MIXED NORM SPACES OF ANALYTIC AND HARMONIC FUNCTIONS, II

M. Pavlović

Abstract

In this paper we continue the study of the spaces $h(p, q, \varphi)$ and $H(p, q, \varphi)$. We apply the main results of Part I to obtain new information on the coefficient multipliers of these spaces. For example, we find the multipliers from $h(p, q, \varphi)$ to $h\left(\infty, q_{0}, \varphi\right)$ for any $p \geq 1$, $q, p_{0}>0$ and any quasi-normal function φ, and this improves and generalizes a result of Shields and Williams [16]. We also describe the multipliers from $H(p, q, \alpha), p \leq 1$, to $H\left(p_{0}, q_{0}, \alpha\right), p_{0} \geq p$, and $l^{s}, s>0$.

0. Introduction

Let $h\left(U_{R}\right)$ be the class of all complex-valued harmonic functions in the disc $U_{R}=\{z:|s|<R\}, R>0$. For a set E of integers let $h_{E}(U R)=\{f \in h(U R):$ $\operatorname{supp}(\hat{f}) \subset E\}$. An A-space X is a quasi-normed space satisfying the following conditions: 1. There exists a set E such that $h_{E}(U R) \subset X \subset h_{E}(U)$ for all $R>1\left(U=U_{1}\right) ; 2$. If $f \in X$ and $\zeta \in \bar{U}$, then $\left\|f_{\zeta}\right\| \leq\|f\|$ where f_{ζ} is defined by $f_{\zeta}(z)=f(\zeta z) ; 3$. Let $P_{r}(f)=\left\|f_{r}\right\|, f \in h_{E}(U), 0<r<1$. Then the family $\left\{P_{r}\right\}$ defines a topology on $h_{E}(U)$, which coincides with the topology of uniform convergence on compact subsets of U.

If X is complete, then the third condition may be replaced by the requirement that X is continuously embedded into $h_{E}(U)$. (This can be proved by using the closed graph theorem.) In Part I, A-spaces are defined in a different way, but it is easily shown that the two definitions are equivalent.

A function $\varphi:(0,1) \rightarrow(0, \infty)$ is said to be quasi-normal if it is increasing, absolutely continuous, $\varphi(0+)=0$ and $\varphi(2 t) / \varphi(t) \leq C<\infty$ for $0<t<1 / 2$. If, in addition, $\varphi(a t) \leq \varphi(t) / 2, t>0$, for some $a>0$ then φ is said to be normal. In Part I we defined the scale of spaces $X(q, \varphi)$ in the following way:
$X(q, \varphi)$ consists of all $f \in h_{E}(U)$ for which the function $F(r):=\varphi(1-r)\left\|f_{r}\right\|_{X}$, $0<r<1$, belongs to the Lebesgue space $L^{q}\left(m_{\varphi}\right)$, where $\mathrm{dm}_{\varphi}(r)=\varphi^{\prime}(1-$ $r) \mathrm{dr} / \varphi^{\prime}(1-r)$.

[^0]It was shown that $X(q, \varphi)$ is a complete A-space with the quasinorm

$$
\|f\|_{X(q, \varphi)}=\|F\|_{L^{q}(m \varphi)}
$$

Throughout the paper we shall suppose that φ is extended to the interval $(0, \infty)$ so that the following holds: 1. $\varphi(t) \varphi(1 / t) \sim 1, t>0$, i.e. $0<c \leq$ $\varphi(t) \varphi(1 / t) \leq C<\infty ; 2$. $1 / \varphi$ is convex on $(1, \infty)$ and $\varphi(1+)=\varphi(1)$. Such an extension is possible; for example

$$
\varphi(1) / \varphi(t)=\int_{0}^{1} r^{t-1} \varphi^{\prime}(1-r) d r, \quad t>1
$$

In this part we consider coefficient multipliers from $X(g, \varphi)$ to $Y\left(g_{0}, \psi\right)$. Multiplier problems for various spaces of analytic and harmonic functions have been considered by many authors. See, for example, $[1,2,3,4,12,15,16]$. Mainly, these results concern the spaces $H(p, q, \varphi):=H^{p}(q, \varphi)$ and $h(p, g, \varphi):=h^{p}(q, \varphi)$ with $\varphi(t)=t^{\alpha}$, where H^{p} and h^{p} are Hardy and harmonic Hardy spaces, respectively. (In this case we write a instead of φ.) The following result of Hardy and Littlewood [8] and Flett [5, 6] is one of the most important results in this area.

Theorem HLF. If $0<p, q \leq \infty$ and $0<\alpha, \beta<\infty$ then the operator $D^{\beta-\alpha}$ acts as an isomorphism from $H(p, q, \alpha)$ onto $H(p, q, \beta)$.

The operator $D^{s}: h(U) \rightarrow h(U)(-\infty<s<\infty)$ is defined by

$$
\left(D^{s} f\right)^{\wedge}(k)=(|k|+1)^{s} \hat{F}(k), \quad-\infty<k<\infty .
$$

In Section 1 we give some extensions of Theorem HLF. For example, if φ is a normal function and $\alpha>0$, then $H(p, q, \varphi)$ and $H(p, q, \alpha)$ are isomorphic via a multiplier transform. However, this transform is more complicated than in the case of Theorem HLF, and is not indepedent of p.

The multipliers from $h(\infty, \infty, \varphi)$ into itself, where φ satisfies additional restrictions on regularity of growth, were described by Shields and Williams [16]. In Section 3 we describe the multipliers from $h(p, q, \varphi)$ to $h\left(\infty, q_{0}, \varphi\right), p \leq 1$, for any quasi-normal function φ. Using this we solve Problem B of [16].

It was shown by Duren and Shields [4] that g is a multiplier from $H(1,1, \alpha)$ into itself if and only if $M_{1}\left(r, g^{\prime}\right) \leq C /(1-r), 0<r<1$. We generalize this by finding the multipliers from $H(p, q, \alpha)$ to $H\left(p_{0}, q_{0}, \alpha\right)$, where $p \leq \min \left(1, p_{0}\right)$.

In Section 5 we briefly discuss the multipliers from $H(p, q, \alpha)$ to the sequence space l^{s}. Some partial solutions to this problem are given by Ahern and Jevtić [1], Mateljević and Pavlović [11, 12] and others. (See [1, 12] for information and references). Here we consider the case $p \leq 1$ and find the multipliersfor any $q>0$ and $s>0$. In the case $p \geq 2$ a stronger is known $[2,11]$.

