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CHARACTERIZATION OF SOME SUBSPACES OF (D0)
BY S-ASYMPTOTIC

Bogoljub Stankovi�c

Abstract. We characterize by the S-asymptotic some subspaces of the space (D0) of
distributions, as (E0), (O0

c) and (B0). We give also, using S-asymptotic, suÆcient conditions and
necessary conditions that a distribution belongs to a subspace of (D0)b

1. Introduction

One can �nd several notions connected with the asymptotic behavior of a
distribution (see for example [1], [2] and [3]). In this article we use another de�nition
of the asymptotic behavior of a distribution-S, asymptotic [4].

2. Notations and de�nitions

Let � be a cone in Rn with vertex at zero. By �(�) we denote the set of
all real valued functions c(h), h 2 �, which are di�erent from zero when h 2 �
khk � �c. B(a; r) will be the ball fx 2 R

n; ka� xk < rg.

We shall deal with the following subspaces of (D0) (see [7]):

(E0) the space of distributions with the compact support;

(S0) the space of tempered distributions;

(O0c) the space of distributions with a fast descent;

(DLp) the space of all functions ' 2 C
1 which belong with all derivatives to

Lp(Rn); 1 � p �1.

(D0
Lp) the space of continuous linear functionals on (DLq ),

1 < p � 1; 1 � q <1; q = p=(p� 1);

(B0) = (D0
L1);
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(Kp), p � 1, the space of all function ' 2 C1 such

that �k(') = sup
x2Rn;jaj�k

exp(kkxkp)jD�'(x)j <1; k = 1; 2; . . .

(K 0
p) the space of continuous linear functionals on (Kp) (see [6)).

De�nition 1. A distribution T 2 (D0) has the S-asymptotic in the cone �
related to some c(h) 2 �(�) and with the limit U 2 (D0) if there exists

(1) limh2�;khk!1 hT (x+ h)=c(h); '(x)i = hU;'i ; ' 2 (D):

Then we write T (x+ h)
s
� c(h)U(x), h 2 �.

Remark. We can give another expression for hT (x+ h); '(x)i. We know that

(2) hT (x+ h); '(x)i = hT (x); '^(h� x)i = (T � '�)(h)

where '^(x) = '(�x). It is well known [7 T. II, p. 22] that T �'�(h) is a function
which has all derivatives (in the usual sense) and

(3)
@

@hk
(T � '^)(h) = (T �

@

@xk
'^)(h):

3. Characterization of some subspaces of distributions by the S-asymptotic

Proposition 1. Let � be a cone. A necessary and suÆcient condition that
the support of T 2 (D0) has the property: For every r > 0 there exists �r such that

the sets fsuppT \B(h; r)g, h 2 �, khk � �r, are empty is that T (x+h)
s
� c(h) � 0,

h 2 � for every c(h) 2 �(�).

The proof of Proposition 1 will be based on the following

Lemma 1. Necessary and suÆcient that for every c(h) 2 �(�)

(4) lim
h2�;khk!1

T (x+ h)=c(h) = 0 in (D0)

is that for every ' 2 (D) there exists a �(') such that

(5) hT (x+ h); '(x)i = 0; h 2 �; khk � �('):

Proof of Lemma 1. From our relation (4) it follows that for every " > 0 there
exists a �('; c; ") such that

j hT (x+ h)=c(h); '(x)i j < "; h 2 �; khk � �('; c; "):

We denote by �0('; c; ") the in�mum of all numbers �('; c; ") for a �xed
', c and ". First we prove that the set f�0('; c; "); " > 0gis bounded by a
�0('; c) < 1. That means that hT (x+ h)=c(h); '(x)i = 0 h 2 �, khk � �0('; c).
Assume the contrary. Then there exists a sequence fhkg 2 �, khkk ! 1 such that
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hT (x+ hk)=c(hk); '(x)i = ak 6= 0. We choose c1(h) 2 �(�), c1(hk) = ak. Now
T (x + h)=c(h)c1(h) does not converge to zero in (D0) as h 2 � and khk ! 1.
Hence, such a sequence fhkg does not exist.

