ON THE CUT LOCUS AND THE FOCAL LOCUS OF A SUBMANIFOLD IN A RIEMANNIAN MANIFOLD II

Hukum Singh

Abstract

Let M be a compact connected Riemannian manifold and let L be a compact connected submanifold of M. We show that if a point x is a closest cut point of L which is not a focal point of L, then two different minimizing geodesics meet at an angle of π at x. We also generalize some of the results of [9].

1. Introduction

Let M be a compact connected n-dimensional Riemannian manifold of class C^{∞} and let L be a $C^{\infty} m$-dimensional connected submanifold of M. Let $N(L)$ be the normal bundle of L which is a subbundle of tangent bundle $T(M)$ of M. The exponential map of the Riemannian manifold M restricted to $N(L)$ is a map $\varepsilon: N(L) \rightarrow M$ of class C^{∞}. Let $d: M \times M \rightarrow R$ be the distance function of the Riemannian manifold M; then for any point $x \in M$ there is at least one point $x^{\prime} \in L$ such that $d\left(x, x^{\prime}\right)=\inf \{d(x, z) \mid z \in L\}$ holds and x^{\prime} is said to be a point nearest to x in L. Let $x \in L$ and consider a geodesic $c: R \rightarrow M$ of the Riemennian manifold such that $c(0)=x^{\prime}, c(t)=x$ for some $t>0$ and such that the restriction of c to $[0, t]$ yields a minimal geodesic from x^{\prime} to x. Then the tangent vector $\dot{c}(0)$ of c is in the normal space $N_{x^{\prime}} L$ of L at x^{\prime} by a basic observation [1, pp. 151-152]. Since M is complete such a geodesic c always exists and consequently the map ε is surjective.

When considering the injectivity of the map e some further concepts are essential which can be summarized as follows. If the tangent linear map $T_{\nu} \varepsilon$: $T_{\nu} N(L) \rightarrow T_{\varepsilon(\nu)} M$ of ε at $\nu \in N(L)$ is not injective then ν is called a focal point of L in the normal bundle $N(L)$ and $\varepsilon(\nu)$ is said to be a focal point of L in M. The set of focal points ν of L is said to be a focal locus of L in the normal bundle $N(L)$ and the set of focal points $\varepsilon(\nu)$ of L is called the focal locus of L in M. In the special case when the submanifold L reduces to a single point $y \in M$ and consequently the normal bundle $N(L)$ coincides with the tangent space $T_{y} M$, the focal points of L

[^0]are said to be points conjugate to y and the focal locus of L is called the conjugate locus of y.

Consider now the general case of a submanifold L of M. Fix a point $\in L$ and a unit vector $w \in N_{z}=L$ and consider the geodesic $c: R \rightarrow M$ such that $c(0)=z \in L, \dot{c}(0)=w$. Since the tangent linear map $T_{x} \varepsilon$ is injective at $x=c\left(t_{0}\right)$ for $0<t_{0} \leq t$, where t has sufficiently small positive value. Let S_{w} be the supremum of such values t, which is always possible, since M is complete. If S_{w} is finite then $c\left(S_{w}\right)$ is obviously a focal point of L which will be called the first focal point of L on the geodesic c.

Assume now that the submanifold L is compact; then the restricted exponential $\operatorname{map} \varepsilon$ is injective in a sufficiently small neighborhood of the zero section in the normal bundle $N(L)$ of the submanifold [1, pp. 151-152] and consequently z is the unique nearest point of L to $x=c\left(t_{0}\right)$ for $0<t_{0} \leq t$ where t is sufficiently small positive value. Let S_{w}^{\prime} be the supremum of such value t. If S_{w}^{\prime}, is finite then S_{w}^{\prime} is called a cut point of L in the normal bundle and $c\left(S_{w}^{\prime}\right)$ is said to be a cut point of L in M. The set of cut points of L in $N(L)$ is called the cut locus of L in $N(L)$ and the set of cutpoints of L in M is said to be the cut locus of L in M. A straightforward generalization of some basic facts established in the special case when L reduces to a single point [$1 \mathrm{pp} .237-241$] yields the following lemma.

