respectively. An obvious necessary condition for
the existence of perfect matchings in a graph is that the number of its vertices is
even Therefore throughout this paper we shall assume that n is an even number. It
is clear that in hexagonal systems n cannot be less than 6 and we shall often need
the fact that n=2� 2 > 0.

The adjacency matrix A of H is a square matrix of order n whose rs entry
is equal to 1 if the vertices r and s of H are adjacent and is otherwise equal to 0.
The eigenvalues of A are called the eigenvalues of H . Let X1; X2; . . . ; Xn be the
eigenvalue of H , labeled so that Xi � Xj for i < j.

For any graph with m edges [1],

Pn
i=1X

2
i = 2m
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whereas for any bipartite graph Xi = �Xn�i+1, i = 1; 2; . . . ; n.

Since hexagonal systems are bipartite graphs, we immediately deduce that

(1)
Pn=2

i=1X
2
i = m

For hexagonal systems two further relations for the graph eigenvalues hold,
viz.:

(2)
Pn=2

i=1X
4
i = 9m� 6n

and

(3)
Qn=2

i=1Xi = k

Formula (2) is obtained in [3] whereas (3) is �rst reported in [2]. For a
complete proof of (3) see pp. 242{243 of [1].

Consider now non-negative quantities x1; x2; . . . ; xn=2 which satisfy the con-
dition Pn=2

i=1 x
2
i = m:

Lemma 1. If (10) holds, then

Qn=2
i=1 xi � (2m=n)n=4:

Furthermore, equality in (4) occurs if and only if x1 = x2 = � � � = xn=2.

Proof. If some of the xi's are equal to zero, then the inequality (4) holds in a
trivial manner. Suppose therefore that all xi's are positive and �nd the extreme of
the functional L,

L =
Pn=2

i=1 lnxi:

under the constraint (10). A straightforward use of standard variational calculus
yields the condition

x�1i + 2�xi = 0

which must hold for all i = 1; 2; . . . ; n=2. From (6), xi = (�2�)�1=2 and because of
(10), xi = (2m=n)1=2 for all i = 1; 2; . . . ; n=2.

Lemma 1 follows now immediately. �

Bearing in mind the analogy between eqs. (1) and (10) as well as between the
l.h.s. of (3) and (4), we arrive at the following conclusion.

Theorem 1. For all hexagonal systems with n vertices, m edges and k perfect

matchings

(7) k < (2m=n)n=4:

Let us consider now a somewhat more complicated problem and seek for the

extremes of the functional
Qn=2

i=1 xi under the constraint (1
0) and

(20)
Pn=2

i=1 x
4
i = 9m� 6n:
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Here again we may focus our attention on the case when all xi's are positive.
A reasoning fully analogous to that used in the proof of Lemma 1 leads to the
condition.

(8) x�1i + 2�xi + 4�x3i = 0

which must be satis�ed for all i = 1; 2; . . . ; n=2. Equation (8) is transformed into

(9) 1 + 2�x2i + 4�x4i = 0:

Whatever is the value of the Lagrange multipliers � and �, equation (9) has
either two positive roots or no real root. From the analysis which follows it will be
seen that (9) has real roots in some cases of interest for the present consideration.

Suppose that A and B are positive real roots of (9), A > B > 0. Then some
of the xi's will be equal to A and the rest of them will be equal to B. Because of
Lemma 1 we must not choose all the xi's to be mutually equal.

Let therefore t among the xi's be equal to A, 1 � t � n=2 � 1. Let, in
particular, in the case when t = 1,

(10a) xn=2�1 = A; x1 = � � � = xn=2�2 = B; xn=2 = B:

in the case when t = n=2� 1,

(10b) x1 = � � � = xn=2�1 = A; xn=2 = B

and in the case when 1 < t < n=2� 1,

(10c) x1 = � � � = xt�1 = A; xn=2�1 = A; xt = � � � = xn=2�2 = B; xn=2 = B:

The reason for such an unusual assignment will become clear later.

Substituting any of the relations (10) back into (10) and (20), we obtain

(11) tA2 + (n=2� t)B2 = m; tA4 + (n=2� t)B4 = 9m� 6n

from which

(12) A = A(t) = (2m=n+RS)1=2; B = B(t) = (2m=n�R=S)1=2

where

(13) R = (18mn� 12n2 � 4m2)1=2n�1; S = [(n� 2t)=(2t)]1=2:

Lemma 9. For all values of the parameters n and m which can occur in

hexagonal systems, 18mn� 12n2 � 4m2 > 0.

