
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 42 (56), 1987, pp. 13{19

ON THE LARGEST EIGENVALUE OF UNICYCLIC GRAPHS

Slobodan K. Simi�c

Abstract. We �rst establish some relations between the graph structure and its largest
eigenvalue. Applying these results to unicyclic graphs (with a �xed number of points), we explain
some facts about the �1-ordering of these graphs. Most of these facts were suggested by the exper-
iments conducted on the expert system "GRAPH", which has been developed and implemented
at the Faculty of Electrical Engineering, University of Belgrade.

1. Introduction. In this paper we will consider only �nite, undirected
graphs, without loops or multiple lines. Our basic terminology follows [5]; for
everything about graph spectra, not given here, see [2]. In the spectral graph
theory, there are some attempts which are concerned with the ordering of the
graphs (within a �xed number of points) according to some spectral invariants.
For example, in [2], the �-ordering, i.e. the lexicographic ordering with respect to
a nonincreasing sequence of eigenvalues, is usually assumed. Very natural is the
m-ordering, i.e. the lexicographic ordering with respect to spectral moments (see
[3], and also [4] in the context of unicyclic graphs). Of course, due to the existence
of cospectral graphs none of these orderings is �ne enough. Nevertheless, for some
special kind of graphs, even �1-ordering, i.e. an ordering according to the largest
eigenvalue, is of interest. In this paper we will provide some results about the �1-
ordering of graphs, focusing our attention only to unicyclic graphs. The analogous
results for trees can be easily reproduced; for some accounts, see [8].

In the sequel lines, we give some useful results together with the necessary
notation.

G� v (G� e) denotes the subgraph of G with a point v (line e) removed. In
general, if H is a subgraph of G, G�V (H) is the graph remaining when the points
of H are removed from G. The next three lemmas are taken from [10].

Lemma A. Let v be a point of a graph G, and let C(v) be the collection of all
cycles containing v. Then P (G; �), the characteristic polynomial of G, satis�es

(a) P (G; �) = �P (G � v; �)�
X

u�v

P (G� v � u; �)� 2
X

Z2C(v)

P (G� V (Z); �):
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Note that for an empty graph, i.e. for H = K0, we de�ne P (H;�) = 1. In
particular, if v is of degree one, then (a) becomes

(a0) P (G; �) = �P (G� v; �) � P (G� v � u; �):

Remark. If � > �1(G� v), then from (a) we easily get

(a00) P (G; �) � �P (G� v; �) < 0:

Lemma B. Let e = uv be a line of G, and let C(e) be the collection of all
cycles containing e. Then P (G�) satis�es

(b) P (G; �) = P (G� e; �)� P (G� v � u; �)� 2
X

Z2C(e)

P (G� V (Z); �)

Lemma C. Let G and H be the rooted graphs with roots r and s, respectively.
Then the characteristic polynomial of the coalescence G � H (roots are identi�ed)
satis�es

(c) P (G�H;�) = P (G�r; �)P (H;�)+P (G; �)P (H�s; �)��P (G�r; �)P (H�s; �):

If H is a spanning subgraph of G, we shall write H � G; in particular, if it
is a proper spanning subgraph, we then write H < G. We now have (see [7], for
example).

Lemma D. Let G be a connected graph. If H < G (H is not necessarily
connected, then, for every � � �1(G),

(d) P (H;�) > P (G; �)

holds.

Remark. If G is not necessarily connected, then (d) holds for every � >
�1(G).

The next lemma follows from the maximum characterization of the largest
eigenvalue for symmetric matrices, see [9], and also [1]. If uv is a line of G, while
w is a point nonadjacent to u, then we shall denote by G' the graph obtained from
G by switching the line uv from v to w, i.e. G0 = G� uv + uw.

Lemma E. Suppose G and G0 are both connected graphs. If x > 0 is an
eigenvector corresponding to the largest eigenvalue of G, then, whenever x(v) �
x(w), �1(G

0) � �1(G) holds; in particular, if x(v) < x(w), we have �1(G
0) > �1(G).

2. Main results. In order to examine the �1-ordering of unicyclic graph, we
�rst exhibit some rules which relate the graph structure and its largest eigenvalue.

