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SOME LIMIT THEOREMS FOR ONE TYPE
OF STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS

Svetlana Jankovié

Abstract. We consider limit theorems for linear stochastic integro-differential equations
of a special type and we give sufficient conditions for the almost sure convergence of the sequence
of their solutions.

1. Introduction

Let us introduce some assumptions. Let (2, F, P) be a complete probability
space on which an R™-valued standard Wiener process W = [(Wy, Fi), t > 0] is
given, where (Fy, t > 0) is a filtration satisfying the usual conditions. The non-
random functions

an :[0,T]xR* - R?, b,:JxR*= R ¢,:JxR— R'xR™,
Ap:[0,T] x R* - R*x R™, B,:JxR*— RxR™,
Cn:Jx:R*—- R*x R™ x R™,
where T' = const > 0, J = {(¢,s) : (¢,s) € [0,T] x [0,T], < t}, n =0,1,..., are
Borel-measurable in respect to the corresponding o-fields on their domains. They

satisfy the uniform Lipschitz conditions and the restriction on linear growth i.e.
there exists a constant K > 0, such that for all (t,s) € J, = € R?, y € R,

(1) Nan(t,2) —an(t,y)| < Klz —yl, [Cn(t,s,2) — Cult,S,y)| < K|z —y|,
(2) lan(t,2)® < K*(1+ |27), |Cnlt,s,2)* < K?*(1+[zf),
and analogously for the other functions.

We suppose that R%valued random processes ¢, = (pn(t),t € [0,T]), n =
0,1,..., are nonanticipating for every ¢t € [0,T]. Also, in what follows we sup-
pose that all integrals, ordinary and stochastic, exist as nonanticipating stochastic
processes.
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Berger [1] considered a sequence of stochastic integro-differential equations
(shortly SIDE) of the type

(3) Xn(t) = @n(t)+

+/0 [an(s,Xn(s))+/ bn(s,u,Xn(u))du+/0 en(s, u, Xy (w)dW (u)]ds+

0
+/0 [An(s, Xn(s)) + /OS B, (s,u, Xp(u))du + /0S Ch(s,u, Xp(u))dW (u)]dW (s),
n=0,1,...,

and, under the conditions (1) and (2), he proved the existence and uniqueness of
the R?-valued, nonanticipating solutions X,, = (X,(t),t € [0,7]),n = 0,1,....
Also, he gave the conditions for the convergence in mean square of the sequence of
solutions {X,}, n =1,2,..., to the solution Xy as n — co.

The main problem of this paper is to give sufficient conditions under which the
sequence of solutions {X,}, n = 1,2,..., converges almost surely to the solution
Xp as n — oo. We must require a closeness in some sense of the processes ¢,
n = 1,2,..., and the functions a,, by, ¢,, Ao, Bo,Co, n = 1,2,..., to the process
o and the functions ag, by, co, Ao, Bo, Co, respectively. The paper [5] contains some
ideas and results about this closeness.

Let us introduce the following conditions:

(4) supsup E{|pn(8)]"} < oc;
(5) ZE{Sgp |on(t) — o (t)]*} < o0;
(6) Z sup {lan(t,z) — ao(t,z)| + |bn(t, s,2) — bo(t, s, z)|+

=1 (t,s,) €T
+len(t, s, ) — co(t, s, z)| + |An(t, ) — Ao(t, )|+
+|By(t,s,x) — Bo(t,s,x)| + |Cp(t, s, z) — Co(t, s,x)|} < oo,
where IT = {(¢,s,z) : (t,s) € J, x € R}.

2. Main results

THEOREM 1. Let the functions an,by,Cn, An, Bn,Cn,n = 0,1,..., and the
processes pn, n = 0,1,..., be defined as above and all preceding conditions be
satisfied. Then the sequence of random processes {X,}, n = 1,2,..., converges
almost surely, uniformly in t,t € [0,T], to the random process Xy as n — oo.

The conditions of Theorem 1 could be weakened. Following the tradition of
the classical theory of stochastic differential equations, we suppose that for each
number M > 0 there exists a constant Ly > 0, such that the condition (1) is valid
with this constant for all (¢,s) € J, |z| < M, |y| < M. Also, the expectation in (4)
does not have to be bounded, and (2) and (5) are satisfied.
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THEOREM 2. Let the functions an,bp,Cn, An, Bn,Cn,n = 0,1,..., and the

processes o, n = 0,1,..., satisfy the preceding conditions and let (6) be valid for
II' = {(t,s,z) : (t,s) € J, |z| < M} instead of II. Then the sequence of random
processes {Xp}, n=1,2,..., converges almost surely, uniformly in t,t € [0,T], to

the random process Xg as n — 0o.

3. Proofs of theorems

Proof of Theorem 1. Denote

en = E{ sup [lan(s, Xu(s)) = ao(s, Xu(s)) [+
(t,s)ed

(1) T bt 5, Xn(s) = bo(t 5, Xn(9))” + len(t, 5, Xn(5) = colt, s, Xn(s)) "+
+[An(s, Xn(s)) = Ao(s, Xn(5))]* + [ Ba(t, 5, Xn(s)) = Bo(t, 55, Xn(s)) "+
+|Cn(t, s, Xn(s)) — Co(t, s, Xpn(s)?}, n=1,2,...,

(8) 8, = E{supt|pn(t) —oo®)*}, n=1,2,...

