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ON THE CUT LOCUS AND THE FOCAL LOCUS
OF A SUBMANIFOLD IN A RIEMANNIAN MANIFOLD II

Hukum Singh

Abstract. Let M be a compact connected Riemannian manifold and let L be a compact
connected submanifold of M. We show that if a point z is a closest cut point of L which is not
a focal point of L, then two different minimizing geodesics meet at an angle of 7 at . We also
generalize some of the results of [9].

1. Introduction

Let M be a compact connected n-dimensional Riemannian manifold of class
C* and let L be a C* m-dimensional connected submanifold of M. Let N(L)
be the normal bundle of L which is a subbundle of tangent bundle T'(M) of M.
The exponential map of the Riemannian manifold M restricted to N(L) is a map
e : N(L) = M of class C®. Let d : M x M — R be the distance function of
the Riemannian manifold M; then for any point £ € M there is at least one point
x' € L such that d(z,z') = inf{d(x,z)|z € L} holds and 2’ is said to be a point
nearest to x in L. Let « € L and consider a geodesic ¢ : R — M of the Riemennian
manifold such that ¢(0) = 2', ¢(t) = z for some ¢ > 0 and such that the restriction
of ¢ to [0,¢] yields a minimal geodesic from ' to . Then the tangent vector ¢(0)
of ¢ is in the normal space N, L of L at ' by a basic observation [1, pp. 151-152].
Since M is complete such a geodesic ¢ always exists and consequently the map ¢ is
surjective.

When considering the injectivity of the map e some further concepts are
essential which can be summarized as follows. If the tangent linear map T,e :
T,N(L) = T.,)M of ¢ at v € N(L) is not injective then v is called a focal point of
L in the normal bundle N (L) and e(v) is said to be a focal point of L in M. The set
of focal points v of L is said to be a focal locus of L in the normal bundle N (L) and
the set of focal points e(v) of L is called the focal locus of L in M. In the special
case when the submanifold L reduces to a single point y € M and consequently the
normal bundle N (L) coincides with the tangent space T, M, the focal points of L
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are said to be points conjugate to y and the focal locus of L is called the conjugate
locus of y.

Consider now the general case of a submanifold L of M. Fix a point € L
and a unit vector w € N, = L and consider the geodesic ¢ : R — M such that
¢(0) = z € L, ¢(0) = w. Since the tangent linear map T, is injective at z = c(to)
for 0 < ty < t, where t has sufficiently small positive value. Let S, be the supremum
of such values ¢, which is always possible, since M is complete. If S, is finite then
¢(Syw) is obviously a focal point of L which will be called the first focal point of L
on the geodesic c.

Assume now that the submanifold L is compact; then the restricted expo-
nential map ¢ is injective in a sufficiently small neighborhood of the zero section
in the normal bundle N (L) of the submanifold [1, pp. 151-152] and consequently z
is the unique nearest point of L to z = c(to) for 0 < to < t where ¢ is sufficiently
small positive value. Let S!, be the supremum of such value ¢. If S} , is finite then
S!, is called a cut point of L in the normal bundle and ¢(S],)) is said to be a cut
point of L in M. The set of cut points of L in N(L) is called the cut locus of L
in N(L) and the set of cutpoints of L in M is said to be the cut locus of L in M.
A straightforward generalization of some basic facts established in the special case
when L reduces to a single point [1 pp. 237-241] yields the following lemma.

LeMMA 1. Ifv = S,,w € N(L) is a cut point of the submanifold L then at
least one of the following two assertions is true:

1. the point v = S), is a first focal point of the submanifold L on the ray tw,t > 0,

2. there are at least two different points of the subyrtanifold L which are nearest to
the cut point £(S!,).

2. Closest point of the cut lucus
First we shall prove the following lemma.

LEMMA 2. Let M be a C* compact connected Riemannian manifold and let
L be a C* compact connected submanifold of M. Let c:[0,a] = M be a minimal
geodesic from c(a) to L. If ¢ is the part of c then ¢’ minimizes the distance uniquely
from its end point c'(b) to the points of L for any value of the parameter b < a.

Proof. Let ¢ does not minimize its distance uniquely for b < a, then there
exists another minimal geodesic ¢’ from a point z; € L to the point ¢/(b) = z'. But
then ¢ is the union of ¢’ from ¢(0) = z € L to 2’ and minimal geodesic ¢* from z’ to
¢(a) = x. Since angle between ¢’ and ¢* is not equal to 7, therefore ¢ Uc¢* can not
be minimizing geodesic. But L'(¢" Uc¢*) = L'(¢' Uc¢*) = L'(¢) where L' denotes the
length. This means that ¢ can not be a minimal geodesic, which is a contradiction.
Hence the lemma.

