MERCERIAN THEOREMS FOR BEEKMANN MATRICES

Vladeta Vučković

To the memory of B. Martić

Abstract

A matrix $A=\left(a_{n k}\right)$ is called normal if $a_{n k}=0$ for $k>n$ and $a_{n n} \neq 0$ for all n. Such a matrix has a normal inverse $A^{-1}=\left(\alpha_{n k}\right)$. If Ihe inverse A^{-1} of a normal and regular matrix A satisfies the conditions $\alpha_{n k} \leq 0$ for $k<n$ and $\alpha_{n n}>0$ for all n, we call such a matrix a Beekmann matrix. Beekmann introduced those matrices and proved that for such a matrix A, the matrix $B=(I+\lambda A) /(1+\lambda)$ is Mercerian for $\lambda>-1$. (I is the identity matrix.)

This paper extends Beekmann's theorem to the case of R_{β}-Mercerian matrices, $\beta>0$.

1. Let $A=\left(a_{n k}\right)$ be a normal matrix, i.e., such that

$$
\begin{equation*}
a_{n k}=0 \text { for } k>n \text { and } a_{n n} \neq 0 \text { for all } n \tag{1.1}
\end{equation*}
$$

Such a matrix has a normal inverse $A^{-1}=\left(\alpha_{n k}\right)$, so that the transformations

$$
\begin{equation*}
y_{n}=\sum_{k=1}^{n} a_{n k} x_{k} \ldots, \quad n=2, \ldots \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n}=\sum_{k=1}^{n} \alpha_{n k} y_{k} \ldots, \quad n=1,2, \ldots \tag{1.3}
\end{equation*}
$$

are inverse one to the other.
If the inverse A^{-1} of a normal and regular matrix A satisfies the conditions

$$
\begin{equation*}
\alpha_{n k} \leq 0 \text { for } k<n \text { and } \alpha_{n n}>0 \text { for all } n \tag{1.4}
\end{equation*}
$$

we shall call such a matrix a Beekmann matrix.
Beekmann introduced those matrices in [1] and proved that for such a matrix A, the matrix $B=(I+\lambda A) /(1+\lambda)$ is Mercerian for $\lambda>-1$. (I is the matrix.)

[^0]The aim of this paper is to extend Beekmann's theorem to the case of R Mercerian matrices, $\beta \geq 0$.
2. A sequence s is said to be regularly varying iff

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(s_{[t n]} / s_{n}\right)=h(t) \tag{1.5}
\end{equation*}
$$

exists for every $t>0 . \quad([x]=$ the greatest integer $\leq x)$. Such sequences (and functions) were introduced by J. Karamata [2]; today they play an essential role in summability and probability. (1.5) implies that there is a real number β such that $h(t)=t^{\beta}$. The number β is called the order of s. In addition, a regularly varying sequence of "order 0" (i.e., for which the limit in (1.5) equals 1) is called a slowly varying sequence. It can be proved [2] that every regularly varying sequence s of order $\beta>0$ can be written in the form

$$
\begin{equation*}
s_{n}=n^{\beta} L(n) \tag{1.6}
\end{equation*}
$$

where L is a slowly varying sequence.
By $R_{\beta}, \beta>0$, we denote the class of regularly varying sequences of order β, and by R_{0} the class of slowly varying sequences.

At last, we say that a matrix A is R_{β}-regular $(\beta>0)$ iff for every $s \in R_{\beta}$ and any sequence r

$$
\begin{equation*}
r_{n} \sim s_{n} \text { implies } \sum_{k=1}^{n} a_{n k} r_{k} \sim s_{n}, \quad n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

and it is called R_{β}-Mercerian iff

$$
\begin{equation*}
\sum k=1^{n} a_{n k} r_{k} \sim s_{n} \text { implies } r_{n} \sim s_{n}, \quad n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

(Obviously, a matrix A is regular iff $r_{n} \rightarrow L$ implies $\sum_{k=1}^{n} a_{n k} r_{k} \rightarrow L$, and Mercerian iff $\sum_{k=1}^{n} a_{n k} r_{k} \rightarrow L$ implies $\left.r_{n} \rightarrow L, n \rightarrow \infty\right)$.
3. The R_{β}-regularity theorems for matrices were first established by M. Vuilleumier in [6]. The first R_{β}-Mercerian theorems for regular, invertible triangular matrices were established by S. Zimering in [3].