Our method is based on the main result of Part I, which enables us to reduce the multipliers from $X(q, \varphi)$ to $Y\left(q_{0}, \varphi\right)$ to those from X to Y. For our purposes it is convenient to introduce the spaces $X[q, W]$ in the following way.

Let N be a non-negative integer, and let $\Lambda:=\left\{\lambda_{n}\right\}_{0}^{\infty}$ be an increasing sequence of positive integers. For a sequence $W:=\left\{w_{n}\right\}_{0}^{\infty}$ or harmonic polynomials we write $W \in(N, \Lambda)$ if the following conditions are satisfied:

$$
f(z)=\sum_{n=0}^{\infty} w_{n} * f(z), \quad f \in h(U), \quad z \in U
$$

where the series is uniformly convergent on compact subsets of U;

$$
\hat{w}_{n}(k)=0 \text { if }|k| \notin\left[\lambda_{n-1}, \lambda_{n+N}\right) \geq 0
$$

where $\lambda_{-1}=0$.
We define $X[q, W]=\left\{f \in h_{E}(U):\|f\|_{X[q, W]}<\infty\right\}$, where

$$
\begin{aligned}
& \|f\|_{X[q, W]}=\sum_{0}^{\infty}\left\|w_{n} * f\right\|_{X}^{q}, \quad q<\infty \\
& \|f\|_{X[\infty, W]}=\sup _{n}\left\|w_{n} * f\right\|_{X}
\end{aligned}
$$

These spaces are generalizations of the sequence spaces $l(p, q)$ introduced by Kellogg [10]. One can prove that $X[q, W]$ are A-spaces. Their main properties will be given in Sections 1 and 2.

1. Isomorphisms between $X(q, \varphi)$ and $X[q, W]$

By Proposition 3.2, Part I, there exists a lacunary sequence $\Lambda=\left\{\lambda_{n}\right\}_{0}^{\infty}$ of positive integers such that $\varphi(\bigwedge):=\left\{\varphi\left(\lambda_{n}\right)\right\}_{0}^{\infty}$ is normal, i.e.

$$
c_{1}(1+c)^{j} \varphi\left(\lambda_{n}\right) \leq \varphi\left(\lambda_{n+j}\right) \leq C^{j} \varphi\left(\lambda_{n}\right), \quad j, n \geq 0
$$

where c_{1}, c, C are positive constants.
For an A-space X let $s(X)=h_{E}(U)$, where E is the unique set of integers such that $h_{E}(U R) \subset X \subset h_{E}(U), R>1$. Let \mathcal{B}_{N} be the class consisting of all normed A-spaces and all H^{p} with $p \geq l / N$.

Theorem 1. Let $N \geq 1$, let \bigwedge be a lacunary sequence, and let the sequence $\varphi(\bigwedge)$ be normal. Then there exists a sequence $W \in(N, \bigwedge)$ and a function $g \in h(U)$ such that for all $X \in \mathcal{B}_{N}$ the following assertions hold:
a) The operator g^{*} defined by $g^{*}(f)=f * g$ is an isomorphism of $X(q, \varphi)$ onto $X q,[W]$.
b) $\left\|w_{n} * f\right\|_{X} \leq K\|f\|_{X}$ for $n \leq 0, f \in X$, where K is independent of $X \in \mathcal{B}_{N}$.
c) $\hat{g}(n)=\hat{g}(-n) \sim 1 / \varphi(n+1), \quad n \geq 0$. If $N=1$, then one can take $\hat{g}(n)=$ $1 / \varphi(|n|+1)$.

Define the operators D^{ψ} and $D_{\varphi}: h(U) \rightarrow h(U)$ by

$$
\left(D_{\varphi} f\right)^{\wedge}(n)=\hat{f}(n) / \varphi(|n|+1), \quad\left(D^{\psi} f\right)^{\wedge}(n)=\psi(|n|+1) \hat{f}(n)
$$

The following theorem generalizes the case ≥ 1 of Theorem HLF. It is an immediate consequence of Theorem 1.1.

THEOREM 1.2. Let n be a lacunary sequence such that both $\varphi(\bigwedge)$ and $\psi(\bigwedge)$ are normal. Then $D_{\varphi} D^{\varphi}$ acts as an isomorphism from $h(p, q, \varphi), p \geq 1$, onto $h(p, q, \psi)$.

Remark. The function ψ is extended to $(0, \infty)$ in the same way as φ.
Theorem 1.3. (with the hypotheses of Theorem 1.2.). For every $p>0$ there exists an analytic function g such that $\hat{g}(n) \sim \psi(n+1) / \varphi(n+1), n \geq 0$, and the operator g^{*} is an isomorphism from $H(p, q, \varphi)$ onto $H(p, q, \psi)$.

If φ is normal, then the sequence $\left\{\varphi\left(2^{n}\right)\right\}_{0}^{\infty}$ is normal. Thus we have
Corollary 1.1. If φ is a normal function and α is a positive number, then $H(p, q, \varphi)$ and $H(p, q, \alpha)(p>0)$ are isomorphic via a multiplier transform.

Proof of Theorem 1.1. By Theorems 2.1. and 4.1. (Part I) and their proofs, there is $W \in(N, \bigwedge)$ such that (b) holds, $\hat{w}_{n}(-k)=\hat{w}_{n}(k)$ and

$$
\|f\|_{X(q, \varphi)} \sim\left\{\sum_{0}^{\infty}\left[\varphi\left(1 / \lambda_{n}\right)\left\|w_{n} * f\right\|_{X}\right]\right\}^{1 / q}, \quad f \in s(X)
$$

Thus it suffices to find a function g independent of $X \in \mathcal{B}_{N}$ and satisfying (c) and

$$
\begin{equation*}
\left\|w_{n} * g * f\right\| \sim \varphi\left(1 / \lambda_{n}\right)\left\|w_{n} * f\right\|, \quad f \in s(X), \quad n \geq 0 \tag{1.1}
\end{equation*}
$$

Let $B_{n}=\varphi\left(1 / \lambda_{n}\right)^{1 / m}, n \geq 0$, where m is a positive integer which will be chosen later on. Define the functions g_{1}, \ldots, g_{m} in the following way:

$$
g_{1}(z)=\sum_{0}^{\infty} B_{n} w_{n}(z), \quad g_{j}=g_{1} * g_{j-1}, \quad 2 \leq 1 \leq m
$$