Proof. It is easily seen that 18mn� 12n2 � 4m2 is positive if

(14) (9�
p
33)n=4 < m < (9 +

p
33)n=4; i.e. 1:6 < 2m=n < 7:4:
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Now 2m=n is the average vertex degree of the hexagonal system considered.
Obviously, for all hexagonal systems 2m=n lies between 2 and 3 and therefore the
inequalities (14) are certainly ful�lled. �

As a consequence of Lemma 2, R, as de�ned in (13), is necessarily real.
Therefore A(t) is real for all t, 0 < t < n=2 whereas B(t) is real for 0 < t �
m2=(9m� 6n).

If the xi's are chosen according to (10), then the functional L, in (5), becomes
equal to L(t):

(15) L(t) = t lnA+ (n=2� t) lnB

with A and B given by equations (12).

Lemma. Provided A and B are real (i.e. for 0 < t � m2=(9m� 6n)) L(t) is

a monotonously decreasing function of the parameter t.

Proof. Di�erentiate equations (11) with respect to t

A2 + 2tAA0 �B2 + 2(n=2� t)BB0 = 0
A4 + 4tA3A0 �B4 + 4(n=2� t)B3B0 = 0

and calculate A0 and B0 as

(16) A0 = �(A2 �B2)=(4tA); B0 = �(A2 �B2)=(2nB � 4tB):

From (15) we get

L0(t) = lnA+ tA0=A� lnB + (n=2� t)B0=B

which combined with (16) gives

L0(t) = ln(A=B)� (A=B)2=4 + (A=B)�2=4:

For A > B, L0(t) is negative. In order to see this, notice that if f(x) =
lnx�x2=4+x�2=4, then f(1) = 0 and f 0(x) = �(x2� 1)2=(2x3). Hence for x > 1,
f(x) < 0. �

For t = 1; 2; . . . ; [m2=(9m� 6n)], L(t) is a stationary point if the functional
L, equation (5). From Lemma 3 one may expect that for t = 1, L(t) is a maximum.
We now show that this is indeed the case.

The quantities x1; x2; . . . ; xn=2 can be understood as variables which are to
be determined by variational calculus. Because of (10) and (20), only n=2 � 2 of
them are independent. Let these be x1; x2; . . . ; xn=2�2 and denote the dependent
variables xn=2�1 and xn=2 by y and z, respectively. (Note that in all the relations
(10) y = A and z = B.)

Let f(x) be an arbitrary function of x, such that f(x) and its �rst and second
derivatives exit for x = xi, i = 1; 2; . . . ; n=2. Consider a functional F ,

F = F (x1; x2; . . . ; xn=2�2) =
Pn=2

i=1 f(xi):
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Then for i; j = 1; 2; . . . ; n=2� 2,

@F

@xi
= f 0(xi) +

@y

@xi
f 0(y) +

@z

@xi
f 0(z)(17)

@2F

@xi@xj
= Æijf

00(xi) +
@2y

@xi@xj
f 0(y) +

@y

@xj

@y

@xj
f 00(y)

+
@2z

@xi@xj
f 0(z) +

@z

@xi

@z

@xj
f 00(z)

(18)

where Æii = 1 and Æij = 0 for i 6= j. As special case of (17) and (18) we get from
(10) and (20):

xi + y
@y

@xi
+ z

@z

@xi
= 0; x3i + y3

@y

@xi
+ z3

@z

@xi
= 0(19)

Æij + y
@2y

@xi @xj
+

@y

@xi

@y

@xj
+ z

@2z

@xi @xj
+

@z

@xi

@z

@xj
= 0(20)

3Æijx
2
i + y3

@2y

@xi @xj
+ 3y2

@y

@xi

@y

@xj
+ z3

@2z

@xi @xj
+ 3z2

@z

@xi

@z

@xj
= 0:(21)

In what follows we have distinguish between three cases: (a) t = 1, (b)
t = n=2� 1 and (c) 1 < t < n=2� 1. Since the examination is virtually the same
in all the there cases, we shall consider here only case (c).

Thus let 1 < t < n=2�1. Denote the sets f1; . . . ; t�1g and ft; . . . ; n=2�2g by
IA and IB , respectively. In the case (c), equations (10c) hold and after substituting
them into (19) we get for i 2 IA:

A(1 + @y=@xi) +B@z=@xi = 0; A3(1 + @y=@xi) +B3@z=@xi = 0

from which

(22) @y=@xi = �1; @z=@xi = 0:

For i 2 IB ,

A@y=@xi +B(1 + @z=@xi) = 0; A3 @y=@xi +B3(1 + @z=@xi) = 0

and therefore

(23) @y=@xi = 0; @z=@xi = �1:

Both (22) and (23), substituted back into (17) imply @F=@xi = 0.