Since we must find an upper bound for E{|X,,(t) — Xo(#)|?}, we will estimate
only one integral, and analogously the others. If we apply one of the basic prop-

erties of the Ito integrals (see [2], [3]), add some terms, use the Cauchy-Schwartz
inequality, the condition (1) and the notation (7), we obtain

E{/Ot/os[Bn,(s,u,Xn(u)) —Bo(S,u,Xg(u))]dudW(s)}2 -
/ {‘/ (8,1, X0 () —Bo(s,u,XO(u))]dur}ds <

2/0 3/0 E{|Bn(s,u, Xpn(uw)) — Bo(s,u, Xp(u))|*+
+ [Bo(s, u, Xy |(u) — Bo(s,u, Xo))|* duds <

< t}[Bet+ K? + /Ot E{|X,(s) — Xo(s)|*}ds.

Subtracting the equations (3) for n = 0 from (3) and using (8), it is easy to
obtain the estimation

{E|X,(t) = Xo(t)*} < 70 + |, T + K? /0 E{|Xn(s) — Xo(S)"}ds|,

where o = 14[T3/2+3T?%/2+ 2T + 1]. By the Gronwall-Bellman inequality we have

(10) E{|Xn ()l — Xo(t)]2 < (76, + ae,T)e*E7".
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We will apply the well-known inequality for stochastic Ito integrals:

E{ sup /Xsw)dW } <4/ E{|X (t,w)|*}dt,

t:t€[0,T]

if the last integral is finite (see [2], [3]).

For example, from (9) it follows that

{ sup / / (s,u, Xn(u)) — Bo(s,u,XO(u))]dudW(s)} <

t:t€[0,T]

/ ‘/ (s,u, Xp(u)) —Bo(S,u,Xo(u))]dur}ds <

< 477

eT + K? / E{X,(s) — Xo(s)|2}ds] .
0
We can find upper bounds for the other integrals similarly. So we have

E{ sup | X,(t) — Xo(t)|2} <75,+p
t:t€[0,T]

T
e T + K? /0 E{|X,(t) — Xo(t)|2}dt] ,

where 3 = 14[T%/2+ 3T+ 5T +4]. Thus, from (10) and the last relation, it follows
that

E{ sup |X,(t) — Xo(t)|2} < c1dp + Ccaen,
t:t€[0,T]

where ¢; and ¢ are corresponding constants. By Chebyshev’s inequality, for each
€ > 0 we have

ZP sup [ Xn(t) = Xo(t)] 2 ¢} < 5 ZE sup | X (t) — Xo(t)*} <

t:t€lo, T] _ tteOT]
o0
C1 C2
- E On + = E En < 00,
n=1 n=1

because, from the conditions (5) and (6), the series Y oo &, and Y .- &, are
convergent. By the Borel-Cantelli’s lemma and Weierstrass’ uniform convergence
theorem, it follows that the sequence of random processes {X,},n = 1,2,...,
converges almost surely, uniformly in ¢,¢ € [0,T], to the random process X, as
n — oo. Thus Theorem 1 is proved.

Proof of Theorem 2. For a chosen number M > 0, let us denote

z, if |z <M
V() = Msgnz if |z| > M

@nM(t) = ¢M(<Pn(t))7 a’nM(tvx) = a’nM(taz/}M(m))a brj\z/[(tv va) = brj\z/[(ta Sasz(m)):
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and analogously for ¢, Ap, By, Cp, n = 0,1,.... Let X2(t) be a solution of the
SIDE

X (1) = on' (0)+

/
0

w [ a6y + [ B G X s

aM(s, X" (s)) + /3 oM (s, u, XM (u))du + /3 M (s, u, XM (u))dW (u) | ds+
0 0

+ /s CM (s, u, XM (u))dW (u)dW (s), n=0,1,...
0

These solutions exist by the existence and uniqueness theorem. Also, all
conditions of Theorem 1 are satisfied and thus the sequence {XM} n = 1,2,...,
converges almost surely to the process Xg as n — oo. From that fact, we will show
that {X,,}, n=1,2,..., converges almost surely to Xo as n — co. Let

w | inf{E [ XN (6)] > M}
T, i | Xa(6)] > M for all ¢

be stopping times with respect to (Fi, ¢t > 0). For each t, ¢ € [0,7T], we can find
a sufficiently large M, such that 7 > ¢ n = 0,1,..., almost surely. Since there
exists a stopping time 7 =¢,, 7 (see [4]) then on the interval [0, 7] we have

o (1) = pa(t), an' (6, X1 (1) = an(t, Xa(2)), by (5, X" () = bult, 5, Xn(s)),

and similarly for ¢, A,, Bn,Cn, n = 0,1,.... Thus on the interval [0, 7] the
sequence {X,,} n =1,2,..., converges almost surely to Xy as n — co. Since
lim P{rM =T} =1
Ml—r>noo {T }

(see [1]), it follows that the sequence {X,}, n = 1,2,..., converges almost surely,
uniformly in ¢, ¢t € [0,7T], to X as n — oo. Thus the proof is complete.

Remark. Theorem 1 and Theorem 2 can be proved if the coefficients of the
SIDE (3) are random functions. In this case, a,, and A, must be nonanticipating
in s for each z, and b,,, By, ¢,, Cy,, must be nonanticipating in s for all (¢,z). Also,
the conditions (1), (2) and (6) must be satisfied almost surely.
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