We have
$w_{n} * g_{1}=B_{n} \sum_{k=0}^{\infty} w_{n} * w_{k}+\sum_{k=0}^{\infty}\left(B_{k}-B_{n}\right) w_{n} * w_{k}=B_{n} w_{n}+\sum_{k=n-N}^{n+N}\left(B_{k}-B_{n}\right) w_{n} * w_{k}$,
where $B_{k}=B_{o}$ and $w_{k}=0$ for $k<0$, Using the triangle inequality for $\|\cdot\|_{X}^{s}$, where $s=1 / N$, we obtain
$\left\|w_{n} * g_{1} * f\right\|^{s} \geq B_{n}^{s}\left\|w_{n} * f\right\|^{s}-\sum k=n-N^{n+N}\left|B_{k}-B_{n}\right|^{s}\left\|w_{n} * w_{k} * f\right\|^{s}, \quad f \in s(X)$.
Hence, by (b),

$$
\left\|w_{n} * g_{1} * f\right\|^{s} \geq B_{n}^{s}\left\|w_{n} * f\right\|^{s}-K^{s}\left\|w_{n} * f\right\|^{s} \sum_{k=n-N}^{n+N}\left|B_{k}-B_{n}\right|^{s}
$$

Since $\varphi(\bigwedge)$ is normal, there exists $b \in(0,1)$ such that $\varphi\left(1 / \lambda_{n}+N\right) \geq b \varphi\left(1 / \lambda_{n}\right)$ for all $n \geq 0$. Using this we get

$$
\begin{aligned}
\sum_{k=n-N} 6 n+N\left|B_{k}-B_{n}\right|^{s} & \leq\left(B_{n}-N_{n+N}\right)^{s} N+\left(B_{n=N}-B_{n}\right)^{s} N \\
& \leq N B_{n}^{s}\left(1-b^{1 / m}\right)+N B_{n}^{s}\left(b^{-1 / m}-1\right)^{s}
\end{aligned}
$$

Choose m so that

$$
\begin{equation*}
N K^{s}\left(1-b^{1} / m\right)^{s}+\left(b^{-1 / m}-1\right)^{s} \leq 2^{-s} \tag{1.2}
\end{equation*}
$$

Then $\left\|w_{n} * g_{1} * f\right\| \geq 2^{-1} B_{n}\left\|w_{n} * f\right\|$ and, by induction,

$$
\begin{equation*}
\left\|w_{n} * g_{m} * f\right\| \geq 2^{-m} \varphi\left(1 / \lambda_{n}\right)\left\|w_{n} * f\right\| \tag{1.3}
\end{equation*}
$$

In the other direction, from the identity

$$
w_{n} * g_{1} * f=\sum_{k=n-N}^{n+N} B_{k} w_{n} * w_{k} * f
$$

we obtain

$$
\left\|w_{n} * g_{1} * f\right\|^{s} \leq K^{s}\left\|w_{n} * f\right\|^{s} \sum_{k=n-N}^{n+N} B_{k}^{s} \leq K_{s}\left\|w_{n} * f\right\|^{s}(2 N+1) B_{n-N}^{s}
$$

This implies

$$
\begin{equation*}
\left\|w_{n} * g_{m} * f\right\| \leq C\left\|w_{n} * f\right\|, \quad f \in s(X), \quad n \geq 0 \tag{1.4}
\end{equation*}
$$

where C is a positive real constant.
In order to estimate the coefficients of g_{m} observe that $\hat{g}_{m}(k)=\hat{g}_{1}(k)^{m}$. Thus we have to prove $\hat{g}_{1}(k) \sim \varphi(k+1)^{-1 / m}, k \geq 0$. It is easily verified that $\hat{g}_{1}(k)=B_{0}$ for $k<\lambda_{0}$. If $k \geq \lambda_{0}$ then we choose $n \geq 0$ so that $\lambda_{n} \leq k<\lambda_{n+1}$. Then

$$
\hat{g}_{1}(k)=B_{n+1}+\sum_{j=n-N}^{n}\left(B_{j}-B_{n+1}\right) \hat{w}_{j}(k) .
$$

Taking $X=H^{\infty}$ and $f(z)=z^{k}$ in (b) we see that $\left|w_{j}(k)\right| \leq K$ for all $j, k \geq 0$, where K is the same as in (1.2). Hence

$$
\begin{aligned}
|\hat{g}(k)| & \geq B_{n+1}+\sum_{j=n-N}^{n}\left(B_{j}-B_{n+1}\right) \\
& \leq B_{n+1}-K\left(B_{n-N}-B_{n+1}\right) N \\
& \leq B_{n+1}-K B_{n+1}\left(B_{n-N} / B_{n+N}-1\right) N \\
& \leq B_{n+l}-K B_{n+1}\left(b^{-2 / m}-1\right) N \geq 2^{-1} B_{n+1}
\end{aligned}
$$

where m is chosen so that the inequalities (1.2) and $K\left(b^{-2 / m}-1\right) N \leq 1 / 2$ hold. This proves that $\hat{g}_{m}(k) \geq c \varphi(k+1)^{-1}$. The proof of the inequality $\hat{g}_{m}(k) \leq$ $C \varphi(k+1)^{-1}$ is simple. Taking $g=g_{m}$ we see that the condition (1.1) is satisfied.

In the case of normed spaces the result follows from Lemma 5.3 of Part I.

2. Multipliers from $X[q, W]$ to $Y[q, W]$

Let X, Y be A-spaces, $s(X) \cap s(Y) \neq \emptyset$. A function $g \in h(U)$ is a multiplier from X to Y if the map $f \mapsto f * g$ is a bounded linear operator from X to Y. If the spaces are complete then this is equivalent with the requirement that $f * g \in Y$ for all $f \in X$. In Part I we have defined the space

$$
(X \rightarrow Y)=\{g \subset s(X) \cap s(Y): g \text { is a multiplier from } X \text { to } Y\}
$$

with the quasi-norm

$$
\|g\|_{X, Y}=\sup \left\{\|f * g\|_{Y}: f \in X,\|f\|_{X} \leq 1\right\}
$$

We shall prove that there is a simple connection between the spaces $\left(X[q, W] \rightarrow Y\left[q_{0}, W\right]\right)$ and $(X \rightarrow Y)$ provided that $\left\|w_{n} * f\right\|_{X} \leq C\|f\|_{X}$, i.e., $X \subset X[\infty, W]$. One can prove that all these spaces are A-spaces.