Now, for i = j 2 IA we get from (20) and (21):

@2y

@x2i
=

2B � 6A2

A3 �AB2
;

@2z

@x2i
=

�4A2

B3 �A2B
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which results in @2F=@x2i = 2u where

(24) u = f 00(A) + f 0(A)
B2 � 3A2

A3 �AB2
� 2A2f 0(B)

B3 �A2B
:

Similarly, for i; j 2 IA, i 6= j, @2F=@xi @xj = u, for i = j 2 IB , @
2F=@x2i = 2w

where

(25) w = f 00(B) + f 0(B)
A2 � 3B2

B3 �A2B
� 2B2f 0(A)

A3 � AB2

for i; j 2 IB , i 6= j, @2F=@xi @xj = w whereas for i 2 IA, j 2 IB or i 2 IB , j 2 IA,
@2F=@xi @xj = 0.

This means that the Hessian matrix of F has the block diagonal form�
U 0
0 W

�
;

where 0 is a zero matrix and

U =

2
664
2u u . . . u
u 2u . . . u
...

...
. . .

...
u u . . . 2u

3
775 ; W =

2
664
2w w . . . w
w 2w . . . w
...

...
. . .

...
w w . . . 2w

3
775 :

Note that U andW are of order t�1 and n=2�t�1, respectively. Their eigenvalues
are easily found. The eigenvalues of U are: u (t� 2)-times and tu. The eigenvalues
of W are: w (n=2� t� 2)-times and (n=2� t)w.

In the problem we are concerned with, f(xi) = lnxi, and then formulas (24)
and (25) reduce to u = �w = 2(A2�B2)(AB)�2. Consequently, u > 0, w < 0 and
we reach the following conclusion.

Lemma 1. The Hessian matrix of L, equation (5), has t � 1 positive and

n=2� t� 1 negative eigenvalues.

We have demonstrated the validity of Lemma 4 assuming that 1 < t < n=2�1.
The very same statement holds also in the case (a) t = 1 and (b) t = n=2� 1. The
proof of Lemma 4 in cases (a) and (b) is essentially the same as in the case (c) and
will not be reproduced here. �

Since Lemma 4 holds for all t, 1 � t < n=2, we arrive at our main results.

Lemma 5. L(1) equation (15), is a maximum if and only if t = 1.

Lemma 6. If (10) and (20) hold, then
Qn=2

i=1 � K, where

(26) K = (2m=n+R
p
n=2� 1)1=2(2m=n�R=

p
n=2� 1)(n�2)=4

and R is given by (13).

Theorem 2. For all hexagonal systems with n vertices, m edges and k perfect

matching,

(27) k � K
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with equality if and only if n = 6.

Proof. The main statement of Theorem 2 is an immediate consequence of
Lemma 6. Only one hexagonal system, namely that composed of a single hexagon
has only two distinct positive eigenvalues (X1 = 2; X2 = X3 = 1). �

We demonstrate now that the upper bound given in Theorem 2 is better than
the upper bound given in Theorem 1.

Lemma 7. For all values of the parameters n and m which may occur in

hexagonal systems K < (2m=n)n=4.

Proof. Consider K, equation (26) as a function of the parameter R. Setting
R = 0 into (26) one obtains just the upper bound from Theorem 1. Now,

@ lnK=@R = 1=2 �
p
n=2� 1[(2m=n+ R

p
n=2� 1)�1 � (2m=n�R=

p
n=2� 1)�1]

which for R > 0 is obviously negative. Hence lnK and thus also K is a decreasing
function of R. According to Lemma 2, R > 0 for all combinations of n and m
which occur in hexagonal systems. �

The upper bounds (7) and (27) both depend on n | the number of vertices
and m | the number of edges. One may ask why our variational procedure did
not result also in lower bounds for k.

As a matter of fact, lower bounds of this type probably cannot be found at
all. Namely, whereas the parameters n and m increase with the increasing size of
a hexagonal system, the number of perfect matchings need not do so. Even if we
disregard hexagonal systems for which k = 0, there still remains an arbitrarily large
number of examples for which k < k0, where k0 is a constant greater than 9. For
instance, the following hexagonal system has 9 perfect matchings for all h � 3:
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