Using their results, B. Martić [5] proved the following.
Theorem M. Let $A=\left(a_{n k}\right)$ be normal, nonnegative (i.e. $a_{n k} \geq 0$) and regular matrix which, for some $\gamma>0$, satisfies the condition.

$$
\begin{equation*}
\sum_{k=1}^{n} a_{n k} k^{-\gamma}=O\left(n^{-\gamma}\right), n \rightarrow \infty \tag{3.1}
\end{equation*}
$$

Then the matrix $B=(I+\lambda A) /(1+\lambda)$, where I is the unit triangular matrix, is R_{0}-Mercerian for $|\lambda|<1$.
(Martic supposed $\sum_{k=1}^{n} a_{n k}=1$, but his proof is valid also in case $\sum_{k=1}^{n} a_{n k} \rightarrow 1$). Since, in case of a Beekmann matrix A, the conditions (1.4) imply

$$
\begin{equation*}
a_{n k} \geq 0 \text { for all } k<n \text { and } a_{n n}>0 \tag{3.2}
\end{equation*}
$$

we can apply Martić's theorem and obtain
Lemma. 3.1. If a Beekmann matrix A satisfies the condition (3.1) for some $\gamma>0$, then the matrix $B=(I+\lambda A) /(1+\lambda)$ is R_{0}-Merceriun for $|\lambda|<1$.

Lemma 3.1 reduces the proof of a general R_{0}-Mercerian theorem for Beekmann matrices to the case $\lambda \geq 1$. However, a method used by Tanović-Miller [4] and based upon the relations

$$
\begin{align*}
& \beta_{n k} \leq 0 \text { for } k<n \text { and } \beta_{n n}>0 \text { for all } n, \tag{3.3}\\
& \qquad \sum_{k=1}^{n} \beta_{n k} \rightarrow 1, n \rightarrow \infty \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\beta_{n k}\right| k^{-\gamma}=O\left(n^{-\gamma}\right), n \rightarrow \infty \tag{3.5}
\end{equation*}
$$

for the inverse B^{-1} of B above supplies readily the proof in this case. TanovićMiller considered non-negative, normal, normalized ($\sum_{k=1}^{n} a_{n k}=1$) matrices A, which satisfy the conditions

$$
\begin{equation*}
a_{n 1}>0, a_{n+1, i} a_{n k} \leq a_{n i} a_{n=1, k} \tag{3.6}
\end{equation*}
$$

for $1 \leq k \leq i \leq n-1$ and the condition (3.1). and from these derived (3.3)-(3.5). Once one has (3.3)-(3.5), the proof is a straightforward application of Theorem 4.1 of M. Vuillemier in [6].

Thus, if we prove that for a Beekmann matrix A, which satisfies (3.1), the inverse B^{-1} of $B=(I+\lambda A) /(1+\lambda)$ satisfies (3.3)-(3.5) for $\lambda>1$, Lemma 3.1 will be completed for all $\lambda>-1$.
4. Our main result is contained in

Theorem 4.1. If A is a Beekmann matrix and $B=(I+\lambda A) /(1+\lambda)$, then B is a Beekmann matrix for $\lambda>0$.

Proof. Let $A=\left(a_{n k}\right), A^{-1}\left(\alpha_{n k}\right), B=\left(b_{n k}\right)$ and $B^{-1}=\left(\beta_{n k}\right)$.
Let us remark that the transformations

$$
\begin{equation*}
y_{n}=\sum_{k=1}^{n} b_{n k} x_{k} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n}=\sum_{k=1}^{n} \beta_{n k} y_{k} \tag{4.2}
\end{equation*}
$$

are inverse.
Since $b_{n k}=\lambda a_{n k} /(I+\lambda)$ for $k<n$ and $b_{n n}=\left(1+\lambda a_{n n}\right) /(1+\lambda), b_{n k}=0$ for $k>n, B$ is normal and obviously regular. Thus B^{-1} exists and it is normal. Moreover, (4.1) and (4.2) are inverse and (1.2) and (1.3) are inverse.

The case $\lambda=0$ being trivial, let $\lambda>0$, and let $\varepsilon=(1+\lambda) / \lambda$. Obviously, $\varepsilon>1$.

