ON APPROXIMATION OF INTEGRABLE FUNCTIONS BY MODIFIED BERNSTEIN POLYNOMIALS

Suresh Prasad Singh

$$
\begin{align*}
& \text { Abstract. We introduce a class of positive linear operators defined for functions integrable } \\
& \text { on the simplex } \Delta=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 1\right\} \text { and study some approximations } \\
& \text { theorems on it. } \\
& \text { 1. Introduction. Recently Derriennic [2] gave some results on approxima- } \\
& \text { tions of a function } \mathrm{f} \text { integrable on [0,1] by the modified Bernstein polynomials of } \\
& \text { order } n \text { defined by } \\
& \qquad\left(B_{n} f\right)(x)=(n+1) \sum_{k=0}^{n} P_{n k}(x) \int_{0}^{1} P_{n k}(t) f(t) d t \tag{1.1}\\
& \qquad P_{n k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}
\end{align*}
$$

Denoting by $X=X\left(x_{1}, x 2\right)$, a point in the simplex $\Delta=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2} \geq\right.$ $\left.0, x_{1}+x_{2} \leq\right\}$ and writing $f(V)$ for $f\left(v_{1}, v_{2}\right)$, we define a new class of positive linear operators of order n by

$$
\begin{equation*}
\left(L_{n} f\right)(X)=\frac{(n+2)!}{n!} \sum_{k=0}^{n} \sum_{l=0}^{n-k} p_{n k l}(X) \iint_{\Delta} p_{n k l}(V) d v_{1} d v_{2} \tag{1.2}
\end{equation*}
$$

where $p_{n k l}(X)=\binom{n}{k}\binom{n-k}{l} x_{1}^{k} x_{2}^{l}\left(1-x_{1}-x_{2}\right)^{n-k-l}$. In this paper we prove some results on approximation of a function f integrable on the simplex Δ by the polynomials (1.2).
2. Basic Propositions. Proposition 1. For $n \leq 1,(p, q=O, 1,2 \ldots)$, one obtains

$$
\left(L_{n} v_{1}^{p} v_{2}^{q}\right)(X)=\frac{(n-2)!}{(n+p+g+2)!} \sum_{r=0}^{p}\binom{p!}{r} x_{1}^{r}\left[\sum_{l=0}^{q}\binom{q}{l} \frac{q!}{l!} x_{2}^{l} \ldots \frac{n!}{(n-r-l)!}\right] .
$$

In particular we get

$$
\begin{gather*}
\left(L_{n} l\right)(X)=1, \quad\left(L_{n} v_{i}\right)(X)=\left(l+n x_{i}\right) /(n+3) \\
\left(L_{n} v_{i}^{2}\right)(X)=\left(2+4 n x_{i}+n(n-1) x_{i}^{2}\right) /(n+3)(n+4) ; \quad(i=1,2) \tag{2.3}
\end{gather*}
$$

Proof. From definition (1.2), we get

$$
\begin{aligned}
& I=\left(L_{n} v_{1}^{p} v_{2}^{q}(X)=\frac{(n+2)!}{n!} \sum_{k=0}^{n} \sum_{l=0}^{n-k} p_{n k l}(X) \iint_{\Delta} p_{n k l}(V) v_{1}^{p} v_{2}^{q} d v_{1} d v_{2}\right. \\
& \quad \frac{(n+2)!}{n!} \sum_{k=0}^{n} \sum_{l=0}^{n-k} p_{n k l}(X) \frac{n!}{k!l!(n-k-l)!} \iint_{\Delta} v_{1}^{k+p} v_{2}^{l+q}\left(1-v_{1}-v_{2}\right)^{n-k-l} d v_{1} d v_{2}
\end{aligned}
$$