Now we prove the following theorem.
THEOREM 1. Let M be a C'°° complete connected Riemannian manifold and

let L be a C'*° compact connected submanifold of M. Let the cut locus of L be non-
empty and let © = e(v) be a closest point of the cut locus to L. Let ¢; and co be
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two different minimizing geodesics from x to L. If x is not a focal point of L, then
the geodesics ¢; and co meet at an angle of .

Proof. Let v € N, L be a non-zero vector where z; € U and U is a neigh-
borhood of z in the zero-section of N(L). Then the locus of the end points of
such v with fixed length will be a sphere of dimension n — m — 1. Consider with v
the family of vectors of the same length as v in N(L); then corresponding to these
vectors there is a union of the spheres which forms a piece of a hypersurface, say K,
and hence a tangent space T,,uK at v orthogonal to v with respect to the induced
metric g of N(L) [5], as proved in [8]. Now we define geodesic ¢; : [0,1] = M such
that ¢1(0) = z; € L, ¢(0) € N, L, ¢1(1) = r = e(v). Consider for ¢; a family of
neighboring geodesics each orthogonal to L, then under the restricted exponential
map ¢ each member of this family is the image of non-zero vectors taken in N (L)
corresponding to v and hence they are of the same length by the Generalized Gauss
lemma [8]. As z = £(v) is not a focal point of L in M the image £(K') will be a piece
of hypersurface containing x in M. Since T, K is orthogonal to v, the hypersurface
e(K) will be orthogonal to ¢; by the Generalized Gauss lemma [8]. Similar result
holds for the geodesic cs passing orthogonally through the point 25 € L to z. As-
sume that ¢; and c; meet at x with an angle not equal to 7. Then the two tangent
hyperplanes at z intersect, as do the two hypersurfaces in each neighborhood of z.
Let 2’ be a point in e(K) Ue(K') near z, where £(K') is corresponding to geodesic
cs. Then z' is joined by two orthogonal geodesics, one neighboring to ¢; and the
other neighboring to ¢y and each being shorter that ¢; and c¢3. Thus z’ is a cut
point of L closer to L than the point x, which contradicts the choice of z. Therefore
c1 and c; meet at x with angle 7.

3. Focal points under some restrictions
In this section we will generalize some of the results of [9].

THEOREM 2. Let M be a complete connected Riemannian manifold of class
C and let L be a C*° compact connected submanifold of M such that the restricted
exponential map has no focal points in U(br)—U (ar), where 0 < a < b and U (br) is
the tube of radius bm around the zero section in N(L). Let x € M and assume that
co and c1 are different geodesic segments joining x orthogonally to L and that there
is a family hy, t € [0,1] of curves joining x orthogonally to L such that hy = co,
hi = ¢ and L'(h1) < L'(c1) for all t € [0,1], then L'(co) + L'(c1) > 2bm or
L'(¢1) + 2am — b(x, L) > 2bw, where L'(¢) denotes the length of a path ¢ in M.

Proof. We assume that L'(cp) < brr. Since ¢; has neighboring curves h; with
L'(ht) < L(c¢1), ¢; must have index > 1 and length L'(¢;) > br. Let U(bw) —
U(aw) = U’. Since U’ does not contain focal points, the tangent linear map T, is
everywhere non-singular in U’. Then the restricted exponential map ¢ is a covering
map [4]. But every covering map has the curve lifting property [2, pp. 25]. Hence
for each path h the initial geodesic part of length am can be lifted by the preimage
e7! of ¢ restricted to U’ into U’, and this gives a straight segment going from zero-
section of N(L) to the inner boundary of U’. In this manner ¢; = hy can be lifted
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into a straight segment hy of length > br starting from the zero-section of N (L)
and leaving U’ at its outer boundary. It follows that for all ¢ sufficiently close to
1, the initial part of h; can be lifted into U(br) so as to give a straight segment of
length am, starting from the zero-section and followed by a curve passing from the
inner boundary of U’ towards the outer boundary of U’ and containing in the limit,
a point of this outer boundary at distance br from the zero-section. Now we claim
that for each sufficiently small r, there exists a t;, 0 < t; < 1 such that lifting of
ht, after the initial straight segment of length am, a curve which runs through U’
until it reaches a point with distance < r from the outer boundary of U’ and then
continues to run trough U’ until one of the following two possibilities occurs:

(1) we reach with the lifted curve, the inner boundary of U’;
(2) we reach with lifted curve, the end point z’ of hy, which gives a point 2’ in U".
The implication of the case (1) is

L'(c1) > L'(hyy) > 2bm — am — 2 > 2bw — L'(co) — 2¢.

