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FREE POWER OR WIDTH OF SOME KINDS OF

MATHEMATICAL STRUCTURES

-Duro R. Kurepa

Abstract. The present work consists of 3 sections. In section 1 we have Theorem 1:1
which gives an suÆcient condition to exhibit a kind of antichains in pseudotrees. In section 2 the
problem of attainability of psE is examined: since simple examples show that even in well-founded
sets W the number psW might be unattained one examines the case of psT for trees; we prove
the main Theorem 2:4 and formulate ATH (Antichain Tree Hypothesis) in 2:7 and prove that
ATH is implied by the RH (Rami�cation Hypothesis) (v. 2:8 Theorem). We stress the fact how
limit regular cardinals occur in considerations in section 2. Section 3 examines psTn for squares,
cubes and hypercubes of trees it is proved that for any index set I of cardinality > 1 the cardinal
ordering of the hypercube T I is such that the number psT I is attained. One has the beautiful
result 3:5.

Introduction

0: Width is a current word in everyday practice (width of a solid physical or
geometrical body or �gure) and could be used everywhere where a length (measure)
is occurring. With many mathematical structures S a width, wid S, could be
associated.

0:1. For ordered sets (E;�) a width was introduced in Kurepa [1937] and was
denoted by ps(E;�) in order to indicate that one deals with a power (or cardinality)
of some free sets (in all slavic languages the word free starts with s (svoboda or
sloboda). It was ps(E;�) := supA jAj, A running through the system of all free
subsets or antichains in (E;�). In particular, for any set M in which no order or
structure is introduced psM becomes the power pM or jM j of M .

0:2. For metrical sets M , lying in a metric space (E; d) where d is the distance
function or metrics, one could de�ne a width of M as sup d(x; y) (x; y 2M), called
the diameter ofM . In this case, widM is a member of R[0;1]. A similar de�nition
is possible for topological spaces (M;d), de�ned by a distance function d(x; y) taking
values in a given ordered set (E;�) (for such spaces see Kurepa [1956], [1976], . . . )
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0:3. For any mathematical structure of the form (M;R) where M is a set and
R a binary relation on M , i.e. R � M � M , let us de�ne a width as follows:
wid (M;R) := supA jAj, where A runs through the system of all subsets A of M
such that if x; y 2 A and x 6= y then neither xRy nor yRx, i.e. (A2nD) \ R = �

(empty) .

0:4. For a ternary relation R on a set M one de�nes free subsets as subsets A of M
such that (A3nD) \ R = �, where D is the diagonal of M , i.e. the set of all 3-uns
(m;m;m) (m 2M).

0:5. In a general way, we have the following. Given an (index) set I and any I-un
(1) f : x 2 I ! fx of sets fx; any subset R of the products (2) M :=

Q
x2I fx of

all sets fx is called an I-ary relation in the given I-un f .

0:6. De�nition. A subset A of (2) is said to be free or an antichain in the structure
(M;R) if for time restriction f jA the corresponding product

Q
fx is disjoint with

R.

0:7. In particular, given an index set I and a set M one has the I-cube of M ,
i.e. the set M I of all mapping f : I ! M ; the diagonal D of M I is the set of all
constant mappings c : I !M . Any R �M I is called an I-ary relation in M .

0:8. A �rst question arises whether wid is attained, i.e. given (M;R), is there a
subset A of M such that jAj = wid (M;R) and such that if x; y 2 A, then neither
xRy nor yRx. Such subsets of M are called free relatively to R, or relatively to
(M;R); they are also called antichains.

0:9. In this paper, we restrict ourselves mainly to ordered sets. One of the main
results is the attainability of width for every tree T such that psT is no limit regular
cardinal and such that the question whether the width is attained for every tree
has probably a postulational character.

0:10. The question of supremum and maximum was one of the main points in my
doctoral dissertation (Paris 1935:2). There trees T and some cardinal functions one
trees were introduced; in particular for any tree T of decreasing sets a cardinal b0T
was de�ned as the supremum of jDj, D running through the system of all disjoint
subsystems of T d := fX;X 2 T or X = Y nZ; where Y; Y 2 T and Y � Zg. Then
I proved the following:

0:11. Theorem. [These p. 110, Th�eoreme 3] Unless the tree T is of inaccessible
height (rank), the supremum b0T is attained.