Theorem 1 [7]. Let C he any connected graph with at least two points.
If A and B are the graphs as in Fig. 1, then P (A; �) > P (B; �) for � >
min (�1(A); �1(B)); in particular, �1(A) < �1(B).
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Fig. 1

Theorem 2. Let C be any connected graph with at least two points. If A and
B are the graphs as in Fig. 2, then P (A; �) > P (B; �) for � > max (�1(A); �1(B));
in particular, �1(A) < �1(B).

Fig. 2

Proof. Let G = C be a rooted graph with a root r. Next, let s and t be the
points of H = K1;n whose degrees are n and 1, respectively. With this in mind,
A(B) is obtained from G and H by identifying the roots r and s (r and t). From
(c) we get

P (A; �) � P (B; �) = (P (G; �) � �P (G� r; �))(P (H � s; �)� P (H � t; �)):

Let � = max (�1(G); �1(H)). By (a00), if � > �, we have P (G; �)��P (G�r; �) < 0.
Also, for � > �, since H � s < H � t, from (d) we get P (H � t; �) < P (H � s; �).
Thus if � > �, we have P (A; �) > P (B; �), and consequently �1(A) < �1(B). �

Let C(T1; T2; . . . ; Tg) be an arbitrary unicyclic graph, where Ti is a rooted
tree appended to the i-th point of a cycle (points on the cycle are naturally ordered
around the cycle, g denotes its length). Applying the above two theorems, we easily
get that C(T1; T2; . . . ; Tg) is less than C(S1; S2; . . . ; Sg) with respect to �1-ordering;
here Si is a star on ni = jV (Ti)j points whose central point is a root. For brevity.
we shall denote C(S1; S2; . . . ; Sg) by C(n1; n2; . . . ; ng).

Let Cn;g = fC(n1; n2; . . . ; ng) jn1 + n2 + � � �+ ng = n� gg.
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Theorem 3. If G belongs to Cn;g and G 6= C(n� g; 0; . . . ; 0) then

�1(G) < �1(C(n� g; 0; . . . ; 0)):

Proof. Suppose Gm 2 Cn;g is a graph whose largest eigenvalue attains
the maximum value among all graphs from Cn;g . Also, suppose that Gm =
C(m1;m2; . . . ;mg), where mi 6= 0 if i = i1; i2; . . . ; ik (k � 2). Now, if x(is) 6= x(it)
for some s and t (1 � s < t � k) then, by Lemma E, we get a contradiction to the
choice of Gm. Indeed, if say x(is) < x(it), we can switch a pendant line at is, from
is to it. So assume x(is) = x(i2) = � � � = x(ik) = a. Let now p be an endpoint in
Gm. Since �1(Gm)x(P ) = a, it follows that x(p) does not depend on the particular
p we choose. If again we switch a pendant line at is, from is to it, then by Lemma
E. �1(G

0

m) � �1(Gm), but due to the choice of Gm, the equality must hold. This
means that x is an eigenvector of G0m which corresponds to the largest eigenvalue.
Consequently, observing the point it with graphs Gm and G0m, we get

�a = x(it�1) + x(it+1) +mtx(p); �a = x(it�1) + x(it+1) + (mt + 1)x(p)

where, for short � = �1(Gm) = �1(G
0

m), while the indices in above are reduced
modulo g. The latter implies x(p) = 0, which is an obvious contradiction. �

On the basis of results mentioned so far, we have that among all unicyclic
graphs on n points and girth g, C(n � g; 0; . . . ; 0) is the greatest with respect to
�1-ordering; for some accounts on the smallest graphs, see [4] and [7].

We now proceed to see what happens if we reduce the girth.

Theorem 4. Let C be any connected graph with at least three points. If A
and B are the graphs obtained from C as shown in Fig. 3 then P (B; �) < P (A; �)
for � > max (�1(A); �1(B)); in particular �1(A) < �1(B).