Now the transformation $v_{1}=t_{1} t_{2}, v_{2}=t_{1}\left(1-t_{2}\right)$, so that

$$
d v_{1}, d v_{2}=\left|\partial\left(v_{1}, v_{2}\right) / \partial\left(t_{1}, t_{2}\right)\right| d t_{1} d t_{2}
$$

reduces I to

$$
\begin{align*}
I & =\frac{(n+2)!}{(n+p+q+2)!} \sum_{k=0}^{n} \sum_{l=0}^{n-k} p_{n k l}(X) \frac{n!}{k!(n-k-l) l!} \\
& \cdot \int_{0}^{1} \int_{0}^{1} t_{1}^{k+l+p+q+1}\left(1-t_{1}\right)^{n-k-l} d t_{1} t_{2}^{k+p}\left(1-t_{2}\right)^{k+q} d t_{2} \tag{2.4}\\
& =\frac{(n+2)!}{(n+p+q+2)!} \sum_{k=0}^{n} \sum_{l=0}^{n-k} p_{n k l}(X) \frac{(k+p)!(l+q)!}{k!q!} \\
& =((n+2)!/(n+p+q+2)!) S
\end{align*}
$$

Now we use the expression

$$
\begin{equation*}
\left(\partial^{p+q} / \partial x_{1}^{p} \partial x_{2}^{q}\right) x_{1}^{p} x_{2}^{q}\left(x_{1}+x_{2}+y\right)^{n} \tag{2.5}
\end{equation*}
$$

to evaluate (2.4) Clearly

$$
\begin{align*}
& \left.\left(\partial^{p+q} / \partial x_{1}^{p} \partial x_{2}^{q}\right)\right) x_{1}^{p} x_{2}^{q}\left(x_{1}+x_{2}+y\right)^{n} \\
= & \sum_{k=0}^{n}\binom{n}{k} x_{1}^{k} \frac{(k+p)!}{k!}\left[\frac{\partial^{q}}{\partial x_{2}^{q}}\left\{x_{2}^{q}\left(x_{2}+y\right)^{n-k}\right\}\right] \tag{2.6}\\
= & \sum_{k=0}^{n}\binom{n}{k} x_{1}^{k} \frac{(k+p)!}{k!} \sum_{l=0}^{n-k}\binom{n-k}{l} x_{2}^{l} y^{n-k-l} \frac{(l+q)!}{l!} .
\end{align*}
$$

Again differentiating (2.5) by Leibnitz theorem, we get

$$
\begin{align*}
& \left.\left(\partial^{p+q} / \partial x_{1}^{p} \partial x_{2}^{q}\right)\right) x_{1}^{p} x_{2}^{q}\left(x_{1}+x_{2}+y\right)^{n} \\
& =\sum_{r=0}^{p}\binom{p}{r} \frac{p!}{r!} x_{1}^{r} \frac{n!}{(n-r)!}\left\{\frac{\partial^{q}}{\partial x_{2}^{q}} x_{2}^{q}\left(x_{1}+x_{2}+y\right)^{n-r}\right\} \tag{2.7}\\
& =\sum_{r=0}^{p}\binom{p}{r} \frac{p!}{r!} x_{1}^{r} \frac{n!}{(n-r)!}\left[\sum_{l=0}^{q}\binom{q}{l} \frac{q!}{l!} x_{2}^{l} \frac{(n-r)!}{(n-r-0)!}\left(x_{1}+x_{2}+y\right)^{n-r-l}\right]
\end{align*}
$$

Now putting $y=l-x_{1}-x_{2}$ in the expressions (2.6) and (2.7) and thus putting the value of S in (2.4), we get the required result.

Proposition 2. For $n \geq 1$ and $i, j \in\{1,2\}$ we have

$$
\begin{align*}
& L_{n}\left(v_{i}-x_{i}\right)(X)=1-3 x_{i} /(n+3) \tag{2.8}\\
& L_{n}\left(v_{i}-x_{i}\right)^{2}(X)=2 n x_{i}(1-x i) /(n+3)(n+4)+O\left(n^{-2}\right) \tag{2.9}\\
& L_{n}\left(v_{i}-x_{i}\right)\left(v_{j}-x_{j}\right)(X)=-2 x_{i} x_{j} n /(n+3)(n+4)+O\left(n^{-2}\right), \quad i \neq j \tag{2.10}\\
& L_{n}\left(v_{i}-x_{i}\right)^{2}\left(v_{j}-x_{j}\right)(X)=O\left(n^{-2}\right), \quad i \neq j \tag{2.11}\\
& L_{n}\left(v_{i}-x_{i}\right)^{4}(X)=O\left(n^{-2}\right) \tag{2.12}
\end{align*}
$$