Lemma 1. If $\nu=S_{w}^{\prime} w \in N(L)$ is a cut point of the submanifold L then at least one of the following two assertions is true:

1. the point $\nu=S_{w}^{\prime}$ is a first focal point of the submanifold L on the ray $t w, t>0$, 2. there are at least two different points of the subyrtanifold L which are nearest to the cut point $\varepsilon\left(S_{w}^{\prime}\right)$.

2. Closest point of the cut lucus

First we shall prove the following lemma.
Lemma 2. Let M be a C^{∞} compact connected Riemannian manifold and let L be a C^{∞} compact connected submanifold of M. Let $c:[0, a] \rightarrow M$ be a minimal geodesic from $c(a)$ to L. If c^{\prime} is the part of c then c^{\prime} minimizes the distance uniquely from its end point $c^{\prime}(b)$ to the points of L for any value of the parameter $b<a$.

Proof. Let c^{\prime} does not minimize its distance uniquely for $b<a$, then there exists another minimal geodesic $c^{\prime \prime}$ from a point $z_{1} \in L$ to the point $c^{\prime}(b)=x^{\prime}$. But then c is the union of c^{\prime} from $c(0)=z \in L$ to x^{\prime} and minimal geodesic c^{*} from x^{\prime} to $c(a)=x$. Since angle between $c^{\prime \prime}$ and c^{*} is not equal to π, therefore $c^{\prime \prime} \cup c^{*}$ can not be minimizing geodesic. But $L^{\prime}\left(c^{\prime \prime} \cup c^{*}\right)=L^{\prime}\left(c^{\prime} \cup c^{*}\right)=L^{\prime}(c)$ where L^{\prime} denotes the length. This means that c can not be a minimal geodesic, which is a contradiction. Hence the lemma.

Now we prove the following theorem.
Theorem 1. Let M be a C^{∞} complete connected Riemannian manifold and let L be a C^{∞} compact connected submanifold of M. Let the cut locus of L be nonempty and let $x=\varepsilon(\nu)$ be a closest point of the cut locus to L. Let c_{1} and c_{2} be
two different minimizing geodesics from x to L. If x is not a focal point of L, then the geodesics c_{1} and c_{2} meet at an angle of π.

Proof. Let $\nu \in N_{z_{1}} L$ be a non-zero vector where $z_{1} \in U$ and U is a neighborhood of z in the zero-section of $N(L)$. Then the locus of the end points of such ν with fixed length will be a sphere of dimension $n-m-1$. Consider with ν the family of vectors of the same length as ν in $N(L)$; then corresponding to these vectors there is a union of the spheres which forms a piece of a hypersurface, say K, and hence a tangent space $T_{n} u K$ at ν orthogonal to ν with respect to the induced metric \bar{g} of $N(L)$ [5], as proved in [8]. Now we define geodesic $c_{1}:[0,1] \rightarrow M$ such that $c_{1}(0)=z_{1} \in L, \dot{c}(0) \in N_{z_{1}} L, c_{1}(1)=r=\varepsilon(\nu)$. Consider for c_{1} a family of neighboring geodesics each orthogonal to L, then under the restricted exponential $\operatorname{map} \varepsilon$ each member of this family is the image of non-zero vectors taken in $N(L)$ corresponding to ν and hence they are of the same length by the Generalized Gauss lemma [8]. As $x=\varepsilon(\nu)$ is not a focal point of L in M the image $\varepsilon(K)$ will be a piece of hypersurface containing x in M. Since $T_{\nu} K$ is orthogonal to v, the hypersurface $\varepsilon(K)$ will be orthogonal to c_{1} by the Generalized Gauss lemma [8]. Similar result holds for the geodesic c_{2} passing orthogonally through the point $z_{2} \in L$ to x. Assume that c_{1} and c_{2} meet at x with an angle not equal to π. Then the two tangent hyperplanes at x intersect, as do the two hypersurfaces in each neighborhood of x. Let x^{\prime} be a point in $\varepsilon(K) \cup \varepsilon\left(K^{\prime}\right)$ near x, where $\varepsilon\left(K^{\prime}\right)$ is corresponding to geodesic c_{2}. Then x^{\prime} is joined by two orthogonal geodesics, one neighboring to c_{1} and the other neighboring to c_{2} and each being shorter that c_{1} and c_{2}. Thus x^{\prime} is a cut point of L closer to L than the point x, which contradicts the choice of x. Therefore c_{1} and c_{2} meet at x with angle π.