Fig. 3

Proof. Let e1 = wv and e2 = uv (see Fig. 3). We �rst notice that A� e1 =
B� e2. Next, let Z be any cycle of C+ e containing e = uv. By Z1 (Z2) we denote
the corresponding cycle A (B) containing e1 (e2). It is easy to see that A� V (Z1)
and B�V (Z2) di�er only in an isolated point appearing with the latter graph. So,
by (b), we have

� = P (A; �) � P (B; �) = P (B � u� v; �) � P (A� w � v; �) + 2Q(�);
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where
Q(�) = (�� 1)

P
i P (Hi; �);

H 0

i is being some spanning subgraphs of C. Now let � = max (�1(A); �1(B)). By
(d), since B � u� v < A� w � v, we have P (B � u� v; �) > P (A � w � v; �) for
� > �. Also, if � > �, P (Hi�) > 0 for each i. So, we get � > O for � > �, and
consequently �1(A) < �1(B). �

Remark. The latter inequality on eigenvalues is contained in [6]. It is also
worth mentioning that it not a direct consequence of Lemma E.

The next theorem is a direct generalization of the previous one.

Theorem 5. Let An (Bn) be the graph obtained from A (B) of Fig. 3 by
adding to the point w just n pendant lines (see Fig. 4). Then P (Bn; �) < P (An; �)
for � > max (�(A0); �1(B0)); in particular, �1(An) < �1(Bn).

Fig. 4

Proof. By induction on n. Let e(f) be any pendant line of An(Bn) at w.
Applying (b) on An (Bn) with respect to e (f), we get

�n = P (An; �)� P (Bn; �) = ��n�1 � �n�1(P (M;�) � P (N; �));

whereM = A0�w, N = B0�w are �xed graphs not depending on n. By Theorem
4, if � > � (� = max (�1(A0)�1(B0))), then �0 > 0. Furthermore, since N < M ,
we have P (N; �) � P (M;�) > 0, if � > max (�1(M); �1(N)) (and also � > �).
Thus, �n > 0 for each n. This proves the �rst part of the theorem. As before, we
now get �1(An) < �1(Bn). �

Applying the two theorems above to any graph from Cn;g0 and also Theorem
2 if necessary, we can get the unicyclic graph in Cn;g�1 which is greater with respect
to �1-ordering. Indeed, we have that C(n1; n2; . . . ; ng�1 + ng + 1) is greater than
C(n1; n2; . . . ; ng) in the same sense. So we can reduce the girth g to three. For
the graphs in Cn;3 we shall now prove some additional results; for the graphs in
Cn;g (g � 4), the analogous results are rather complicated.

Theorem 6. Let A, B and C be the graphs as in Fig. 5. Then we have:
P (A; �) > P (B; �) if � > max (�1(A); �1(B)), and also P (B; �) > P (C; �) if
� > max (�1(B); �1(C)); in particular, �1(A) < �1(B) < �1(C).
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Proof. We �rst prove the inequalities concerning B and C. To this end, we
may use an induction on n = n2. For convenience, we will now assume B = Bn and
C = Cn. Also, let v

0 (u0) be the points of degree one adjacent to v (u) in Bn (Cn).
Applying (a0) at points v0 (u0) we get

�n = P (Bn; �)� P (Cn; �) = ��n�1 � �n�1(P (B0 � v; �)� P (C0 � u; �)):

Fig. 5

Since C0 � u < B0 � 1, by (d), P (B0 � v; �) � P (C0 � u; �) < 0 for any
� > max (�1(B); �1(C)). So, by induction, since �0 = 0 we get �n > 0 for any n.
As before, we get �1(B) < �1(C).

Analogously, again by induction on n = n2, we prove the desired results for
A and B. It is interesting to mention that this part of the proof is in some steps
based on the results from the former part. �

A better evidence in �1-ordering of graphs in Cn;3 can be deduced from
Lemma E and the next theorem.

Theorem 7. Let u, v, w be the points of the triangle of a graph G =
C(nu; nv; nw) from Cn;3. If nu � nv � nw, then x(u) � x(v) � x(w), where x
is an eigenvector corresponding to the largest eigenvalue of G.

Proof. Let � = �1(G). Then, by simple calculations, we get

x(u) = �=(�2 + �� nu); x(v) = �=(�2 + �� nv); x(w) = �=(�2 + �� nw)

where x is suitably normalized. This completes the proof. �

Remark. From the above results, if G is an arbitrary unicyclic graph on n
points di�erent from Cn and K1;n + x, then

�1(Cn) < �1(G) < �1(K1;n + x):
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The left inequality is well known (see [2], for example); the right one can be
found in [1]. It is interesting to mention that the same conclusions holds if, instead
of �1-ordering, we assume m-ordering (see [4]).
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