Throughout this section we suppose $O<q, q_{0} \leq \infty$ and

$$
q_{1}= \begin{cases}\infty & \text { if } q \leqq q_{0} \\ q q_{0} /\left(q-q_{0}\right) & \text { if } q>q_{0}\end{cases}
$$

Theorem 2.1. Let $X \subset X[\infty, W]$ where the inclusion is continuous. Then

$$
\begin{equation*}
\left(X[q, W] \rightarrow Y\left[q_{0}, W\right]\right)=(X \rightarrow Y)\left[q_{1}, W\right] \tag{2.1}
\end{equation*}
$$

Proof. Since $\hat{w}_{n}(k)=0$ for $|k| \notin\left[\lambda_{n-1}, \lambda_{n+N}\right)$ we have

$$
\begin{equation*}
w_{n} * w_{j}=0 \text { for }|j-n| \geq N+1 \tag{2.2}
\end{equation*}
$$

Let

$$
P_{n}=\sum_{j=n-N}^{n+N} w_{j}, \quad n \geq 0
$$

where $w_{j}=0$ for $j<0$. From (2.2) and the identity $f=\sum w_{n} * f$ it follows that

$$
\begin{align*}
& P_{n} * w_{n}=w_{n}, \quad n \geq 0 \tag{2.3}\\
& w_{n} * P_{j}=0 \text { if }|j-n| \geq 2 N+1 \tag{2.4}
\end{align*}
$$

Let $g \in Z\left[q_{1}\right]=Z\left[q_{1}, W\right], Z=(X \rightarrow Y)$. In view of (2.3) and the definition of $(X \rightarrow Y)$ we have

$$
\left\|w_{n} * f * g\right\|_{Y}=\left\|P_{n} * f * w_{n} * g\right\|_{Y} \leq\left\|P_{n} * f\right\|_{X}\left\|w_{n} * g\right\|_{Z}
$$

By Hölder's inequality

$$
\|f * g\|_{Y\left[q_{0}\right]} \leq\left\|\left\{A_{n}\right\}\right\|_{l^{q}}\|g\|_{Z\left[q_{1}\right]}
$$

where $A_{n}=\left\|P_{n} * f\right\|_{X}, n \geq 0$. Using the inequality

$$
\left\|P_{n} * f\right\| \leq C \sum_{j=n-N}^{n+N}\left\|w_{j} * f\right\|
$$

and Lemma 5.2 of Part I we find $\left\|\left\{A_{n}\right\}\right\|_{l^{q}} \leq C\|f\|_{X[q]}$. This concludes the proof of the inclusion $Z\left[q_{1}\right] \subset\left(X[q] \rightarrow Y\left[q_{0}\right]\right)$.

Let $g \in\left(X[q] \rightarrow Y\left[q_{0}\right]\right)$. Then

$$
\|f * g\|_{Y\left[q_{0}\right]} \leq C\|f\|_{X[q]}, \quad f \in X[q]
$$

Let $l^{q}(X)$ be the space of those sequences $F=\left\{f_{n}\right\}_{0}^{\infty}$ for which $f_{n} \in X, n \geq 0$ and

$$
\|F\|_{l^{q}(X)}:=\left\|\left\{\left\|f_{n}\right\|_{X}\right\}\right\|_{l^{q}} \leq \infty .
$$

Let $\overline{l^{q}}(X)$ be the subspace of $l^{q}(X)$ consisting of $\left\{f_{n}\right\}$ such that $f_{n}=0$ for n large enough. Define the operators $V_{m}, 0 \leq m \leq 2 N$, on $\overline{l^{q}}(X)$ by

$$
V_{m} F=\sum_{n=0}^{\infty} P_{n, m} * f_{n}
$$

where $P_{n, m}=P_{(2 N+1) n+m}$. Using the hypothesis $X \subset X[\infty]$ and the relation (2.4) one shows that $V_{m}^{\prime} s$ are bounded linear operators from $\overline{l^{q}}(X)$ to $X[q]$. (See Lemma 5.1, Part I.) It follows that

$$
\left\|\left(V_{m} F\right) * g\right\|_{Y\left[q_{0}\right]} \leq C\|F\|_{l^{q}(x)}, \quad F \in \overline{l^{q}}(X), \quad 0 \leq m \leq 2 N
$$

where C is independent of F, m. This implies

$$
\left\{\sum_{k=0}^{\infty}\left\|w_{k, m} *\left(V_{m} F\right) * g\right\|_{Y}^{q_{0}}\right\}^{1 / q_{0}} \leq C\|F\|_{l^{a}(X)}
$$

where $w_{k, m}=w_{(2 N+1) k+m}$. If $k \neq n$ then $|(2 N+1) k+m-(2 N+1) n-m|=$ $(2 N+1) k-n \geq 2 N+1$, and this implies $w_{k, m} * P_{k, m}=0$, by (2.4). Hence

$$
w_{k, m} *\left(V_{m} F\right)=w_{k, m} * P_{k, m} * f_{k}=w_{k, m} * f_{k}
$$

(In the last step we have used (2.3).) Now we have

$$
\begin{equation*}
\left\{\sum_{k=0}^{\infty}\left\|w_{k, m} * g * f_{k}\right\|_{Y}^{q_{0}}\right\}^{1 / q_{0}} \leq C\|F\|_{l^{q}(X)} \tag{2.5}
\end{equation*}
$$

Fix $m, 0 \leq m \leq 2 N$, and $\varepsilon<1$, and for every $k \geq 0$ choose $h_{k} \in X$ so that $\left\|h_{k}\right\|_{X}=1$ and

$$
\begin{equation*}
\left\|w_{k, m} * g * h_{k}\right\|_{Y} \geq \varepsilon\left\|w_{k, m} * g\right\|_{Z} \tag{2.6}
\end{equation*}
$$

Putting $f_{k}=a_{k} h_{k}$, where $\left\{a_{k}\right\}_{0}^{\infty} \in \overline{l^{q}}=(R)$ (R is the scalar field) we get from (2.5) and (2.6)

$$
\varepsilon\left\{\sum_{k=0}^{\infty}\left[\left|a_{k}\right|\left\|w_{k, m} * g\right\|_{Z}\right]^{q_{0}}\right\}^{1 / q_{0}} \leq C\left\{\sum_{k=0}^{\infty}\left|a_{k}\right|^{q}\right\}^{1 / q}
$$

where C is independent of ε, m and $\left\{a_{k}\right\}$. This gives

$$
\left\{\sum_{k=0}^{\infty}\left\|w_{k, m} * g\right\|_{Z}^{q_{1}}\right\}^{1 / q_{1}}<\infty
$$

for all $m, 0 \leq m \leq 2 N$. If $q_{1}<\infty$ then

$$
\sum_{n=0}^{\infty}\left\|w_{n} * g\right\|^{q_{1}}=\sum_{m=0}^{2 N} \sum_{k=0}^{\infty}\left\|w_{k, m} * g\right\|^{q_{1}}<\infty
$$

whence $g \in Z\left[q_{1}\right]$; similarly for $q_{1}=\infty$. This completes the proof of Theorem 2.1.
As a consequence of Theorems 1.1 and 2.1 we have
Theorem 2.2. If $Z=(X \rightarrow Y)$, where X, Y are normecl spaces, then

$$
\left(X(q, \varphi) \rightarrow Y\left(q_{0}, \varphi\right)\right)=\left\{g \in s(X) \cap s\left(Y: D^{\varphi} g \in Z\left(q_{1}, \varphi\right)\right\}\right.
$$

Proof. It follows from Theorem 1.1 that $\left(X(q, \varphi) \rightarrow Y\left(q_{0}, \varphi\right)\right)=(X[q, W] \rightarrow$ $\left.Y\left[q_{0}, W\right]\right)$ for a suitable $W \in(1, \wedge)$. Now the desired result is obtained by using Theorem 2.1 and then Theorem 1.1 and the fact that Z is a normed space.