Proof. Applying (2.1), by easy calculations we get the results (2.8) to (2.12).
Proposition 3. For $n \geq 1$ and $X \in \Delta$, we have

$$
\begin{equation*}
L_{n}\left(\sum_{i=1}^{2}\left(v_{i}-x_{i}\right)^{2}\right)(X) \leq \frac{\max (8, n+2)}{(n+3)(n+4)}=C n \quad(s a y) \tag{2.1.3}
\end{equation*}
$$

Proof. We get from (2.3) that

$$
\begin{align*}
& L_{n}\left(\sum_{i=1}^{2}\left(v_{i}-v_{i}\right)^{2}\right)(X) \tag{2.14}\\
& =\left[(2 n-8)\left\{x_{1}\left(1-x_{1}\right)+x_{2}\left(1-x_{2}\right)\right\}+4\left(1+x_{1}^{2}+x_{2}^{2}\right)\right] /(n+3)(n+4) \\
& =T /(n+3)(n+4)
\end{align*}
$$

The maximum of the expression T on the simplex Δ for $n \geq 6$ occurs at $(1 / 2,1 / 2)$ and it is $(n+2)$. The maximum value of T for $1 \leq n<6$ is 8 .
3. Main Results. Theorem 1. If f is an integrable and bounded function on the simplex Δ which has continuous derivatives up to the second order at a point $X \in \Delta$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left\{\left(L_{n} f\right)(X)-f(X)\right\}=\sum_{i=1}^{2}\left\{\left(1-3 x_{i}\right) f_{i}^{\prime}+x_{i}(1-x i) f_{i}^{\prime \prime}\right\}-2 x_{1} x_{2} f_{x_{1} x_{2}}^{\prime \prime} \tag{3.1}
\end{equation*}
$$

Proof. Using Taylors's formula [3] for two variables, we write

$$
\begin{align*}
& f\left(V=f(X)+\sum_{i=1}^{2}\left(v_{i}-x_{i}\right) f_{i}^{\prime}+\right. \tag{3.2}\\
& +(1 / 2) \sum_{i, j=1}^{2}\left(v_{i}-x_{i}\right)\left(v_{i}-x_{j}\right)\left\{f_{i j}^{\prime}+\alpha_{i, j}\left(\left(v_{i}-x_{i}\right)\left(v_{i}-x_{j}\right), \quad\left(v_{j}-x_{j}\right)\right)\right\}
\end{align*}
$$

where $\alpha_{i, j}(0,0)=0 ; \alpha_{i, j}$ are integrable and bounded functions on the simplex Δ. Consequently for each $\varepsilon>0$, there exist positive numbers δ_{1} and δ_{j} such that $\left|\alpha_{i}\left(v_{i}-x_{i}, v_{j}-x_{j}\right)\right|<\varepsilon$ when ever $\left|v_{i}-x_{i}\right|<\delta_{i},\left|v_{i}-x_{j}\right|<\delta_{j}, 1 \leq i, j \leq 2$. Because of the boundedness of $\alpha_{i, j}$ on Δ, it follows that there exists $M>0$ such that $\left|\alpha_{i, j}\left(v_{i}-x_{i}, v_{j}-x_{j}\right)\right|<M, 1 \leq i, j \leq 2$. Now for every $\delta_{i}>0$, we define the function $\lambda_{\delta_{l}}\left(v_{l}\right)$ by

$$
\begin{aligned}
& \lambda_{\delta_{l}}\left(v_{l}\right)=1, \text { when }\left|v_{l}-x_{l}\right| \geq \delta_{l} \\
& =0, \text { when }\left|v_{l}-x_{l}\right|<\delta_{l}
\end{aligned}
$$

Thus for all $\left(v_{i}, v_{i}\right) \in \Delta$, the inequalities

$$
\begin{equation*}
\mid \alpha_{i, j}\left(v_{i}-x_{i}, v_{j}-x_{j}\right) \leq \varepsilon+M \lambda_{\delta_{i}}\left(v_{i}\right)+M \lambda_{\delta_{i}}\left(v_{i}\right), \quad(1 \leq i, j \leq 2) \tag{3.3}
\end{equation*}
$$

