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SOME LIMIT THEOREMS FOR ONE TYPE

OF STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS

Svetlana Jankovi�c

Abstract. We consider limit theorems for linear stochastic integro-di�erential equations
of a special type and we give suÆcient conditions for the almost sure convergence of the sequence
of their solutions.

1. Introduction

Let us introduce some assumptions. Let (
; F; P ) be a complete probability
space on which an Rm-valued standard Wiener process W = [(Wt; Ft); t � 0] is
given, where (Ft; t � 0) is a �ltration satisfying the usual conditions. The non-
random functions

an : [0; T ]�Rd ! Rd; bn : J �Rd ! Rd; cn : J �Rd ! Rd �Rm;

An : [0; T ]�Rd ! Rd �Rm; Bn : J � Rd ! Rd �Rm;

Cn : J� : Rd ! Rd �Rm �Rm;

where T = const > 0, J = f(t; s) : (t; s) 2 [0; T ] � [0; T ]; � tg, n = 0; 1; . . . , are
Borel-measurable in respect to the corresponding �-�elds on their domains. They
satisfy the uniform Lipschitz conditions and the restriction on linear growth i.e.
there exists a constant K > 0, such that for all (t; s) 2 J , x 2 Rd, y 2 Rd,

jan(t; x)� an(t; y)j � Kjx� yj; jCn(t; s; x)� Cn(t; S; y)j � Kjx� yj;(1)

jan(t; x)
2 � K2(1 + jxj2); jCn(t; s; x)

2 � K2(1 + jxj2);(2)

and analogously for the other functions.

We suppose that Rd-valued random processes 'n = ('n(t); t 2 [0; T ]); n =
0; 1; . . . , are nonanticipating for every t 2 [0; T ]. Also, in what follows we sup-
pose that all integrals, ordinary and stochastic, exist as nonanticipating stochastic
processes.
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Berger [1] considered a sequence of stochastic integro-di�erential equations
(shortly SIDE) of the type

Xn(t) = 'n(t)+(3)

+

Z t

0

[an(s;Xn(s)) +

Z s

0

bn(s; u;Xn(u))du+

Z s

0

cn(s; u;Xn(u))dW (u)]ds+

+

Z t

0

[An(s;Xn(s)) +

Z s

0

Bn(s; u;Xn(u))du+

Z s

0

Cn(s; u;Xn(u))dW (u)]dW (s);

n = 0; 1; . . . ;

and, under the conditions (1) and (2), he proved the existence and uniqueness of
the Rd-valued, nonanticipating solutions Xn = (Xn(t); t 2 [0; T ]); n = 0; 1; . . . .
Also, he gave the conditions for the convergence in mean square of the sequence of
solutions fXng, n = 1; 2; . . . , to the solution X0 as n!1.

The main problem of this paper is to give suÆcient conditions under which the
sequence of solutions fXng, n = 1; 2; . . . , converges almost surely to the solution
X0 as n ! 1. We must require a closeness in some sense of the processes 'n,
n = 1; 2; . . . , and the functions an; bn; cn; A0; B0; C0, n = 1; 2; . . . , to the process
'0 and the functions a0; b0; c0; A0; B0; C0, respectively. The paper [5] contains some
ideas and results about this closeness.

Let us introduce the following conditions:

sup
n

sup
t

Efj'n(t)j
2g <1;(4)

1X
n=1

Efsup
t

j'n(t)� '0(t)j
2g <1;(5)

1X
n=1

sup
(t;s;x)2�

fjan(t; x)� a0(t; x)j+ jbn(t; s; x)� b0(t; s; x)j+(6)

+jcn(t; s; x)� c0(t; s; x)j + jAn(t; x)�A0(t; x)j+

+jBn(t; s; x)�B0(t; s; x)j+ jCn(t; s; x) � C0(t; s; x)jg <1;

where � = f(t; s; x) : (t; s) 2 J; x 2 Rg.