To prove that the set f�0('; c); c(h) 2 �(�)g is bounded by a �0(') we assume
the contrary. Then there exists a sequence fhkg � �; khkk ! 1 and the sequence
fck(h)g � �(�) so that hT (x+ hk)=ck(hk); '(x)i = dk 6= 0.

Now for c02(h); c
0
2(hk) = ck(hk) � dk, hT (x+ h)=c02(h); '(x)i does not converge

to zero when h 2 �, khk ! 1.

So we have proved that (5) follows from (4) The converse is trivial.

Proof of Proposition 1. Assume that the support of T 2 (D0) has the property
given in Proposition 1. We know that supp T (x+ h) = suppT � h, h 2 �. Hence
the sets fsuppT (x+ h) \B(0; r)g, h 2 �, khk � �r are empty.

For every ' 2 (D) there exists r > 0 such that supp' � B(Or). That gives

hT (x+ h); '(x)i = 0; h 2 �; khk � �r

By Lemma 1 we get (4).

Suppose now that the limit in relation (4) exists for every c(h) 2 �(�). By
Lemma 1, relation (5) is true. Let �0(') = inf �('), where �(') are numbers from
relation (5). We prove that the set f�0('); '(DK)g for every compact set K � Rn

is bounded. Assume the contrary. Then there exists a sequence fhkg, hk 2 �,
khkk ! 1 and the sequence f�k(x)g, Phik 2 (DK) such that

hT (x+ hk);  (x)i = Ak;p =

(
ak 6= 0; p = k

0; p < k:

The construction of the sequences fhkg and f�kg can go as follows. Let
�k 2 (DK) be such that f�0(�K)g is a strict monotone sequence which tends to
in�nity. Then there exist fhkg � � and "k > 0, k 2 N such that �0(�k�1) + "k �
khkk � �0�k)� "k.

Now, we construct the sequence f p(x)g � (DK) such that

hT (x+ hk);  p(x)i =

(
ak; p = k

0; p 6= k

Let  p(t) = �p(t) � �p1�1(t) � � � � � �pp�1�p�1(t); p > 1. The numbers f�pi g can

be found so that  p(t) satis�es the desired property.

It is easy to see that hT (t+ hk);  p(t)i = ak and hT (t+ hk);  p(t)i = 0,
k > p. For a �xed p and k < p we can �nd �pi ; i = 1; . . . ; p� 1 so that

0 = hT (t+ hk);  p(t)i = Ak;p � �p1Ak;1 � � � � � �pp�1Ak;p�1; k = 1; . . . ; p� 1:

Hence
�p1Ak;1 + . . .�pp�1Ak;p�1 = Ak;pk = 1; . . . ; p� 1; p > 1:
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As Ak;k 6= 0 for every k, this system has always a solution.

We introduce now a sequence of numbers fbkg, bk = supp f2kj 
(
ki)(t); i � kg.

Then

 (t) =

1X
p=1

 p(t)=bp 2 (Dk)

and the series converges in (D), thus in (DK) as well

hT (t+ hk);  (t)i =

1X
p=1

T (t+ hk);  p(t)=bp = ak=bk

Now we choose c(h), c(hk) = ak=bk; hT (t+ h)=c(h);  (t)i does not converge as
khk ! 1, h 2 T .

This proves that for every compact set K there exists �0(K) such that

hT (t+ h);�(t)i = 0; khk � �0(K); h 2 �; � 2 (Dk):

It follows that T (t + h) = 0 on B(0; r), khk � �(r), h 2 �, and with this
T (t) = 0 on B(h; r), khk � �(r), h 2 �.

A consequence of Proposition 1 is the following

Proposition 2. A necessary and suÆcient condition that a distribution T

belongs to (E0) is that T (x+ h)
s
� c(h) � 0, h 2 Rn, for every c(h) 2

P
(Rn).