3. Focal points under some restrictions

In this section we will generalize some of the results of [9].
Theorem 2. Let M be a complete connected Riemannian manifold of class C^{∞} and let L be a C^{∞} compact connected submanifold of M such that the restricted exponential map has no focal points in $U(b \pi)-U(a \pi)$, where $0 \leq a<b$ and $U(b \pi)$ is the tube of radius $b \pi$ around the zero section in $N(L)$. Let $x \in M$ and assume that c_{0} and c_{1} are different geodesic segments joining x orthogonally to L and that there is a family $h_{t}, t \in[0,1]$ of curves joining x orthogonally to L such that $h_{0}=c_{0}$, $h_{1}=c_{1}$ and $L^{\prime}\left(h_{1}\right) \leq L^{\prime}\left(c_{1}\right)$ for all $t \in[0,1]$, then $L^{\prime}\left(c_{0}\right)+L^{\prime}\left(c_{1}\right) \geq 2 b \pi$ or $L^{\prime}\left(c_{1}\right)+2 a \pi-b(x, L)>2 b \pi$, where $L^{\prime}(c)$ denotes the length of a path $c \overline{\text { in }} M$.

Proof. We assume that $L^{\prime}\left(c_{0}\right)<b \pi$. Since c_{1} has neighboring curves h_{t} with $L^{\prime}\left(h_{t}\right) \leq L\left(c_{1}\right), c_{1}$ must have index ≥ 1 and length $L^{\prime}\left(c_{1}\right)>b \pi$. Let $U(b \pi)-$ $U(a \pi)=U^{\prime}$. Since U^{\prime} does not contain focal points, the tangent linear map $T_{\nu} \varepsilon$ is everywhere non-singular in U^{\prime}. Then the restricted exponential map ε is a covering map [4]. But every covering map has the curve lifting property [2, pp. 25]. Hence for each path h the initial geodesic part of length $a \pi$ can be lifted by the preimage ε^{-1} of ε restricted to U^{\prime} into U^{\prime}, and this gives a straight segment going from zerosection of $N(L)$ to the inner boundary of U^{\prime}. In this manner $c_{1}=h_{1}$ can be lifted
into a straight segment h_{1} of length $>b \pi$ starting from the zero-section of $N(L)$ and leaving U^{\prime} at its outer boundary. It follows that for all t sufficiently close to 1 , the initial part of h_{1} can be lifted into $U(b \pi)$ so as to give a straight segment of length $a \pi$, starting from the zero-section and followed by a curve passing from the inner boundary of U^{\prime} towards the outer boundary of U^{\prime} and containing in the limit, a point of this outer boundary at distance $b \pi$ from the zero-section. Now we claim that for each sufficiently small r, there exists a $t_{1}, 0<t_{1}<1$ such that lifting of $h_{t_{1}}$ after the initial straight segment of length $a \pi$, a curve which runs through U^{\prime} until it reaches a point with distance $\leq r$ from the outer boundary of U^{\prime} and then continues to run trough U^{\prime} until one of the following two possibilities occurs:
(1) we reach with the lifted curve, the inner boundary of U^{\prime};
(2) we reach with lifted curve, the end point x^{\prime} of $h_{t_{1}}$ which gives a point x^{\prime} in U^{\prime}.