We have for any sequence x,

$$
\sum_{k=1}^{n} a_{n k} x_{k}=\varepsilon b_{n k}-(\varepsilon-1) x_{n} ;
$$

introducing the sequence y, defined by (4.1). this gives

$$
\begin{equation*}
\sum_{k=1}^{n} a_{n k} x_{k}=\varepsilon y_{n}-(\varepsilon-1) x_{n} . \tag{4.3}
\end{equation*}
$$

If in (1.2) we replace y_{n} by $\varepsilon y_{n}-(\varepsilon-1) x_{n}$ and use (1.3), from (4.3) we obtain

$$
x_{n}=\varepsilon \sum_{k=1}^{n} \alpha_{n k} y_{k}-(\varepsilon-1) \sum_{k=1}^{n} a_{n k} x_{k}
$$

which, using in the second sum on the right side formula (4.2), yields, after some elementary computations,

$$
x_{n}=\sum_{k=1}^{n}\left\{\varepsilon \alpha_{n k}-(\varepsilon-1) \sum_{i=k}^{n} \alpha_{n i} \beta_{i k}\right\} y_{k} .
$$

From this and (4.2) we obtain at once

$$
\begin{equation*}
\beta_{n k}=\varepsilon \alpha_{n k}-(\varepsilon-1) \sum_{i=k}^{n} \alpha_{n i} \beta_{i k}, \tag{4.4}
\end{equation*}
$$

and, in particular, for $k=1,2, \ldots, n$,

$$
\begin{equation*}
\beta_{k k}=\left\{\varepsilon /\left(1+(\varepsilon-1) \alpha_{k k}\right)\right\} \alpha_{k k} \tag{4.5}
\end{equation*}
$$

and for $k \geq 2$

$$
\begin{equation*}
\left.\beta_{k, k-1}=\varepsilon \alpha ; p h a_{k, k-1} / 1\left(1+(\varepsilon-1) a_{k k}\right)\left(1+(\varepsilon-1) \alpha_{k-1, k-1}\right)\right\} . \tag{4.6}
\end{equation*}
$$

Now, solving (4.4) for $\beta_{n k}$ and using (4.5) we obtain, for $k=1,2, \ldots, n-2$

$$
\begin{equation*}
\beta_{n k}=\frac{\varepsilon}{\left(1+(-1) \alpha_{n n}\right)\left(1+(\varepsilon-1) \alpha_{k k}\right)} \alpha_{n k}-\frac{\varepsilon-1}{1+(\varepsilon-1) \alpha_{n n}} \sum_{i=k+1}^{n-1} \alpha_{n i} \beta_{i k} . \tag{4.7}
\end{equation*}
$$

Since $\alpha_{k k}>0$ and $\alpha_{k, k-1} \leq 0$ we conclude from (4.5) and (4.6) (with $k=n$) that $\beta_{n n}>0$ for all n and $\beta_{n, n-1} \leq 0$, for $n \geq 2$. Then, from (4.7) we conclude: if $\beta_{k+1, k}, \beta_{k+2, k}, \ldots, \beta_{n-1, k}$ are all ≤ 0 for $k<n$, then $\beta_{n k} \leq 0$ too, for $k=$ $1,2, \ldots, n-2$, which completes the proof of the theorem.

Corollary. 4.1.1. Let A be a Beekmann matrix which, for some $\gamma>0$, satisfies the condition (3.1). Then B^{-1}, the inverse of $B=(I+\lambda A) /(1+\lambda)$, satisfies the condition (3.5) for $\lambda \geq 0$.

Proof. We use notations of Theorem 4.1. If D is any matrix, by $(D)_{n k}$ we denote its element in n-th row and k-th column. δ_{n}^{k} denotes the Kronecker symbol ($=1$ if $k=n, 0$ otherwise).

Since

$$
\sum_{i=1}^{n} b_{n i} \beta_{i k}=\left(B B^{-1}\right)_{n k}=\delta_{n}^{k}
$$

we have, for $k<n$,

$$
\sum_{i=1}^{n-1} b_{n i} \beta_{i k}=-b_{n n} \beta_{n k}
$$

and, since $\beta_{n n}=1 / b_{n n}$,

$$
\begin{equation*}
-\beta_{n k}=\beta_{n n} \sum_{i=1}^{n-1} b_{n i} \beta_{i k} \tag{4.8}
\end{equation*}
$$

Taking into account the relations $\beta_{i k} \leq 0$ for $i \neq k(B$ is Beekmann, by Theorem 4.1), $b_{n i} \geq 0$ and $\beta_{k k}>0$, we obtain from (4.8), for $k<n$

$$
\begin{equation*}
-\beta_{n k} \leq \beta_{n n} b_{n k} \beta_{k k} \leq b_{n k}(1+\lambda)^{2} \tag{4.9}
\end{equation*}
$$

since

$$
\beta_{n n} \beta_{k k}=\frac{1+\lambda}{1+\lambda a_{n n}} \cdot \frac{1+\lambda}{1+\lambda a_{k k}} \leq(1+\lambda)^{2} .
$$