Reimarks. In Proposition 1 the support of T 2 (D0) has to have the following
property: the distance from the suppT and a point h 2 �, d(suppT; h) tends to
in�nity when h 2 �, khk ! 1.

As a consequence of Proposition 1 and Lemma 1 we have a result on the
support of a factor of the convolution. Let G be the set of all functions f 2 C1 so
that supp f lies in the complement of the set � \ fh 2 Rn; khk � �fg.

Corollary 1. For a �xed T 2 (D0) the convolution T � ' maps (D) into G
if and only if the support of T has the property given in Proposition 1.

Proof. We have only to combine Lemma 1 and Proposition 1. From Proposi-
tion 1 it follows that the S-asymptotic is a local property.

Corollary 2. A necessary and suÆcient condition that two distributions T1
and T2 coincide on an open set A, CRnA having the property of the supp T from

Proposition 1, is that T1(x+h)�T2(x+ t)
s
� c(h) � 0, h 2 �, for every c(h) 2 �(�).

Proof. If T1 = T2 on A, then supp (T1 � T2) has the property from
Proposition 1.

Proposition 3. Necessary and suÆcient condition that T 2 (D0) belongs to
(O0c) is that T has S-asymptotic zero related to every c(h) = khk��, � 2 R+.
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Proof. We have only to use Theorem IX, T. II, p. 100 of [7] which says: The
necessary and suÆcient condition that a distribution T belongs to (O0c) is that for
every ' 2 (D) the function (T �')(h) be continuous and of fast descent at in�nity.
Now, Proposition 3 follows from (2) and the de�nition of a function of fast descent.

Proposition 4. Necessary and suÆcient condition that a distribution T
belongs to (B0) is that T has the S-asymptotic zero related to every c(h) 2 �(Rn),
c(h)!1, as khk ! 1.

Proof. By (2) hT (x+ h)=c(h); '(x)i = (T � '^)(h)=c(h). Theorem XXV, T,
I I, p. 57 of [7] says that (T � ')(h) 2 L1(Rn) for a T 2 (B0) and every ' 2 (D).
Hence (T � '^)(h)=c(h)! 0, when khk ! 1 and c(h)!1.

Suppose that (T � '^)(h)=c(h) ! 0, h ! 1, for every '(D) and c(h) ! 1
as khk ! 1. We show that (T � '^)(h) 2 L1(Rn) for every '(D). Then, by the
same theorem, it follows that T 2 (B0). To prove this let us assume the contrary,
i.e. that (T �'^)(h) is not bounded for a '0 2 (D). Then for the sequence of balls
fB(0; n); n 2 Ng we can �nd two sequences fhng � Rn and fcng � R such that
jcnj ! 1 as n ! 1; khnk � n and (T � '^0 )(hn) = cn. Now, for c0(h) such that

c0(hn) =
p
jcnj the limit hT (x+ h)=c0(h); '(x)i does not exist when khk ! 1.

This is in contradiction with our assumption that T has S-asymptotic related to
every c(h) which tends to in�nity as khk ! 1.

Proposition 5. Let for every c(h) 2 �(Rn), which has a fast descent, T (x+

h)
s
� c�1(h)Uc(t); h 2 Rn. Then T 2 (S0). (Uc can be the distribution zero as

well).

Proof. For a �xed c(h) and khk � �0, for every '(D) we have:

j hT (x+ h) � c(h); '(x)i j � j hu; 'i j+ "' �M' + "':

Therefore the set fT (x+ h) � c(h); h � �0g is weakly bounded and thus bounded in
(D0) [7, Theorem IX, T. I, p. 72]. Using Theorem VI of [7, T. II, d. 95] we obtain
that T 2 (S0).

A similar proposition can be proved for the space (K 0
1) using the following

theorem [5] :

Let T 2 (D0). If for every rapidly decreasing function r(x) the set fr(h)T (x+
h); h 2 Rng is bounded in (D0), then T 2 (K 0

1).