3. Multipliers of $h(p, g, \varphi)$

In this section we apply the preceding results to the case of the spaces $h(p, q, \varphi)=h^{p}(q, \varphi)$. Note that if $p \geq 1$ then $\left\|f_{r}\right\|_{h_{p}}=M_{p}(r, f), O<r<1$, so that $f \in h(p, q, \varphi)$ if and only if

$$
\int_{0}^{1}\left[\varphi(1-r) M_{p}(r, f)\right]^{q} d m_{\varphi}(r)<\infty
$$

Theorem 3.1. Let q, q_{0}, q_{1}, be as in Section 2, let $p \geq 1$ and $1 / p+1 / p^{\prime}=1$. For a function g the following are equivalent.
(i) g is a multiplier from $h(1, q, \varphi)$ to $h\left(p, q_{0}, \varphi\right)$;
(ii) g is a multiplier from $h\left(p^{\prime}, q, \varphi\right)$ to $h\left(\infty, q_{0}, \varphi\right)$;
(iii) $D^{\varphi} g \in h\left(p, q_{1}, \varphi\right)$.

Proof. By Theorem 2.2. $\left(h(1, q, \varphi) \rightarrow h\left(p, q_{0}, \varphi\right)\right)$ is the set of all $g \in h(U)$ such that $D^{\varphi} g \in\left(h^{1} \rightarrow h^{p}\right)\left(q_{1}, \varphi\right)$. Since $\left(h^{1} \rightarrow h^{p}\right)=\left(h^{p^{\prime}} \rightarrow h^{\infty}\right)=h^{p}$ we see that (i) \Leftrightarrow (iii). The proof. of (ii) \Leftrightarrow (iii) is the same.

Corollary 3.1. If $p \geq 1$ then the set

$$
M(p, \varphi):=(h(p, q, \varphi) \rightarrow h(p, q, \varphi))
$$

is independent of q. Furthermore

$$
\begin{equation*}
M(\infty, \varphi)=M(1, \varphi)=\left\{g \in h(U): D^{\varphi} g \in h(1, \infty, \varphi)\right\} \tag{3.1}
\end{equation*}
$$

Shields and Williams [16] proved that (3.1) holds provided that varphi satisfies some regularity conditions.

The set $M(p, \varphi)$ is an algebra with unit. It follows from Theorem 2.2 and the equality $\left(h^{p} \rightarrow h^{p}\right)=\left(h^{p^{\prime}} \rightarrow h^{p^{\prime}}\right)$ that $M(p, \varphi)=M\left(p^{\prime}, \varphi\right)$. It is clear that $M(2, \varphi)=\{g \in h(U): \hat{g}$ is bounded $\}$. Concerning the set $M(p, \varphi)$ we can only prove that it increases with $p \in[1,2]$.

Proposition 3.1. If $1 \leq p \leq s \leq 2$ then $M(p, \varphi) \subset M(s, \varphi)$.
Proof. It is trivial to check that $\left(h^{p} \rightarrow h^{p}\right) \subset\left(h^{2} \rightarrow h^{2}\right)$. By the Riesz-Thorin theorem, $\left(h^{p} \rightarrow h^{p}\right) \subset\left(h^{s} \rightarrow h^{s}\right)$ if $p \leq s \leq 2$. Now if g is in $M(p, \varphi)$ then by Theorem 2.2, $D^{\varphi} g \in\left(h^{p} \rightarrow h^{p}\right)(\infty, \varphi) \subset\left(h^{s} \rightarrow h^{s}\right)(\infty, \varphi)$, and this concludes the proof.

In [16] Shields and Williams posed the question: If the spaces $h(\infty, \infty, \varphi)$ and $h(\infty, \infty, \psi)$ have the same set of multipliers are they isomorphic via a multiplier transform? The answer is yes, as the following theorem shows.

THEOREM 3.2. If $M(\infty, \varphi)=M(\infty, \psi)$ then the operator $D_{\varphi} D^{\psi}$ acts as an isomorphism from $h(\infty, q, \varphi)$ onto $h(\infty, q, \psi)$.

Proof. By Theorem 1.2, it is enough to find a lacunary sequence $\left\{\lambda_{n}\right\}$ such that both $\left\{\varphi\left(\lambda_{n}\right)\right\}$ and $\left\{\psi\left(\lambda_{n}\right)\right\}$ are normal. Let

$$
g_{1}(z)=\sum_{0}^{\infty} z^{t_{n}} \text { and } g_{2}(z)=\sum_{0}^{\infty} z^{s_{n}}, \quad z \in U
$$

where $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ are lacunary sequences of integers such that $\left\{\varphi\left(t_{n}\right)\right\}$ and $\left\{\psi\left(s_{n}\right)\right\}$ are normal. By the well-known fact on lacunary trigonometric series,

$$
M_{1}\left(r, D^{\psi} g_{2}\right) \sim\left\{\sum_{0}^{\infty} \psi\left(s_{n}\right)^{2} r^{2 s_{n}}\right\}^{1 / 2}, \quad 0<r<1
$$

Hence, by Lemma 3.1 of Part I, $M_{1}\left(r, D^{\psi} g_{2}\right) \leq C / \psi(1-r)$, i.e., $D^{\psi} g_{2} \in h(1, \infty, \psi)$. Therefore $g_{2} \in M(\infty, \psi)$, by (3.1). Using this and the hypothesis $M(\infty, \varphi)=$ $M(\infty, \varphi)$ we conclude that $g_{2} \in M(\infty, \varphi)$. Hence, by (3.1), $D^{\psi} g_{2} \in h(1, \infty, \varphi)$, i.e.,

$$
\left\{\sum_{0}^{\infty} \varphi\left(s_{n}\right)^{2} r^{2 s_{n}}\right\}^{1 / 2} \leq C / \varphi(1-r)
$$

