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ON THE CUT LOCUS AND THE FOCAL LOCUS

OF A SUBMANIFOLD IN A RIEMANNIAN MANIFOLD II

Hukum Singh

Abstract. Let M be a compact connected Riemannian manifold and let L be a compact
connected submanifold of M . We show that if a point x is a closest cut point of L which is not
a focal point of L, then two di�erent minimizing geodesics meet at an angle of � at x. We also
generalize some of the results of [9].

1. Introduction

Let M be a compact connected n-dimensional Riemannian manifold of class
C1 and let L be a C1 m-dimensional connected submanifold of M . Let N(L)
be the normal bundle of L which is a subbundle of tangent bundle T (M) of M .
The exponential map of the Riemannian manifold M restricted to N(L) is a map
" : N(L) ! M of class C1. Let d : M �M ! R be the distance function of
the Riemannian manifold M ; then for any point x 2M there is at least one point
x0 2 L such that d(x; x0) = inffd(x; z)j z 2 Lg holds and x0 is said to be a point
nearest to x in L. Let x 2 L and consider a geodesic c : R!M of the Riemennian
manifold such that c(0) = x0; c(t) = x for some t > 0 and such that the restriction
of c to [0; t] yields a minimal geodesic from x0 to x. Then the tangent vector _c(0)
of c is in the normal space Nx0L of L at x0 by a basic observation [1, pp. 151-152].
Since M is complete such a geodesic c always exists and consequently the map " is
surjective.

When considering the injectivity of the map e some further concepts are
essential which can be summarized as follows. If the tangent linear map T�" :
T�N(L)! T"(�)M of " at � 2 N(L) is not injective then � is called a focal point of
L in the normal bundle N(L) and "(�) is said to be a focal point of L inM . The set
of focal points � of L is said to be a focal locus of L in the normal bundle N(L) and
the set of focal points "(�) of L is called the focal locus of L in M . In the special
case when the submanifold L reduces to a single point y 2M and consequently the
normal bundle N(L) coincides with the tangent space TyM , the focal points of L
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are said to be points conjugate to y and the focal locus of L is called the conjugate
locus of y.

Consider now the general case of a submanifold L of M . Fix a point 2 L

and a unit vector w 2 Nz = L and consider the geodesic c : R ! M such that
c(0) = z 2 L, _c(0) = w. Since the tangent linear map Tx" is injective at x = c(t0)
for 0 < t0 � t, where t has suÆciently small positive value. Let Sw be the supremum
of such values t, which is always possible, since M is complete. If Sw is �nite then
c(Sw) is obviously a focal point of L which will be called the �rst focal point of L
on the geodesic c.

Assume now that the submanifold L is compact; then the restricted expo-
nential map " is injective in a suÆciently small neighborhood of the zero section
in the normal bundle N(L) of the submanifold [1, pp. 151-152] and consequently z
is the unique nearest point of L to x = c(t0) for 0 < t0 � t where t is suÆciently
small positive value. Let S0w be the supremum of such value t. If S0w, is �nite then
S0w is called a cut point of L in the normal bundle and c(S0w) is said to be a cut
point of L in M . The set of cut points of L in N(L) is called the cut locus of L
in N(L) and the set of cutpoints of L in M is said to be the cut locus of L in M .
A straightforward generalization of some basic facts established in the special case
when L reduces to a single point [1 pp. 237-241] yields the following lemma.

Lemma 1. If � = S0ww 2 N(L) is a cut point of the submanifold L then at

least one of the following two assertions is true:

1. the point � = S0w is a �rst focal point of the submanifold L on the ray tw; t > 0,

2. there are at least two di�erent points of the subyrtanifold L which are nearest to

the cut point "(S0w).

2. Closest point of the cut lucus

First we shall prove the following lemma.

Lemma 2. Let M be a C1 compact connected Riemannian manifold and let

L be a C1 compact connected submanifold of M . Let c : [0; a]!M be a minimal

geodesic from c(a) to L. If c0 is the part of c then c0 minimizes the distance uniquely

from its end point c0(b) to the points of L for any value of the parameter b < a.

Proof. Let c0 does not minimize its distance uniquely for b < a, then there
exists another minimal geodesic c00 from a point z1 2 L to the point c0(b) = x0. But
then c is the union of c0 from c(0) = z 2 L to x0 and minimal geodesic c� from x0 to
c(a) = x. Since angle between c00 and c� is not equal to �, therefore c00 [ c� can not
be minimizing geodesic. But L0(c00 [ c�) = L0(c0 [ c�) = L0(c) where L0 denotes the
length. This means that c can not be a minimal geodesic, which is a contradiction.
Hence the lemma.