This theorem implies:

0:12. Theorem. For every ordered chain (L;�), unless p2(L;�) is a regular lim-
it, the celullarity p2(L;�) := sup jDj, D running through disjoint system of open
intervals, is attained.

0:13. The fact is transferable to topological spaces, as was published, without
quotation of any result in Erdos-Tarski [1943] (the Th�ese was not quoted but my
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de�nition of tree or rami�cation (p. 32744{1) and some results of Aronszajn, and
Kurepa (p. 32812{11) are mentioned without quoting my name).

1. Some General Statements

1:0. Graph Lemma. Let (G;R) be a re
exive symmetric graph and t a point of G
such that psG(t) > 1; for every maximal complete subgraph L of G(t), there is a 2-
un (ft; gt) of incomparable points ft, gt such that gt 2 L, G(t) := fg : g 2 G; gRtg.

Proof. By assumption, t is a point of G such that psG(t) > 1; i.e. there is an
antichain fx; yg � G(t). Since, by assumption, L is a complete subgraph of G(t),
one has not x; y 2 L, thus there is an element in fx; ygnL; let us denote it by f(t).
Now, there is at least one member l of L such that ft, l are incomparable. As a
matter of fact, if for every l 2 L the points ft, l were R- comparable, this would
mean that L[fftg is a complete subgraph of G(t) more extensive than the maximal
subgraph L, which is an absurdity. Consequently, there is a point in LnG(ft), and
it suÆces to denote it by gt in order to see that the statement of L is true. Q.E.D.

1:0:1. Corollary. If (E;<) is ordered and if e 2 E is such that psE(e) > 1, then
for every maximal chain L of E(e) there is a 2-un (fe; ge) of free points in E(e)
such that gt 2 L; one has either fe, ge < e or fe, ge > e.

Proof. It is suÆcient to put: G = E, R =� [ �, t = e and to apply the
Graph lemma: one gets wording of Corollary 1:0:1.

1:0:2. Corollary. Let (R;�) be a pseudotree and t 2 R be such that psR(t; �) > 1.
If L is a branch (� maximal chain) in R(t), then there is a 2-un (ft; gt) of free
points ft, gt in R(t), such that gt 2 L.

1:0:3. Corollary. If (T;�) is any tree and t a point of T having at least 2
followers, then for every maximal chain L � T (t) there is a 2-un (f(t); g(t)) of
incomparable members in T (t; �) such that f(t), g(t) belong to the �rst row of T (t; �)
containing at least 2 points; again g(t) 2 L.

Proof. Since L is a branch in T (t; �), T intersects every row of T (t; �); so also
the �rst one, Rt, which is not a singleton; therefore fg(t)g = L \ Rt and ft could
denote any point of RtnL.

As an application of the Graph Antichain Lemma, we have the following

1:1. Theorem. Let (1) (R;�) be any nonempty pseudotree and L a maximal sub-
chain ( � branch) of (1) such that every l 2 L satis�es ps(l; �)R > 1; then (R;�)
contains an antichain of (1) of cardinality � cfL; i.e. ps(R;�) � cfL.

Proof. By an induction argument we are going to exhibit a biunique sequence

(2) aj (j < cf L)

of free points aj 2 R. The thing is obvious if L has a least point i.e. if cf L = 1.
Therefore let us consider the case that cf L is a regular initial !n. Let then

(3) w := fl0; . . . ; lj ; . . . g (j < cf L)
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be a well-ordered subset W of type !n of L which is co�nal to L. To start let
us consider the point c0 := l0 in (3) and apply the Lemma for t = c0; we get the
points a0 := fc0, b0 := gc0; assume that 0 < j < cf L, and that a strictly increasing
j-sequence ci (i < j) of points of (3) is formed such that in connection with L one
has a j-sequence ai := fci (i < j) of free points and a strictly increasing j-sequence
bi := gci (i < j) such that