This gives the result, since varepsilon is arbitrary.

In the case (2) the image under € of the straight segment from the zero-
section to ' gives a geodesic ¢ which is different from ¢g. Moreover, the lifting
of hy,, into U(br) shows that hs, can be deformed into ¢ with curves of length
< L'(hyy) < L'(c1). Therefore by combining the homotopy (h:), t € [0,¢1] with
this homotopy from hy, ; inco ¢ we obtain a homotopy (j:), t € [0, 1] from ¢y = jo
to ¢y = j1 with L'(j1) < L'(e1) for all ¢ € [0,1]. By applying (if necessary) a
deformation, we can assume that a curve j;, of maximal length among the j; is
a geodesic of index 1 and L'(ji,) > L'(c}). Now applying to the pair cg, j, with
the homotopy (j:), t € (0,%o], the same reasoning as for the original pair ¢, ¢;.
Since L'(ji,) < L'(c1) and since there are only finitely many of geodesics of length
< L'(e1), we finally get the result.

THEOREM 3. Let M be a complete simply connected Rimannian: manifold
and L be a compact connected submanifold of M. Let ¢ : R — M be a normal
geodesic to L and c(ty) = x € M be a point which is not a focal point of L. Let a,
b, ¢, be real numbers satisfying

(1) l<a<b<e and 2(b—a)m +d(z,L) > cm.

Assume that on geodesic ¢ starting orthogonally from L, there are no focal points in
[0, 7], p focal points in (w,ar], p > 1, no focal points in [am,br) and q focal points
in [br,cr), > 2. Then the length L'(c) of geodesic c satisfies

(ii) L'(c) < 2am —d(z,L) or L'(c) >2(b—a)r +d(x, L).

Proof. Let ¢; be any geodesic. Let (ht), t € [0,1] be a homotopy from ¢y = hg
to ¢g = hy. If L'(hy) < L'(cy) for all ¢ € [0,1] then we can apply theorem 2 and
obtain (ii). Otherwise we assume that there is a t;, 0 < t; < 1, hy, is a geodesic
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of index 1 and L'(ht,) > L'(h:) for all ¢ € [0,1]. If hy, is of broken type we have
L'(¢;) = L'(ht,) < 2am — d(z, L) which is (ii). If h¢, is of the unbroken type we
can apply Theorem 2 and (i) and obtain L'(h,) > 2(b— a)m + d(z,L) > er. Then
from our assumptions that h;, has index g > 2, we find a contradiction. Hence the
theorem.

THEOREM 4. Let M be a complete simply connected Riemannian manifold
and let L C M be a compact connected submanifold of M. Let also a, b, ¢ be real
numbers satisfying

(1) l<a<b<ec and a<2 and 2(b—a)+1>c.

Let x be a point in L such that on each orthogonal geodesic to L at x there are
no focal points in [0,), there are p focal points in [w,ar), p > 1, there are no focal
points in [am,br) and there are q focal points in [br,cm) q > 2. Then the following
holds: (A) M is compact, (B) Let z € M be a point on the geodesic ¢ which is not
a focal point to L and distance d(z,L) is sufficiently close to m. Then a geodesic ¢
either has length L'(c) < 2am — d(z,L) ~ 2am — 7 and index < p, or has length

L'(c) >2(b—a)r+d(z,L) ~2(b—a)r + 7 > crm

and index > p + q.

Proof. To prove (A), it is sufficient to note that a geodesic segment of length
ar starting from L and being orthogonal to L contains focal points in its interior
and, therefore it is not a curve of minimal length from its end point to L. Conse-
quently a tube of radius am about L covers M. Since L is assumed to be compact,
this implies that M is compact.

To prove (B), we first remark that there is an [ > 0 such that the focal points
in the interval [7, ar) of an orthogonal geodesic ¢ starting from z € L, already occur
in the interval [7, (a—1)7). Assume that z € M is chosen such that 217 +d(z, L) > =
and z is not focal point of L. Then

2b—(a—1)7m+d(z,L) >2(b—a)m + 7 > cm.

Thus the assumptions of theorem 3 are satisfied with (a — ) instead of a. From
Theorem 3, (B) then follows with 2am — 71 < 2br — emr < brr such that

L'(c) <2(a— )7 —d(z,L) < 2am — 7w < b
and hence index ¢ > p, or
L'(e)>2b—(a—D)r+d(zL)>2b—a)r+7>cm

and hence index ¢ > p + gq.
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