This implies

$$
\sum_{T_{n}} \varphi\left(s_{k}\right)^{2} \leq C \varphi\left(t_{n}\right)^{2}, \quad n \geq 0
$$

where $T_{n}=\left\{k: t_{n} \leq s_{k}<t_{n+1}\right\}$. Since $\varphi\left(t_{n}\right)$ leq $\varphi\left(s_{k}\right) \leq \varphi\left(t_{n+1}\right) \leq C \varphi\left(t_{n}\right)$ for $k \in T_{n}$, we conclude that card $\left(T_{n}\right) \leq C<\infty, n \geq 0$. Using this and the analogous fact for the sets $\left\{k: s_{n} \leq t_{k}<s_{n+1}\right\}$ we find a positive integer m such that for all $n \geq 0, j \geq 1$

$$
\begin{align*}
\operatorname{card}\left\{k: t_{n} \leq s_{k}<t_{n+j}\right\} & \leq m j \tag{i}\\
\operatorname{card}\left\{k: s_{n} \leq t_{k}<s_{n+j}\right\} & \leq m j
\end{align*}
$$

Put $\lambda_{k}=t_{k m}, k \geq 0$. It is easy to see that the sequence $\left\{\varphi\left(\lambda_{k}\right)\right\}$ is normal. Let k_{0} be such that $t_{k_{0} m} \geq s_{0}$. If $k>k_{0}$ choose n so that $s_{n} \leq t_{k m}<s_{n+1}$. Then, by (ii), $\lambda_{k+j}=t_{k m+j m} \geq s_{n+j}$ and, consequently,

$$
\psi\left(\lambda_{k+j}\right) / \psi\left(\lambda_{k}\right) \geq \psi\left(s_{n+j}\right) / \psi\left(s_{n+1}\right) \geq c a^{j}
$$

where $a>1$ and $c>0$ are constants. (Here we have used the hypothesis that $\left\{\psi\left(s_{n}\right)\right\}$ is normal.) On the other hand, it follows from (i) that $s_{n+m+1} \geq t_{k m+m}=$ λ_{k+1}. Hence

$$
\psi\left(\lambda_{k+1}\right) / \psi\left(\lambda_{k}\right) \leq \psi\left(s_{n+m+1}\right) / \psi\left(s_{n}\right) \leq C
$$

Thus the sequence $\left\{\psi\left(\lambda_{k}\right)\right\}$ is normal, what was to be proved.
As a further application of the equality (3.1) we have the following characterization of self-conjugate spaces. The space $h(p, q, \varphi)$ is said to be self-conjugate if

$$
f \in h(p, q, \varphi) \text { implies } \sum_{n=0}^{\infty} \hat{f}(n) z^{n} \in h(p, q, \varphi)
$$

If $1<p<\infty$ then $h(p, q, \varphi)$ is self-conjugate because of the Riesz theorem. Hardy and Littlewood [7, 9] proved that $h(p, \infty, \alpha)$ is self-conjugate for any $p>0$. For further information see $[5,6]$.

Theorem 3.3. For every $q \in(0, \infty]$ the following statements are equivalent.
(i) $h(1, q, \varphi)$ is self-conjugate;
(ii) $h(\infty, q, \varphi)$ is self-conjugate;
(iii) φ is a normal function.

Proof. Observe that $h(p, q, \varphi)$ is self-conjugate if and only if the function $\sum_{0}^{\infty} z^{n}$ belongs to $M(p, \varphi)$. Since $M(1, \varphi)=M(\infty, \varphi)$ we see that (i) \Leftrightarrow (ii). Assuming (iii) we have to prove that $D^{\varphi} h \in H(1, \infty, \varphi)$, where $h(z)=1 /(1-$ $z)=-\sum_{0}^{\infty} z^{n}$. By Theorem 1.2, this is equivalent with $D^{1} h \in H(1, \infty, 1)$. Since $D^{1} h(z)=(1-z)^{-2}$ we have $M_{1}\left(r, D^{1} h\right)=\left(1-r^{2}\right)^{-1}$, and this gives the desired result.

To prove that (i) implies (iii) we use the inequality

$$
\|f\|_{1} \geq \frac{1}{\pi} \sum_{0}^{\infty}(n+1)^{-1}|\hat{f}(n)|, \quad f \in H^{1},
$$

[3, Theorem 6.1]. In particular,

$$
M_{1}\left(r, D^{\varphi} h\right) \geq \frac{1}{\pi} \sum_{0}^{\infty}(n+1)^{-1} \varphi(n+1) r^{n}, 0<r<1
$$

Thus if (i) holds then $\sum_{0}^{\infty}(n+1)^{-1} \varphi(n+1) r^{n} \leq c / \varphi(1-r)$. This implies

$$
\varphi\left(\lambda_{k}\right) \sum_{n=\lambda_{k}}^{\lambda_{k+1}}(n+1)^{-1} \leq C / \varphi\left(1 / \lambda_{k+1}\right), \quad k \geq 0
$$

where $\left\{\lambda_{k}\right\}$ is a lacunary sequence of integers such that $\varphi\left(\lambda_{k}\right) \sim 2^{k}$, i.e. $\varphi\left(1 / \lambda_{k}\right) \sim$ 2^{-k}. (See Proposition 3.2 Part I.) It follows that $\lambda_{k+1} / \lambda_{k} \leq C, k \geq 0$. By using this one shows that $\varphi^{-}(2 t) \leq C \varphi^{-}(t), t>0$, where φ^{-}is the inverse function. Hence $\varphi^{-}(t / C) \leq \varphi(t) / 2$, and this concludes the proof of the theorem.

4. Multipliers from $H(p, q, \alpha)$ to $H\left(p_{0}, q_{0}, \alpha\right)$

Let α be a positive real number. A function $f \in H(U)$ ($=$ the class of analytic functions) belongs to $H(p, q, \alpha)=H^{p}(q, \alpha)$ if and only if

$$
\left\{\int_{0}^{1}(1-r)^{q \alpha-1} M_{p}^{q}(r, f) d r\right\}^{1 / q}<\infty
$$

If $q=\infty$ this should be read as

$$
\sup _{0<r<1}(1-r)^{\alpha} M_{p}(r, f)<\infty
$$

The main results of this section is the following.
Theorem 4.1. Let $p \leq 1, p_{0} \geq p$ and $0<q, q_{0} \leq \infty$. A function $g \in H(U)$ is a multiplier from $H(p, q, \alpha)$ to $H\left(p_{0}, q_{0}, \alpha\right)$ if and only if $D^{1 / p} g \in H\left(p_{0}, q_{1}, 1\right)$.