Now we prove the following theorem.

Theorem 1. Let M be a C1 complete connected Riemannian manifold and

let L be a C1 compact connected submanifold of M. Let the cut locus of L be non-

empty and let x = "(�) be a closest point of the cut locus to L. Let c1 and c2 be
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two di�erent minimizing geodesics from x to L. If x is not a focal point of L, then

the geodesics c1 and c2 meet at an angle of �.

Proof. Let � 2 Nz1L be a non-zero vector where z1 2 U and U is a neigh-
borhood of z in the zero-section of N(L). Then the locus of the end points of
such � with �xed length will be a sphere of dimension n�m� 1. Consider with �

the family of vectors of the same length as � in N(L); then corresponding to these
vectors there is a union of the spheres which forms a piece of a hypersurface, sayK,
and hence a tangent space TnuK at � orthogonal to � with respect to the induced
metric g of N(L) [5], as proved in [8]. Now we de�ne geodesic c1 : [0; 1]!M such
that c1(0) = z1 2 L, _c(0) 2 Nz1L, c1(1) = r = "(�). Consider for c1 a family of
neighboring geodesics each orthogonal to L, then under the restricted exponential
map " each member of this family is the image of non-zero vectors taken in N(L)
corresponding to � and hence they are of the same length by the Generalized Gauss
lemma [8]. As x = "(�) is not a focal point of L inM the image "(K) will be a piece
of hypersurface containing x in M . Since T�K is orthogonal to v, the hypersurface
"(K) will be orthogonal to c1 by the Generalized Gauss lemma [8]. Similar result
holds for the geodesic c2 passing orthogonally through the point z2 2 L to x. As-
sume that c1 and c2 meet at x with an angle not equal to �. Then the two tangent
hyperplanes at x intersect, as do the two hypersurfaces in each neighborhood of x.
Let x0 be a point in "(K)[ "(K 0) near x, where "(K 0) is corresponding to geodesic
c2. Then x0 is joined by two orthogonal geodesics, one neighboring to c1 and the
other neighboring to c2 and each being shorter that c1 and c2. Thus x0 is a cut
point of L closer to L than the point x, which contradicts the choice of x. Therefore
c1 and c2 meet at x with angle �.

3. Focal points under some restrictions

In this section we will generalize some of the results of [9].

Theorem 2. Let M be a complete connected Riemannian manifold of class

C1 and let L be a C1 compact connected submanifold of M such that the restricted

exponential map has no focal points in U(b�)�U(a�), where 0 � a < b and U(b�) is
the tube of radius b� around the zero section in N(L). Let x 2M and assume that

c0 and c1 are di�erent geodesic segments joining x orthogonally to L and that there

is a family ht, t 2 [0; 1] of curves joining x orthogonally to L such that h0 = c0,

h1 = c1 and L0(h1) � L0(c1) for all t 2 [0; 1], then L0(c0) + L0(c1) � 2b� or

L0(c1) + 2a� � b(x; L) > 2b�, where L0(c) denotes the length of a path c in M.

Proof. We assume that L0(c0) < b�. Since c1 has neighboring curves ht with
L0(ht) � L(c1), c1 must have index � 1 and length L0(c1) > b�. Let U(b�) �
U(a�) = U 0. Since U 0 does not contain focal points, the tangent linear map T�" is
everywhere non-singular in U 0. Then the restricted exponential map " is a covering
map [4]. But every covering map has the curve lifting property [2, pp. 25]. Hence
for each path h the initial geodesic part of length a� can be lifted by the preimage
"�1 of " restricted to U 0 into U 0, and this gives a straight segment going from zero-
section of N(L) to the inner boundary of U 0. In this manner c1 = h1 can be lifted
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into a straight segment h1 of length > b� starting from the zero-section of N(L)
and leaving U 0 at its outer boundary. It follows that for all t suÆciently close to
1, the initial part of h1 can be lifted into U(b�) so as to give a straight segment of
length a�, starting from the zero-section and followed by a curve passing from the
inner boundary of U 0 towards the outer boundary of U 0 and containing in the limit,
a point of this outer boundary at distance b� from the zero-section. Now we claim
that for each suÆciently small r, there exists a t1, 0 < t1 < 1 such that lifting of
ht1 after the initial straight segment of length a�, a curve which runs through U 0

until it reaches a point with distance � r from the outer boundary of U 0 and then
continues to run trough U 0 until one of the following two possibilities occurs:

(1) we reach with the lifted curve, the inner boundary of U 0;

(2) we reach with lifted curve, the end point x0 of ht1 which gives a point x0 in U 0.

