Convolutions of Meromorphic Univalent Functions with Positive Coefficients
B.A. Uralegaddi
Let $f(z)=1/z+\s{a_n}$, $a_n\ge 0$ and $g(z)=1/z+\s{b_n}$,
$b_n\ge 0$. We investigate certain properties of the convolution
$1/z+\s{a_nb_n}$ where $f(z)$ and $g(z)$ are meromorphically starlike.