(4) bi; ci 2 Wn
[

r<i

(�; ar]:

Let us de�ne cj , aj , bj . If j � 1 < j, we put cj := gbji , aj := fcj , bj := gcj .
If j is a limit ordinal < !n, let cj denote any point such that

(5) cj 2 Wn
[
(�; ai] (i < j):

Such a cj exists because the set (5)2 is nonempty | a fact implied by the
regularity of the order type !n > j of W. Then we apply the Lemma for t = cj and
get

(6) aj := fcj ; bj := gcj :

In virtue of (5), (6) if i < j, then one does not have cj = ai, still less aj = ai,
becaause aj := fcj > cj . Neither does one have ai < aj . Assume on the contrary
that for some i < j one has ai < aj , i.e. fci < fcj , and fcijjgci < cj < fcj :
the point fcj := aj would be preceded by incomparable points fci = ai and cj ,
contrarily to the fact that each left cone in (R;�) is a chain. So the induction step
for each j < cf L is performable, one gets a requested antichain ai (i < cf L) of
power ef L. Q.E.D.

1:1:1. Remark. The statement of the Theorem might be false if the involved sub-
chain L is not maximal. Example: If (E;�) is any totally ordered set of co�nality
> Al0 and if (N;�) is the tree of all �nite sequences of natural numbers where �,
denotes the relation "is an initial segment of", then the ordinal sum (E;�)+(N;�)
is a pseudotreee of width Al0, and contains no free sunbset or cardinality cf L.

1:1:2. Remark. The statement of the Theorem might be false for well-founded sets
(E;�).

As a maatter of fact, let !n be any initial ordinal number and let fi (i < !n)
be any !n-sequence of disjoint sets each having just 2 points; let then the sum
S := �fi (i < !n) be ordered in such a way that the members of fi be incomparable
for each i < !n and that fi < fj for i < j < !n; then each maximal chain L in S

is of power Aln, while psE := R2 < cf L.

2. The question of attainability of width.

2:0. ln this section we shall present some interesting results on the question whether
the width is attained in a given structure. Since already in well-founded sets the
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width might be unattained (v. 2:1 Lemma), we pass to trees and establish the main
theorem 1:2. We also announce the proposition ATP (Antichain Tree Proposition)
stating that for every tree T the member psT is attained. This proposition is ex-
amined with other tree propositions, especially with our Rami�cation Hypothesis
(RH), and our Tree Axiom. We denote by T , R any tree any pseudo-tree respec-
tively.

2:1. Lemma. For every limit cardinal l there exists an ordered set (E;�) such that
ps(E;�) = l and l is not attained.

Proof. Let us consider any strictly increating cf l-sequence an of cardinals
such that sup an = l := !� and an l-sequence En (n < l) of pairwise disjoint sets
such that

(1) jEnj = rn + 1; where rn is such that n = k! + rn;

let < in (2) E := [En mean that

(3) x < y holds if and only if x 2 Em, y 2 En, m < n and that xjjy means
fx; yg � En for some n < l. Then obviously, psE = Al0 and every free subset is
�nite. Analogously, if instead of (1) one requires jEnj = jnj (n < !�), then the
ordering (3) yields the structure (2) for which ps = l and in which every free subset
is of a cardinality < pr.

2:2. What about psT for trees?

2:2:1. In our Thesis we de�ned mT := sup �<
T jR�T j; of course mT � psT ; the
di�erence betwen mT , and psT could be great; e.g. if T consist of a well-ordered
set W and of points W 0

n such that for each n < 
W , Wn, W
0
n are incomparable

points as a row RnT , then mT = 2, W 0 := fW 0
ngn<
T is an antichain of cardinality

jW j.

2:2:2. The number psT need not be attained for T as the power of a row of T .
As a matter of fact, for every ordinal n there is a tree Tn such that 
Tn = !n,
mTn = psTn = Aln and mTn is not attained as the power of a row of Tn.

Proof. Let Tn consist of the 2-uns (n; n0)n0�n for every n < 
W in which
(a; b) < (c; d) $ a = b < c = d. Then the diagonal L := f(i; i)gi<!n is a maximal
chain; its complement is free, it is of power Aln = mT and it is not attained as the
power of a row.