The implication of the case (1) is

L0(c1) � L0(ht1) � 2b� � a� � 2" � 2b� � L0(c0)� 2":

This gives the result, since varepsilon is arbitrary.

In the case (2) the image under " of the straight segment from the zero-
section to x0 gives a geodesic c00 which is di�erent from c0. Moreover, the lifting
of ht1 , into U(b�) shows that ht1 can be deformed into c00 with curves of length
� L0(ht1) � L0(c1). Therefore by combining the homotopy (ht), t 2 [0; t1] with
this homotopy from ht1 ; inco c00 we obtain a homotopy (jt), t 2 [0; 1] from c0 = j0
to c00 = j1 with L0(j1) � L0(c1) for all t 2 [0; 1]. By applying (if necessary) a
deformation, we can assume that a curve jt0 of maximal length among the jt is
a geodesic of index 1 and L0(jt0) > L0(c00). Now applying to the pair c0; jt0 with
the homotopy (jt), t 2 (0; t0], the same reasoning as for the original pair c0; c1.
Since L0(jt0) � L0(c1) and since there are only �nitely many of geodesics of length
� L0(c1), we �nally get the result.

Theorem 3. Let M be a complete simply connected Rimannian: manifold

and L be a compact connected submanifold of M. Let c : R ! M be a normal

geodesic to L and c(t0) = x 2 M be a point which is not a focal point of L. Let a,

b, c, be real numbers satisfying

(i) 1 < a < b < c and 2(b� a)� + d(x; L) � c�:

Assume that on geodesic c starting orthogonally from L, there are no focal points in

[0; �], p focal points in (�; a�], p � 1, no focal points in [a�; b�) and q focal points

in [b�; c�), � 2. Then the length L0(c) of geodesic c satis�es

(ii) L0(c) < 2a� � d(x; L) or L0(c) > 2(b� a)� + d(x; L):

Proof. Let c1 be any geodesic. Let (ht), t 2 [0; 1] be a homotopy from c0 = h0
to c1 = h1. If L0(ht) � L0(c1) for all t 2 [0; 1] then we can apply theorem 2 and
obtain (ii). Otherwise we assume that there is a t1, 0 < t1 < 1, ht1 is a geodesic
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of index 1 and L0(ht1) > L0(ht) for all t 2 [0; 1]. If ht1 is of broken type we have
L0(c1) = L0(ht1) � 2a� � d(x; L) which is (ii). If ht1 is of the unbroken type we
can apply Theorem 2 and (i) and obtain L0(ht1) > 2(b� a)� + d(x; L) � c�. Then
from our assumptions that ht1 has index g � 2, we �nd a contradiction. Hence the
theorem.

Theorem 4. Let M be a complete simply connected Riemannian manifold

and let L � M be a compact connected submanifold of M. Let also a, b, c be real

numbers satisfying

(1) 1 < a < b < c and a � 2 and 2(b� a) + 1 � c:

Let x be a point in L such that on each orthogonal geodesic to L at x there are

no focal points in [0; �), there are p focal points in [�; a�), p � 1, there are no focal

points in [a�; b�) and there are q focal points in [b�; c�) q � 2. Then the following

holds: (A) M is compact, (B) Let z 2 M be a point on the geodesic c which is not

a focal point to L and distance d(z; L) is suÆciently close to �. Then a geodesic c

either has length L0(c) < 2a� � d(z; L) � 2a� � � and index � p, or has length

L0(c) > 2(b� a)� + d(z; L) � 2(b� a)� + � � c�

and index � p+ q.

Proof. To prove (A), it is suÆcient to note that a geodesic segment of length
a� starting from L and being orthogonal to L contains focal points in its interior
and, therefore it is not a curve of minimal length from its end point to L. Conse-
quently a tube of radius a� about L covers M . Since L is assumed to be compact,
this implies that M is compact.

To prove (B), we �rst remark that there is an l > 0 such that the focal points
in the interval [�; a�) of an orthogonal geodesic c starting from x 2 L, already occur
in the interval [�; (a�l)�). Assume that z 2M is chosen such that 21�+d(z; L) � �

and z is not focal point of L. Then

2(b� (a� l))� + d(z; L) � 2(b� a)� + � � c�:

Thus the assumptions of theorem 3 are satis�ed with (a � l) instead of a. From
Theorem 3, (B) then follows with 2a� � � < 2b� � c� < b� such that

L0(c) < 2(a� l)� � d(z; L) � 2a� � � < b�

and hence index c > p, or

L0(c) > 2(b� (a� l))� + d(zL) � 2(b� a)� + � � c�

and hence index c > p+ q.
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