The implication of the case (1) is

$$
L^{\prime}\left(c_{1}\right) \geq L^{\prime}\left(h_{t_{1}}\right) \geq 2 b \pi-a \pi-2 \varepsilon \geq 2 b \pi-L^{\prime}\left(c_{0}\right)-2 \varepsilon
$$

This gives the result, since varepsilon is arbitrary.
In the case (2) the image under ε of the straight segment from the zerosection to x^{\prime} gives a geodesic c_{0}^{\prime} which is different from c_{0}. Moreover, the lifting of $h_{t_{1}}$, into $U(b \pi)$ shows that $h_{t_{1}}$ can be deformed into c_{0}^{\prime} with curves of length $\leq L^{\prime}\left(h_{t_{1}}\right) \leq L^{\prime}\left(c_{1}\right)$. Therefore by combining the homotopy $\left(h_{t}\right), t \in\left[0, t_{1}\right]$ with this homotopy from $h_{t_{1}}$; inco c_{0}^{\prime} we obtain a homotopy $\left(j_{t}\right), t \in[0,1]$ from $c_{0}=j_{0}$ to $c_{0}^{\prime}=j_{1}$ with $L^{\prime}\left(j_{1}\right) \leq L^{\prime}\left(c_{1}\right)$ for all $t \in[0,1]$. By applying (if necessary) a deformation, we can assume that a curve $j_{t_{0}}$ of maximal length among the j_{t} is a geodesic of index 1 and $L^{\prime}\left(j_{t_{0}}\right)>L^{\prime}\left(c_{0}^{\prime}\right)$. Now applying to the pair $c_{0}, j_{t_{0}}$ with the homotopy $\left(j_{t}\right), t \in\left(0, t_{0}\right]$, the same reasoning as for the original pair c_{0}, c_{1}. Since $L^{\prime}\left(j_{t_{0}}\right) \leq L^{\prime}\left(c_{1}\right)$ and since there are only finitely many of geodesics of length $\leq L^{\prime}\left(c_{1}\right)$, we finally get the result.

Theorem 3. Let M be a complete simply connected Rimannian: manifold and L be a compact connected submanifold of M. Let $c: R \rightarrow M$ be a normal geodesic to L and $c\left(t_{0}\right)=x \in M$ be a point which is not a focal point of L. Let a, b, c, be real numbers satisfying

$$
\begin{equation*}
1<a<b<c \text { and } 2(b-a) \pi+d(x, L) \geq c \pi \tag{i}
\end{equation*}
$$

Assume that on geodesic c starting orthogonally from L, there are no focal points in $[0, \pi], p$ focal points in $(\pi, a \pi], p \geq 1$, no focal points in $[a \pi, b \pi)$ and q focal points in $[b \pi, c \pi), \geq 2$. Then the length $L^{\prime}(c)$ of geodesic c satisfies

$$
\begin{equation*}
L^{\prime}(c)<2 a \pi-d(x, L) \text { or } L^{\prime}(c)>2(b-a) \pi+d(x, L) \tag{ii}
\end{equation*}
$$

Proof. Let c_{1} be any geodesic. Let $\left(h_{t}\right), t \in[0,1]$ be a homotopy from $c_{0}=h_{0}$ to $c_{1}=h_{1}$. If $L^{\prime}\left(h_{t}\right) \leq L^{\prime}\left(c_{1}\right)$ for all $t \in[0,1]$ then we can apply theorem 2 and obtain (ii). Otherwise we assume that there is a $t_{1}, 0<t_{1}<1, h_{t_{1}}$ is a geodesic
of index 1 and $L^{\prime}\left(h_{t_{1}}\right)>L^{\prime}\left(h_{t}\right)$ for all $t \in[0,1]$. If $h_{t_{1}}$ is of broken type we have $L^{\prime}\left(c_{1}\right)=L^{\prime}\left(h_{t_{1}}\right) \leq 2 a \pi-d(x, L)$ which is (ii). If $h_{t_{1}}$ is of the unbroken type we can apply Theorem 2 and (i) and obtain $L^{\prime}\left(h_{t_{1}}\right)>2(b-a) \pi+d(x, L) \geq c \pi$. Then from our assumptions that $h_{t_{1}}$ has index $g \geq 2$, we find a contradiction. Hence the theorem.