2:2:3. Well-founded set Un. For any ordinal number n let us consider the upper
part Un of the square of the set !n of ordinals< !�, i.e. Un := f(x; y) : x < y < !ng
ordered in such a way that for (a; b); (c; d) 2 Un the relation (a; b) < (c; d) means
a � c^ b < d. One proves easily that � is an order relation in Un and that (Un;�)
is well-founded. Also one veri�es that (a; b)jj(c; d) means ((a 6= c)^ (b = d))_ ((a <
c) ^ (b � d)) _ ((a > c) ^ (b � d)).

Lemma. In the graph (Un; jj) every complete subgraph A is < Aln, i.e. every
antichain A in (Un;�) is < Aln; if n = 0 or if n is a limit, then ps(Un;�) = Aln
and the number ps is not attained.
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Proof. Let (x0; y0) := gA be the element of A having minimal �rst coordinate
x0; gA is uniquely determined; let (x1; y1) :== g(AnfgAg); thus x0 < x1 and
y0 � y1 > x1: the procedure is performed as far as possible. In the sequence
(yi)i there is only a �nite number of distinct terms because they form a decreasing
sequence of ordinal numbers. On the other hand, the number of consecutive signs
= starting with yi is � �x0+ yi, thus < Aln. Consequently, jAj < Aln. Obviously,
if n = 0 or if n is limit, then ps(U;�) = Aln because for any y < !n one has the
antichain f(x; y) where x < yg of power jyj � 1. The set (Un;�) served me in 1952
as an example of an ordered set in which the relation jj is not trivial, and in which
the ps-number is not attained; the case n = 0 was considered also by Rado [1954,
x 2].

2:3. Lemma. Every tree T such that psT = Al0 contains a free subset of cardinality
psT .

Proof. The statement is trivial if psT is �nite or if T contains an in�nite
row. Therefore let us consider any tree 
T such that psT = Al0 and every level of
T is < Al0. Let T0 := ft : t 2 T; psT < Al0g. If T0 is in�nite, then necessarily
R0T0 is in�nite because T0 = [T0[x; �) (x 2 R0T0) and each summand is �nite. If
T0 is �nite, one could assume that T0 is empty: it is suÆcient to denote by T all
points t of T such that 
t > 
t0 for every t0 2 R0T0; 
t is de�ned by t 2 R
tT .
Consequently, we are in the position that psT (t) > 1 for every t 2 T .

Since psT =
P

ps(t) (t 2 R0T ) and jR0T j < Al0, one concludes that there
exists a point t0 2 R0T such that psT (t) = Al0. Let n0 be the �rst ordinal such
that the row Rn0T contains 2 points a0 6= b0 such that psT (b0) = Al0; the existence
of n0 = f(t), a0 = g(T ), b0 = h(T ) being obvious, let n1, a1, b1 be determined as
f [b0; �)T , g[b0; �)T , h[b0; �)T respectively; one proceeds by an induction argument: if
k > 0 is any ordinal < !0 such that: the ordinals n0 < n1 < � � � < ni (i < k), the
free points ai 2 RniT ) (i < k), the linked points bi 2 RniT ) are determined so that
ani jjbni , then we determine also nk; ak; bk putting nk = f [bk�1; �)T , ak = g[bk�1; �)T ,
bk = f [bk�1; �)T . The set fa0; a1; . . . g is free and has psT points.

2:4. Main Theorem. If psT is not a regular limit uncountable cardinal, then psT

is attained.

The case when psT is �nite or of the form Aln+1 being obvious, we assume
that psT is in�nite and not of a form Aln+1. Let us consider the set ft : t 2
T; psT (t) < psTg := T0. Of course psT0 � psT .

1. First subcase: psT0 = psT ; then the �rst row R0T0 is of a power = psT because
psT = psT0 and T0 =

P
psT (t0); )T0 (t0 2 R0T0). If incidentally R0T0 is of the

power psT , all is proved; this occurs in particular if ps is regular.