hold. Now in view of (2.8) to (2.12), (3.2) and (3.3) we get

$$
\left(L_{n} f\right)(X)=f(X)+\sum_{i=1}^{2}\left\{\left(1-3 x_{i}\right) f_{i}^{\prime}+x_{i}\left(1-x_{i}\right) f_{i}^{\prime \prime}\right\}-2 x_{1} x_{2} f_{x_{1} x_{2}}^{\prime \prime}+E_{n}\left(x_{1}, x_{2}\right)
$$

where

$$
\begin{aligned}
E_{n}\left(x_{1}, x_{2}\right) & =\frac{(n+2)!}{2 n!} \sum_{k=0}^{n} \sum_{l=0}^{n-k} p_{n k l}(X) \\
& \cdot \iint_{\Delta} p_{n k l}(V)\left\{\sum_{1 \leq i, j \leq 2}\left(v_{i}-x_{i}\right)\left(v_{i}-x_{j}\right) \alpha_{i, j}\left(v_{I}-x_{i}, v_{j}-x_{j}\right)\right\} d v_{1} d v_{2}
\end{aligned}
$$

It remains to show that $\left|n E_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Clearly

$$
\begin{aligned}
\left|n E n\left(x_{1}, x_{2}\right)\right| & \leq(n / 2) L_{n}\left[\varepsilon\left(v_{1}-x_{1}\right)^{2}+\varepsilon\left(v_{2}-x_{2}\right)^{2}+2 M\left(v_{1}-x_{1}\right)^{4} \delta_{1}^{-2}+\right. \\
& +2 M\left(v_{2}-x_{2}\right)^{4} \delta_{2}^{-2}+2\left(v_{1}-x_{1}\right)\left(v_{2}-x_{2}\right)\left\{\varepsilon+\left(v_{1}-x_{1}\right)^{2} \delta_{1}^{-2}+\right. \\
& \left.\left.+\left(v_{2}-x_{2}\right)^{2} \delta_{2}^{-2}\right\}\right](X)
\end{aligned}
$$

Choosing $\delta_{1}=\delta_{2}=n^{-1 / 4}$ and taking the limit as $n \rightarrow \infty$, we get $\left|n E n\left(x_{1}, x_{2}\right)\right| \leq 2 \varepsilon$. Since ε is arbitrary, we have $|n E n| \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 2. Let f be continuous in Δ and $\omega(f ; 1 / \sqrt{n})$ be its modulus of continuity. Then for $n \geq 1$:

$$
\begin{equation*}
\sup _{X \in \Delta}\left|\left(L_{n} f\right)(X)-f(X)\right| \leq\left(1+n C_{n}\right) \cdot \omega\left(f ; n^{-l / 2}\right), \tag{3.4}
\end{equation*}
$$

where C_{n} is given in (2.13).
Proof. We know that

$$
\left(L_{n} f\right)(X)-f(X)=\frac{(n+2)!}{2 n!} \sum_{k=0}^{n} \sum_{l=0}^{n-k} p_{n k l}(X) \iint_{\Delta} p_{n k l}(V)\{f(V)-f(X)\} d v_{1} d v_{1}
$$

Using the inequality

$$
\omega(f ; \delta)=\sup |f(V)-f(X)|, \quad \delta>0, \quad \sqrt{\left(v_{1}-x_{1}\right)^{2}+\left(v_{2}-x_{2}\right)^{2}} \leq \delta
$$

we get

$$
\left|\left(L_{n} f\right)(X)-f(X)\right| \leq \omega(f ; \delta)\left\{\left(L_{n} 1\right)(X)+\delta^{-2} L_{n}\left(\sum_{i=1}^{2}\left(v_{i}-x_{i}\right)^{2}\right)(X)\right\} .
$$

Taking $\delta=n$ and using (2.13), we get the required result.
it Remark. The result (3.4) can be obtained directly from Proposition 3 and Theorem 1 due to Censor [1].

Acknowledgment. The author is thankful to O. P. Varshney, University of Roorkee, for his constant inspiration and noble guidance.

REFERENCES

[1] E. Censor, Quantitative results for positive linear approximation operators, J. Approx. Theory 4 (1971), 442-450.
[2] M.M. Derriennic, Sur l'approximation de fonction intégrables sur $[0,1]$ pas des polynômes de Bernstein modifies, J. Aprox. Theory 31 (1981), 325-343.
[3] F. Schurer, On the approximation of functions of many variables with linear positive operators, Indag. Math. 25 (1963), 313-327.