Here, as before, $q_{1}=\infty\left(q \leq q_{0}\right) ; q_{1}=q_{0}(q=\infty) ; q_{1}=q q_{0} /\left(q-q_{0}\right)$ if $q_{0}<q<\infty$.

Note that $D^{1 / p} g \in H\left(p_{0}, q_{1}, 1\right)$ if and only if

$$
\left\{\int_{0}^{1}(1-r)^{q_{1}-1} M_{p_{0}}^{q_{1}}\left(r, d^{1 / P} g\right) d r\right\}^{1 / q_{1}}<\infty
$$

Corollary 4.1. Let $p \leq 1$. Then g is a multiplier from $H(p, q, \alpha)$ to itself if and only if $M_{p}\left(r, D^{1 / p} g\right) \leq C /(l-r), 0<r<1$.

This generalizes a result of Duren and Shields [4] ($p=q=1$).
Let N be a positive integer and choose a sequence $W=\left\{w_{n}\right\}_{0}^{\infty}$ of harmonic polynomials such that $W \in\left(N,\left\{2^{n}\right\}_{1}^{\infty}\right)$ (see Introduction) and for all $p>1 /(N+1)$ and $q>0$

$$
\|f\|_{H(p, q, \alpha)} \sim\left\{\sum_{0}^{\infty}\left[2^{-n \alpha}\left\|w_{p} * f\right\|_{p}\right]^{q}\right\}^{1 / q} \quad f \in H(U)
$$

where $\|\cdot\|_{p}$ stands for the norm of H^{p}. Since

$$
w_{n} * f(z)=\sum_{j=2^{n-1}}^{2^{n+N}} \hat{w}_{n}(j) \hat{f}(j) z^{j}
$$

we have, by Lemma 3.1 [11],

$$
r^{2 n+N}\left\|w_{n} * f\right\|_{p} \leq M_{p}\left(r, w_{n} * f\right) \leq r^{2 n-1}\left\|w_{n} * f\right\|_{p}
$$

($n \geq 1,0<r<1$). After elementary calculations it follows that

$$
2^{-n \alpha}\left\|w_{n} * f\right\|_{p} \sim\left\|w_{n} * f\right\|_{H(p, s, \alpha)}, \quad f \in H(U), \quad n \geq 0
$$

where s is an arbitrary positive number or ∞. Thus we have the following.
Theorem 4.2. Let $p>1 /(N+1), 0<q \leq \infty$ and $0<s \leq \infty$. Then

$$
H(p, q, \alpha)=H(p, s, \alpha)[q, W]
$$

Observe that the polynomials w_{n} are independent of p, q, s.
Combining Theorems 4.2 and 2.1 wc get the identity

$$
\begin{equation*}
\left(H(p, q, \alpha) \rightarrow H\left(p_{0}, q_{0}, \beta\right)\right)=\left(H(p, \infty, \alpha) \rightarrow H\left(p_{0}, \infty, \beta\right)\right)\left[q_{1}, W\right) \tag{4.1}
\end{equation*}
$$

which shows that the general case of Theorem 4.1 follows from the special case $q_{0}=q=\infty$.

Proof of Theorem 4.1. Let g be a multiplier from $H(p, \infty, \alpha)$ to $H\left(p_{0}, \infty, \alpha\right)$.
Then

$$
\left\|g * f_{r}\right\|_{H\left(p_{0}, \infty, \alpha\right)} \leq C\left\|f_{r}\right\|_{H}(p, \infty, \alpha), \quad 0<r<1
$$

where $f(z)=\sum_{n=0}^{\infty}(n+1)^{m-1} z^{n}$, and m is an integer such that $\alpha+1 / p-m<0$. It is easily verified that $f(z)(1-z)^{m}$ is a polynomial. Therefore

$$
M_{p}^{p}(\rho, f) \leq C \int_{|z|=1}|1-\rho z|^{-p m}|d z|, \quad 0<\rho<1
$$

If we put $z=(\zeta+\rho) /(1+\rho \zeta)$ we see that the last integral equals

$$
\left(1-\rho^{2}\right)^{1-p m} \int_{|\zeta|=1}|1+\rho \zeta|^{p m-2}|d \zeta|
$$

Since $p m-2>-1$ we find $M_{p}(\rho, f) \leq C(1-\rho)^{1 / p m}, 0<\rho<1$, whence

$$
\begin{aligned}
& \left\|f_{r}\right\|_{H(p, \infty, \alpha)} \leq C \sup _{\rho}(1-\rho)^{\alpha}(1-\rho r)^{1 / p-m} \\
& \leq C \sup -\rho(1-\rho r)^{\alpha}(1-\rho r)^{1 / p-m} \\
& \leq C(1-r)^{\alpha+1 / p-m}, \quad 0<r<1 .
\end{aligned}
$$

It follows that

$$
(1-r)^{\alpha} M_{p_{0}}\left(r^{2}, f * g\right) \leq\left\|g * f_{r}\right\|_{H\left(p_{0}, \infty, \alpha\right)} \leq C(1-r)^{\alpha+1 / p-m}
$$

i.e. $D^{m-1} g=f * g \in H\left(p_{0}, \infty, m-1 / p\right)$. Applying Theorem HLF, quoted in Introduction) we conclude that $D^{1 / p} g \in H\left(p_{0}, \infty, 1\right)$.

To continue the proof we need the following lemma,
Lemma 4.1 [13]. Let $f \in H^{p}, 0<p \leq 1$, and $g \in H_{q}, q \geq p$. Then

$$
M_{q}(r, f * g) \leq(1-r)^{1-1 / p}\|f\|_{p}\|g\|_{q}, \quad 0<r<1
$$

We return to the proof of Theorem 4.1. Let $D^{1 / p} g \in H\left(p_{0}, \infty, 1\right)$ and $f \in$ $H(p, \infty, \alpha), p \leq 1, p_{0} \geq p$. We have to prove that $h:=f * g$ belongs to $H\left(p_{0}, \infty, \alpha\right)$. We have, by the lemma,

$$
M_{p_{0}}\left(r^{3}, D^{1 / p} h\right)=M_{p_{0}}\left(r, f_{r} * D^{1 / p} g_{r}\right) \leq(1-r)^{1-1 / p}\left\|f_{r}\right\|_{p}\left\|D^{1 / p} g_{r}\right\|_{p_{0}}
$$

It follows from the hypotheses that $\left\|f_{r}\right\|_{p} \leq C(1-r)^{-\alpha}$ and $\left\|D^{1 / p} g_{r}\right\|_{p_{0}} \leq C(1-$ $r)^{-1}$, so that $M_{p_{0}}\left(r^{3}, D^{1 / p} h\right) \leq C(1-r)^{-\alpha-1 / p}$, i.e. $D^{1 / p} h \in H\left(p_{0}, \infty, a+1 / p\right)$. Hence $h \in H\left(p_{0}, \infty, 1\right)$, by Theorem HLF.