Theorem 4. Let M be a complete simply connected Riemannian manifold and let $L \subset M$ be a compact connected submanifold of M. Let also a, b, c be real numbers satisfying

$$
\begin{equation*}
1<a<b<c \quad \text { and } \quad a \leq 2 \quad \text { and } \quad 2(b-a)+1 \geq c . \tag{1}
\end{equation*}
$$

Let x be a point in L such that on each orthogonal geodesic to L at x there are no focal points in $[0, \pi)$, there are p focal points in $[\pi, a \pi), p \geq 1$, there are no focal points in $[a \pi, b \pi)$ and there are q focal points in $[b \pi, c \pi) q \geq 2$. Then the following holds: (A) M is compact, (B) Let $z \in M$ be a point on the geodesic c which is not a focal point to L and distance $d(z, L)$ is sufficiently close to π. Then a geodesic c either has length $L^{\prime}(c)<2 a \pi-d(z, L) \sim 2 a \pi-\pi$ and index $\leq p$, or has length

$$
L^{\prime}(c)>2(b-a) \pi+d(z, L) \sim 2(b-a) \pi+\pi \geq c \pi
$$

and index $\geq p+q$.
Proof. To prove (A), it is sufficient to note that a geodesic segment of length $a \pi$ starting from L and being orthogonal to L contains focal points in its interior and, therefore it is not a curve of minimal length from its end point to L. Consequently a tube of radius $a \pi$ about L covers M. Since L is assumed to be compact, this implies that M is compact.

To prove (B), we first remark that there is an $l>0$ such that the focal points in the interval $[\pi, a \pi)$ of an orthogonal geodesic c starting from $x \in L$, already occur in the interval $[\pi,(a-l) \pi)$. Assume that $z \in M$ is chosen such that $21 \pi+d(z, L) \geq \pi$ and z is not focal point of L. Then

$$
2(b-(a-l)) \pi+d(z, L) \geq 2(b-a) \pi+\pi \geq c \pi
$$

Thus the assumptions of theorem 3 are satisfied with $(a-l)$ instead of a. From Theorem 3, (B) then follows with $2 a \pi-\pi<2 b \pi-c \pi<b \pi$ such that

$$
L^{\prime}(c)<2(a-l) \pi-d(z, L) \leq 2 a \pi-\pi<b \pi
$$

and hence index $c>p$, or

$$
L^{\prime}(c)>2(b-(a-l)) \pi+d(z L) \geq 2(b-a) \pi+\pi \geq c \pi
$$

and hence index $c>p+q$.

REFERENCES

[1] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964.
[2] O. Forster, Lectures on Riemannian Surfaces, Springer-Verlag, New York, 1981.
[3] D. Gromoll, W. Klingenberg and W. Meyer, Riemannische Geometrie im Grossen, Berlin, 1968.
[4] R. Herman, Focal points of closed submanifolds of Riemanrrian spaces, Indag. Math. 25(1963), 613-628.
[5] E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Scient. Ec. Norm. Sup. 4 sér 11(1978), 451-470.
[6] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. 69(1959), 654-666.
[7] W. Klingenberg, Manifolds with restricted conjugate locus, Ann. of Math. 78(1963), 527547.
[8] G.S. Molnár and J. Szenthe, The focal locus of a submanifold in a Riemannian manifold, to appear.
[9] H. Singh, On the cut locus and the focal locus of a submanifold in a Riemannian manifold, to appear/
[10] F.W. Warner, Extensions of the Rauch comparison theorem to submanifolds, Trans. Amer. Math. Soc. 122)1966), 341-356.

[^0]: AMS Subject Classification (1980): Primary 53B21, Secondary 53C40.