1:1. If jR0T0j < psT , psT singular, and there is a s0-sequence (s0 := cf p0T ) aj
(j < s0) of points of R0T0 such that sup [aj ; �]T0 = psT . Let then Alkm (m < cf s)
be a strictly increasing cf s-sequence of alephs of the �rst kind tending to psT . Let
fm be a one-to-one mapping m < cf s! fm 2 R0T0 such that ps[fm; �)T0 = Alkm ;
the existence of fm is obvious: by an induction argument one de�nes f0 = the �rst
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i such that ps[ai; �) � Alk0 and for any 0 < i < cf s let fi be the least m such
that ps[am; �)T0 > fi (i < m) and ps[am; �)T0 = Alkm . Choosing for every m < cf s

a free set Am � ([fm; �)T0 such that pAm > Alk+1, the union A := [mAm is a
requested free subset of T0 of cardinality psT .

2. Second case: sT0 < psT ; let T1 := TnT0; then T1 6= � and for every t 2 T1 one
has psT1(t; �) = psT | we say that T1 is width-homogeneous. So the Theorem is
reduced to the following:

2:5. Theorem. In every width-homogeneous tree T , disregarding the case when
psT is limit regular not countable, the width is attained.

Proof. First, T contains a free subset A of cardinality s0 := cf psT . This
is obvious if s0 is isolated; if s0 is not isolated, then, by assumption, s0 < psT and
by the de�nition of ps as supremum of jAj < ps, a requested A exists. Again, if
ki (i < s0) is any strictly increasing s0-sequence of cardinals tending to ps and ai
any normal well-order of A, then for every i < s0 the cone T (ai) contains a free
subset fi of cardinality > ki (because T is width-homogeneous); then the union of
all fi (i < s0) is a requested free subset of cardinality ps. Q.E.D.

2:6. Corollary. In every tree of a singular width the width is attained.

Since the question of attainability of psT is reducible to width-homogeneous
trees T and since the question is settled for all T having a subchain L or an antichain
A of cardinality � s0 and for all T such that s0 < ps, the open remaining case is
the following: Every row is < l, where l is any limit regular > Al0, and at the same
time: every chain is < l. For such trees, the question of attainability is open. Do
such trees exist? According to our tree axiom, TA, such trees do exist for every l.
Consequently, the negation of TA implies the attainability of width in every tree.

Therefore we formulate the following.

2:7. Antichain Tree Hypothesis (ATH). In every tree T the width psT is attained.

By 2:3, 2:4, ATH is provable for every T such that psT is singular or of
countable co�nality, or of the form Aln+1.

In my Doctorial dissertation the following hypothesis was introduced | Ram-
i�catiofn Hypothesis (RH): For every tree T the cardinal bT is attained, where for
any ordered set (E;�) one de�nes b(E;�) := sup jDj, D running through the sys-
tem of all d-subsetsD of (E;�) i.e. such that the corresponding conesD(a) (a 2 D)
are pairwise disjoint chains.

2:8. Theorem. RH ) ATH. The Rami�cation Hypothesis implies the Antichain
Tree Hypothesis.

Proof. Since RH is equivalent to the Reduction Princip RH1) that every
in�nite tree is equinumerous to one of his d-subtrees and since ATH was proved
for all cases except when T is such that the height 
T = l, jR�j < l for every � < l

and if each subchain is < l, then a d-set D of T such that jDj = jT j is necessarily
such that its �rst row R0D is of cardinality jT j | this is implied by the disjoint
partition D = [D[d; �) (d 2 D) and the fact that D[d; �) is a subchain of (T;�).
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2:9. Disjoint systems of open intervals in ordered chains. I had the opportunity
to stress several times that antichains in trees (T;�) are closely connected with
disjoint systems of intervals of natural, total extensions of order (T;�); e.g. any
complete bipartition of any ordered chain (L;�) yields a tree T of intervals of
(L;�).

Therefore the previous proof of the main Theorem 2:4 implies my result in
the Th�ese quoted above as Theorem 0:12. And vice versa: Theorem 0:12 implies
Theorem 2:4.

