Convolutions of Meromorphic Univalent Functions with Positive Coefficients


B.A. Uralegaddi


Let $f(z)=1/z+\s{a_n}$, $a_n\ge 0$ and $g(z)=1/z+\s{b_n}$, $b_n\ge 0$. We investigate certain properties of the convolution $1/z+\s{a_nb_n}$ where $f(z)$ and $g(z)$ are meromorphically starlike.