The preceding discussion shows that $D^{1 / p}$ is an isomorphism of the space $\left(H(p, \infty, \alpha) \rightarrow H\left(p_{0}, \infty, \alpha\right)\right)$ onto $H(p, \infty, 1)$. By using (4.1) we conclude that, if $p, p_{0}>1 /(N+1)$, then $D^{1 / p}$ is an isomorphism of $\left(H(p, q, \alpha) \rightarrow H\left(p_{0}, q_{0}, \alpha\right)\right)$ onto $H\left(p_{0}, \infty, 1\right)\left[q_{1}, W\right]$. But the last space is equal to $H\left(p_{0}, q_{1}, 1\right)$, by Theorem 4.2. This completes the proof of Theorem 4.1.

5. Multipliers into l^{p} spaces

A complex sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is of class $l(p, q)(0<p, q \leq \infty)$ if

$$
\left\{\left(\sum_{J_{n}}\left|a_{j}\right|^{p}\right)^{1 / o}\right\}_{n=0}^{\infty} \in l^{q}
$$

where $J_{0}=\{0\}$ and $J_{n}=\left\{j: 2^{n-1} \leq j<2^{n}\right\}, n \geq 1$. It is easily checked that if $\left\{a_{n}\right\}$ is in $l(p, q)$ then the function $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ in analytic in the unit disc. Therefore $l(p, q)$ may be treated as a space of analytic functions. Furthermore, $l(p, q)$ is an A-space (with the obvious quasi-norm). Note that $l^{p}=l(p, p)$.

Let N and W be as in Section 4. Then we have $\left\|w_{n} * f\right\|_{x} \leq C\|f\|_{x}$, where $X=H(\infty, q, \alpha)$ and C is independent of f, n. In particular, taking $f(z)=z^{j}$ we see that $\hat{w}_{n}(j) \mid \leq C, j, n \geq 0$. Using this one can easily prove the following.

Lemma 5.1. $l(p, q)=l^{p}[g, W]$ for all $p, q>0$.
Now we can. use Theorem 2.1 and 4.2 to obtain

$$
\left(H(p, q, \alpha) \rightarrow l\left(p_{0}, q_{0}\right)\right)=\left(H(p, \infty, \alpha) \rightarrow l^{p_{0}}\right)\left[q_{1}, W\right]
$$

where $p>1 /(N+1)$. If $p \leq 1$ then the space $\left.H(p, \infty, \alpha) \rightarrow l^{p_{0}}\right)$ is easily determined and is isomorphic to $l^{p_{0}}$, via the operator $D^{\alpha+1 / p-1}$. See [12]. In the special case $p_{0}=q_{0}=s$ we have the following result.

Theorem 5.1. Let $p \leq 1$ and $0<s \leq \infty$. A function $g \in H(U)$ is a multiplier from $H(p, q, \alpha)$ to l^{s} if and only if

$$
\left\{(n+1)^{\alpha+1 / p-1} \hat{g}(n)\right\}_{n=0}^{\infty} \in l\left(s, q_{1}\right)
$$

where $q_{1}=\infty$ if $s \geq q ; q_{1}=q s /(q-s)$ if $s<q$.
Some special cases of this theorem were proved by Ahern and Jevtić [1] ($p=$ $1, s>1)$ and Mateljević and Pavlović [12] ($p<1, s \geq q$).

6. Problems

Let φ be a normal function and $\alpha>0$.
Problem 1. Find a function $g \in H(U)$ (if it exists) such that, for all p, q, the map $f \mapsto f * g$ is an isomorphism from $H(p, q, \varphi)$ onto $H(p, q, \alpha)$.

Note that the form of g should be independent of $p>0$.
By using the complex maximal theorem and our results this problem is easily reduced to the following.

Problem 2. Does there exist an equivalent function ψ such that

$$
\psi(1 / t)=\int_{0}^{1} r^{t} d \eta(r) \text { and } t^{-m} / \psi(1 / t)=\int_{0}^{1} r^{t} d \mu(r), \quad t>1
$$

for some positive Borel measures η, μ and some integer $m>0$?
Added in proof: The author solved Problem 1 above.

REFERENCES

[1] P. Ahern and M. Jevtić, Duality and multipliers for mixed norm spaces, Michigan Math. J. 30 (1983), 53-64.
[2] G. Bennet, D.A. Stegenga and R.M. Timoney, Coefficients of Bloch and Lipschitz functions, Illinois J. Math. 25 (1981), 520-531.
[3] P.L. Duren, Theory of Hp spaces, Academic Press, 1970.
[4] P.L. Duren and A.L. Shields, Coefficient multipliers of H^{p} and B^{p} spaces, Pacific J. Math. 32 (1970), 69-78.
[5] T.M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1970) 125-158.
[6] T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, ibid. 38 (1972), 746-765.
[7] G.H. Hardy and J.E. Littlewood, Some properties of conjugate functions, J. für Math. 167 (1931) 405-423.
[8] G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403-439.
[9] G.H. Hardy and J.E. Littlewood, Theorems concerning mean values of analytic and harmonic functions, Quart. J. Math. 12 (1941), 221-256.
[10] C.N. Kellogg, An extension of the Hausdorff-Yong theorem, Mich. Math. J. 18 (1971), 121-127.
[11] M. Mateljević and M. Pavlović, L^{p}-behaviour of the integral means of analytic functions, Studia Math. 77 (1984), 219-237.
[12] M. Mateljević and M. Pavlović, Duality and multipliers in Lipschitz spaces, Proc. Internat Conf. Complex Anal. Appl. '83 (Sofia, 1985).
[13] M. Pavlović. An inequality for the integral means of an Hadamard product (to appear).
[14] M. Pavlović, Mixed norm spaces of analytic and harmonic functions, I, Publ. Inst. Math. (Beograd) 40 (54) (1986).
[15] A.L. Shields and D.L. Williams, Bounded projections duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
[16] A.L. Shields and D.L. Williams, Bounded projections duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279.

Odsek za matematiku

[^0]: AMS Subject Classification (1980): Primary 46E15, 30H05.