The Antichain Tree Hypothesis is equivalent to

2:10. Disjointnes Chain Hypothesis: For every ordered chain (L;�) there
exists a disjoint system J of open intervals such that pJ � pX for any disjoint
system X of open intervals of (L;�).

3. Width and Cartesian multiplication

3:0. It is very important and very interesting to see how the ps-operator behaves
with respect to combinatorial (cartesian) multiplication. Since obviously, the carte-
sian product of any antichains (in a given structure) is again an antichain in the
corresponding product and since, in particular, for any antichain A and any index
set I one has (1) psA

I = ApI , one infers that unless psA = 1, the number (1) might
be arbitrarily high. Already the simplest case ps(E;�) = 1 of ordered chains (E;�)
shows situations of maximal change of during the transition from the structure to
the square. E.g. for the real line Re one has psRe = 1 and psRe

2 = c = power
of continuum, because the second diagonal (x;�x) (x 2 Re) is an antichain in the
square Re2.

3:1. Lemma. (i) For any in�nite ordered chain L one has psL
2 � Al0; (ii) If

L is order-dense and in�nite then L2 contains also in�nite antichains. (iii) For
any in�nite well-ordered (or inversely well-ordered) set W , psW

2 = Al0, but every
antichain in W 2 is �nite.

Proof. (i) In fact, since L is in�nite, one has, for any given integer n a strictly
increasing n-sequence ai (i < n) and a strictly decreasing n-sequence bi (i < n) of
points in L; then the set of all points (ai; bi) (i < n) is an antichain in L2 of power
n. (ii) If L is order-dense, then the preceding sequences ai, bi could be taken to be
in�nite and they yield an in�nite antichain in L2. (iii) IfW is well-ordered and A is
any given antichain in W 2, let x0 := inf pr1A and let y0, be the unique point of W
such that a0 := (x0; y0) 2 A. Let us write fulnctionally a0 = fA; if fa0g 6= A, let
us de�ne a1 := f(Anfa0g), and inductively ai := f(Anfa0; a1; . . . ; ai�1g) as long
as the f -and is 6= �. But the procedure stops at most after y0 steps because the
second projections y0 > y1 > . . . are strictly decreasing. In fact, if we assume e.g.

1)In Kurepa 1935 b; c p. 130{133 there were listed 12 mutually equivalent tree propositions
P1; P2; . . . ; P12, of which P1 = RH, P2 = RP ; one more equivalent statement P0 was formulated
on p. 93: If T satis�es height T (a) = height T (a 2 T ) and psT (a) > 1 (a 2 T ), then T contains
an antichain of cardinality jheightT j.
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y1 � y2, then this relation jointly with x1 < x2 would imply a1 < a2, contradicting
the fact that a1, a2 are two members of the antichain A.

3:2. Corollary. An ordered chain L is well-ordered or inversely well-ordered if
and only if L2 contains no in�nite antichain.

2:2. An analogous statement holds for Ln, where n = 2; 3; 4; . . . ; whereas the
hypercube LI for any in�nite index set I contains an in�nite antichain of power 2I ,
provided that L contains at least a chain f0; 1g of two points 0, 1.

3:4. Left (right) nodes. Given (E;�); a left node of (E;�) is anymaximal subsetM
such that x; y 2M implies E(�; x) = E(�; y) where E(�; x) := fz j z 2 E and z < xg.
Dually, one de�nes right nodes of (E;�). Of course, each node is an antichain.

3:4:1. Let l(E;�) be the system of all left nodes of (E;�). Then we have a well-
de�ned system l(E;�) of antichains in (E;�) such that [ l(E;�) = E, as well as,
for any index set I , a well-determined system of antichains XInD (X 2 l(E;�) in
the hypercube without the diagonal: (E;�)JnD, where D denotes the diagonal of
the hypercube, i.e. the set of all constant functions from I into E. It is extremely
interesting that for trees one has the following:

3:5. Theorem. Let (1) (T;�) be a tree and I an index set; then the set

(2) AT I :=
[

XInD; (X 2 l(T;�))

is a maximal antichain (= antibranch) in the cardinal ordering of the hypercube
without the diagonal

(3) (T;�)InD;

where D is the diagonal of the hypercube.
(ii) The antibranch (2) has a power � pA for every antichain A in (3),

provided every node of T has at least two points and pT � Al0 and 1 < pI < Al0
or pI � pT .