2. Main results

Theorem 1. Let the functions an; bn; cn; An; Bn; Cn; n = 0; 1; . . . , and the
processes 'n; n = 0; 1; . . . , be de�ned as above and all preceding conditions be
satis�ed. Then the sequence of random processes fXng, n = 1; 2; . . . , converges
almost surely, uniformly in t; t 2 [0; T ], to the random process X0 as n!1.

The conditions of Theorem 1 could be weakened. Following the tradition of
the classical theory of stochastic di�erential equations, we suppose that for each
number M > 0 there exists a constant LM > 0, such that the condition (1) is valid
with this constant for all (t; s) 2 J , jxj �M , jyj �M . Also, the expectation in (4)
does not have to be bounded, and (2) and (5) are satis�ed.
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Theorem 2. Let the functions an; bn; cn; An; Bn; Cn; n = 0; 1; . . . , and the
processes 'n, n = 0; 1; . . . , satisfy the preceding conditions and let (6) be valid for
�0 = f(t; s; x) : (t; s) 2 J; jxj � Mg instead of �. Then the sequence of random
processes fXng; n = 1; 2; . . . , converges almost surely, uniformly in t; t 2 [0; T ], to
the random process X0 as n!1.

3. Proofs of theorems

Proof of Theorem 1. Denote

"n = Ef sup
(t;s)2J

[jan(s;Xn(s))� a0(s;Xn(s))j
2+

+ jbn(t; s;Xn(s))� b0(t; s;Xn(s))j
2 + jcn(t; s;Xn(s))� c0(t; s;Xn(s))j

2+

+ jAn(s;Xn(s))�A0(s;Xn(s))j
2 + jBn(t; s;Xn(s)) �B0(t; sS;Xn(s))j

2+

+ jCn(t; s;Xn(s))� C0(t; s;Xn(s))j
2g; n = 1; 2; . . . ;

(7)

Æn = Efsup tj'n(t)� '0(t)j
2g; n = 1; 2; . . .(8)

Since we must �nd an upper bound for EfjXn(t)�X0(t)j
2g, we will estimate

only one integral, and analogously the others. If we apply one of the basic prop-
erties of the Ito integrals (see [2], [3]), add some terms, use the Cauchy-Schwartz
inequality, the condition (1) and the notation (7), we obtain

(9)

E

(Z t

0

Z s

0

[Bn; (s; u;Xn(u))�B0(s; u;X0(u))]dudW (s)

)2

=

=

Z t

0

E

(��� Z s

0

[Bn(s; u;Xn(u))�B0(s; u;X0(u))]du
���2
)
ds �

� 2

Z t

0

s

Z s

0

EfjBn(s; u;Xn(u))�B0(s; u;Xn(u))j
2+

+ jB0(s; u;Xnj(u)�B0(s; u;X0))j
2gduds �

� t2[E"t+K2 +

Z t

0

EfjXn(s)�X0(s)j
2gds:

Subtracting the equations (3) for n = 0 from (3) and using (8), it is easy to
obtain the estimation

fEjXn(t)�X0(t)j
2g � 7Æn + �

"
"nT +K2

Z t

0

EfjXn(s)�X0(S)j
2gds

#
;

where � = 14[T 3=2+3T 2=2+2T+1]. By the Gronwall-Bellman inequality we have

(10) EfjXn(t)l �X0(t)j
2 � (7Æn + �"nT )e

�K2t:
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We will apply the well-known inequality for stochastic Ito integrals:

E

(
sup

t:t2[0;T ]

Z t

0

X(s; !)dW (s)

)2

� 4

Z T

0

EfjX(t; !)j2gdt;

if the last integral is �nite (see [2], [3]).