A function r(x), de�ned on Rn, is called rapidly exponenttially decreasing
function if for every k > 0 r(x) exp(kkxk)! 0 as kxk ! 1.

Proposition 6. Let for every rapidly exponentially decreasing function

r(h) 2 �(Rn) T (x+ h)
s
� r�1(h)Ur, h 2 R

n, then T 2 (K 0
1).

The next propositions do not give a full characterization of some subspaces
of distributions, but the property of the S-asymptotic their members.

Proposition 7. Every distribution which belongs to (D0
Lp), 1 � p < 1 has

S-asymptotic related to c(h) � 1 just zero.
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Proof. We use relation (2). By theorem XXV of [7] T. II, p. 57 it follows that
(T � '^)(h) is in Lp(Rn) for every '^ 2 (D). By relation (3) we know that every
derivative of (T � ')(h) is also in Lp(Rn). Hence (T � '^)(h) 2 (DLp). We know
that every element of (DLp), 1 � d < 1 is bounded over Rn and tends to zero
when khk ! 1 ([7] T. II, p. 55).

Proposition 8. If 2 (S0) then there exists a real number k0 such that T has
S-asymptotic zero related to c(h)khkk0 where c(h) tends to in�nity when khk ! 1.

Proof. By Theorem VI of [7 T.II, p. 75] there exists a number k0 such that the
set of distributions fT (x+ h)=(1 + khk2)k0=2; h 2 Rng is bounded in (D0). Hence
this set is weakly bounded and



T (x+ h)=(c(h)khkk0 ; '(x))

�
=

1 + khk2)k0=2

c(h)khkk0

�
T (x+ h)

(1 + khk2)k0=2
; '(x)

�

tends to zero when khk ! 1.

Proposition 9. If T 2 (K 0
p) then there exists a k0 such that T has S-

asymptotic zero related to c(h) exp(k0khk
p), where c(h) tends to in�nity when

khk ! 1.

First we prove a lemma which is implicit in the proof of Theorem I [6].

Lemma 2. Let T 2 (K 0
p). There exists a positive integer k, such that fT (x+

h) exp(�kkhkp); h 2 Rng is a bounded set in (D0).

Proof. We start by giving a bound for �k('(x � h)); ' 2 Kp:

�k['(x� h)] = sup
x2Rn;jaj�k

exp(kkxkp)jDa'(x � h)j

= sup
x2Rn;jaj�k

exp(kkx+ hkp)jDa'(x)j

= exp(2pkkhkp) sup
x2Rn;jaj�k

exp(2pkkxkp)jDa'(x)j

� exp(2pkkhkp)�2pk(')

By our assumption, T is continuous linear functional on (Kp). Then there
exist " > 0 and k0 such that

(6) j hT; 'i j � 1 for ' 2 (Kp); �k0(') � "

Since the seminorms �k are increasing, relation (6) holds for all k � k0.
Let ' be any element of (Kp) � '

1 = "'=�k(') satis�es �k('
1) � ", k � k0 and

j


T; '1

�
j � 1. Hence

(7) j hT; 'i j � "�1�k('); k � k0 for every '(Kp):
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We know that (D) � (Kp) and that this injection is continuous. Let us
suppose that ' 2 (D), then

j hexp(�2pkkhkp)T (x+ h); '(x)i j = j hT (x); exp(�2pkkhkp)'(x � h)i j

� "�1 exp(�2pkkhkp)�k['(x� h)] � "�1�2pk('):

Proof of Proposition 9. Now, we use Lemma 2 for the proof.

We can choose k0 � 2pk. The set fexp(�k0khk
p)T (x+h); h 2 Rng is bounded

in (D0) and weakly bounded in (D0).

For every ' 2 (D):

lim
khk!1

hexp(�k0khk
p)T (x+ h)=c(h); '(x)i =

= lim
khk!1

1

c(h)
hexp(�k0khk

p)T (x+ h); '(x)i = 0:
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