Proof. First, (2) is an antichain. As a matter of fact, let f; g 2 (2), thus
f 2 F , g 2 G for well-determined left nodes F , G of (1). Assume that f � g in (3);
then fi 2 G and fi � gi (i 2 I); but G is a left node, and fi � G. Consequently,
fI is a singleton of the node F because fI belongs to the G-ideal, of the tree T ,
thus f jI 2 D, in contradiction to f 2 (2). Let us prove that each member f of (3)
is comparable to some member f 0 of (2). For this, let L := \(T;�)(�; fi) (i 2 I); L
is a chain < fi for every i 2 I ; thus the set T (L; �) of proper majorants of L in T

contains fi for each i 2 I ; let then N := R0(L; �) be the �rst row of (L; �), for each
i 2 I there is a unique f 0i 2 N such that f 0i � fi. The set f

0 � I of all f 0i (i 2 I)
has at least two points; in the opposite case, if f 0I were a singleton fhg, one would
have (4) h � fi (i 2 I), thus h = fi (i 2 I) because if in (4) we had < instead of
�, the point h would be in L in contradiction to N \ I = �. Since, pf 0I > 1, f 0 is
a member of N InD and all is proved.

3:6. A deleting operation in trees. Let T be a given tree; let p be any most extensive
path of T which is the union of monopunctual nodes of T ; we replace p by its last



12 Kurepa

member gp if p has a such one; in the opposite case, we replace p by its �rst member
gp. The result of such a substitution in T will be denoted by Tn. For example,
if T is well-ordered, then Tn is a singleton consisting of the last point of T if this
point exists; otherwise Tn = R0T . If every knot of T has as least two points, then
T = Tn. Anyway, we have a mapping g which associates with p a point gp 2 p; we
also have a self-mapping g of [pp.

3:6:1. Lemma. The mapping g preserves the incomparability relation: if a, b are jj
in [p, so gajjgb and one has psT = psTn.

Proof. Let a, b be incomparable in M := [p; then gajjgb. As a matter of
fact let p, q be summands of M such that a 2 p, b 2 q. Since ajjb, we infer that
pjjq; in the opposite case, there would be comparable points c 2 p, d 2 q; one does
not have c = d because p, q are disjoint. Assume c < d.

First case: a is last in p, b is last in q; thus c � a, d � b; since all members of p
are monoknots, we infer the rows of T (c; �) are monoknots for at least the rank 
a;
thus in particular a � d and a � b, contrarily to ajjb.

Second case: a is last in p, b is �rst in q. Again one infers that c < d would imply
a � d, and this with b < d would mean that the point d would be preceded by
incomparable points a, b | absurdity.

Third case: a is �rst in p, b is last in q. This case is not possible because we would
have a � c < d � b i.e. a < b, in contradiction to ajjb.

Forth case: a is �rst in p, b is �rst in q | not possible, because otherwise d would
be preceded by free points a, b.

The equality in 3:6:1 is implied by the fact that g carries every antichainA of T
in an isomorphic antichain gA in Tn. Therefore, let us examine Tn. Let Z be the set
of all terminal points of Tn. If pZ = psTn, all is settled, because Z is an antichain.
If pZ < psTn, then the complement U = TnnZ satisties psU = psTn and every
node of U has at least two points. Now, the identical partition U = [X; (X 2 lU)
implies pU =

P
pX (X 2 lU) the last number is �

P
(pX)2p � (U�U) = pU ; thus

in this case the antichain (2) has pU (= pT ) points and is not only maximal but
also maximum. The same holds for every �nite I of power > 1. Again if pI � pT ,
then the identity T I = ([X)I implies for cardinals (pT )pJ = 2pJ = (

P
x pX)pJ �P

x 2
pJ (X running through lU); consequently, in this case also the cardinality of

(2) is again (pT )pJ and the antichain (2) is again maximum.

Probably the statement (ii) holds for every I of power > 1.
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