For example, from (9) it follows that(
E sup
t:t2[0;T ]

Z t

0

Z s

0

[Bn(s; u;Xn(u))�B0(s; u;X0(u))]dudW (s)

)2

�

� 4

Z T

0

E
n��� Z s

0

[Bn(s; u;Xn(u))�B0(s; u;X0(u))]du
���2
)
ds �

� 4T 2

"
"T +K2

Z T

0

EfXn(s)�X0(s)j
2gds

#
:

We can �nd upper bounds for the other integrals similarly. So we have

E
�

sup
t:t2[0;T ]

jXn(t)�X0(t)j
2
	
� 7Æn + �

"
"nT +K2

Z T

0

EfjXn(t)�X0(t)j
2gdt

#
;

where � = 14[T 3=2+3T 2+5T +4]. Thus, from (10) and the last relation, it follows
that

Ef sup
t:t2[0;T ]

jXn(t)�X0(t)j
2g � c1Æn + c2"n;

where c1 and c2 are corresponding constants. By Chebyshev's inequality, for each
" > 0 we have

1X
n=1

P
�

sup
t:t2[0;T ]

jXn(t)�X0(t)j � "
	
�

1

"2

1X
n=1

Ef sup
t:t2[0;T ]

jXn(t)�X0(t)j
2g �

�
c1
"2

1X
n=1

Æn +
c2
"2

1X
n=1

"n <1;

because, from the conditions (5) and (6), the series
P
1

n=1 Æn and
P
1

n=1 "n are
convergent. By the Borel-Cantelli's lemma and Weierstrass' uniform convergence
theorem, it follows that the sequence of random processes fXng; n = 1; 2; . . . ,
converges almost surely, uniformly in t; t 2 [0; T ], to the random process X0 as
n!1. Thus Theorem 1 is proved.

Proof of Theorem 2. For a chosen number M > 0, let us denote

 M (x) =

(
x; if jxj < M

Msgnx if jxj �M

'Mn (t) =  M ('n(t)); a
M
n (t; x) = aMn (t;  M (x)); bMn (t; s; x) = bMn (t; s;  M (x));
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and analogously for cn; An; Bn; Cn; n = 0; 1; . . . . Let XM
n (t) be a solution of the

SIDE

XM
n (t) = 'Mn (t)+

+

Z t

0

"
aMn (s;Xm

n (s)) +

Z s

0

bMn (s; u;XM
n (u))du+

Z s

0

cMn (s; u;XM
n (u))dW (u)

#
ds+

+

Z t

0

h
AMn (s;XM

n (s)) +

Z t

0

BM
n (s; u;XM

n (u))du+

+

Z s

0

CM
n (s; u;XM

n (u))dW (u)dW (s); n = 0; 1; . . .

These solutions exist by the existence and uniqueness theorem. Also, all
conditions of Theorem 1 are satis�ed and thus the sequence fXM

n g n = 1; 2; . . . ,
converges almost surely to the process X0 as n!1. From that fact, we will show
that fXng, n = 1; 2; . . . , converges almost surely to X0 as n!1. Let

�Mn =

(
infft : jXM

n (t)j > Mg

T; if jXn(t)j �M for all t

be stopping times with respect to (Ft; t � 0). For each t, t 2 [0; T ], we can �nd
a suÆciently large M , such that �Mn > t, n = 0; 1; . . . , almost surely. Since there
exists a stopping time �M =2n �

M
n , (see [4]) then on the interval [0; �M ] we have

'Mn (t) = 'n(t); a
M
n (t;XM

n (t)) = an(t;Xn(t)); b
M
n (t; s;XM

n (s)) = bn(t; s;Xn(s));

and similarly for cn; An; Bn; Cn, n = 0; 1; . . . . Thus on the interval [0; �M ] the
sequence fXng n = 1; 2; . . . , converges almost surely to X0 as n!1. Since

lim
M!1

Pf�M = Tg = 1

(see [1]), it follows that the sequence fXng, n = 1; 2; . . . , converges almost surely,
uniformly in t, t 2 [0; T ], to X0 as n!1. Thus the proof is complete.

Remark. Theorem 1 and Theorem 2 can be proved if the coeÆcients of the
SIDE (3) are random functions. In this case, an and An must be nonanticipating
in s for each x, and bn; Bn; cn; Cn; must be nonanticipating in s for all (t; x). Also,
the conditions (1 ), (2) and (6) must be satis�ed almost surely.
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