Using the relations between the elements of A and B, the fact that B is Beekmann, (3.1) and (4.9), we have:

$$
\sim_{k=1}^{n}\left|\beta_{n k}\right| k^{-\gamma}=\sum_{k=1}^{n-1}-\beta_{n k} k^{-\gamma}+\beta_{m n} n^{-\gamma} \leq(1+\lambda)^{2} \sum_{k=1}^{n-1} b_{n k} k^{-\gamma}+\frac{1+\lambda}{1+\lambda a_{n n}} n^{-\gamma}
$$

i.e.

$$
\sum_{k=1}^{n}\left|\beta_{n k}\right| k^{-\gamma} \leq \lambda(1+\lambda) \sum_{k=1}^{n-1} a_{n k} k^{-\gamma}+O\left(n^{-\gamma}\right)
$$

which, by (3.1), gives (3.5).
Corollary 4.1.2. The matrix B^{-1} of Theorem 4.1 satisfies (3.4.).

Proof. From (4.9) follows

$$
\left|\beta_{n k}\right| \leq(1+\lambda)^{2} b_{n k}, k<n
$$

i.e., (since B is regular) for every fixed $k,\left|\beta_{n k}\right| \rightarrow 0, n \rightarrow \infty$.

Also, by the same inequality and the fact that

$$
\beta_{n n}=1 / b_{n n}=\frac{1+\lambda}{1+\lambda a_{n n}}, \quad \sum_{k=1}^{n}\left|\beta_{n k}\right|<(1+\lambda)^{2} \sum_{k=1}^{n-1} b_{n k}+\frac{1+\lambda}{1+\lambda a_{n n}}
$$

and since B is regular, there is $M>0$ such that

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\beta_{n k}\right| \leq M \tag{4.10}
\end{equation*}
$$

Set now in (4.1) $x_{k}=1$ for all k, so that $y_{n}=\sum_{k=1}^{n} b_{n k}$ Then, by (4.2)

$$
1=\sum_{k=1}^{n} \beta_{n k} y_{k}
$$

and so

$$
1-\sum_{k=1}^{n} \beta_{n k}=\sum_{k=1}^{n} \beta_{n k}\left(y_{k}-1\right)
$$

Since $y_{k}-1 \rightarrow 0, k \rightarrow \infty$, by (4.10) and the fact that, for fixed $k, \mid \beta_{n k} \rightarrow 0$, $n \rightarrow \infty$ follows $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \beta_{n k}=1$ in usual way.

Remark. A consequence of the content of Corollary 4.1.2 is that B^{-1} is a regular matrix. Contrary to this, A^{-1} does not need to be regular. For example, for the matrix $A=(1 / n)_{k \leq n}$ of arithmetic means, $\alpha_{n k}=0$ for $k \leq n-2, \alpha_{n, n-1}=$ $-(n-1), a_{n n}=n$ and $\sum_{k=1}^{\bar{n}}\left|a_{n k}\right|=2 n-1$ is not bounded!
5. We are able now to prove the extensions of Beekmann's Mercerian Theorem to regularly varying functions.

Theorem. 5.1. Let A be Beekmann matrix, such that, for some $\gamma>0$,

$$
\begin{equation*}
\sum_{k=1}^{n} a_{n k} k^{-\gamma}=O\left(n^{-\gamma}\right), n \rightarrow \infty \tag{5.1}
\end{equation*}
$$

Then, for $\lambda>-1$, the matrix $B=(I+\lambda A) /(1+\lambda)$ is R_{0}-Mercerian.
Proof. Case $|\lambda|<1$ by Lemma 3.1. For $\lambda \geq 1$, by Theorem 4.1 and its Corollaries, B^{-1}, the inverse of B, satisfies all the conditions (3.3) - (3.5). By the remark at the end of section $3, B$ is R_{0}-Mercerian.

Since every regularly varying sequence s of order $\beta>0$, satisfies (1.6), applying Theorem 5.1 to the sequence $\left\{s_{n} / n^{\beta}\right\}$, we obtain, in a similar way as Martić in [5],

Theorem. 5.2. Let A be a Beekmann matrix such that there are two numbers α and $\beta, 0<\alpha<\beta$, for which

$$
\sum_{k=1}^{n} a_{n k}\left(\frac{k}{n}\right)^{\alpha} \rightarrow A_{\alpha}, \quad \text { and } \sum_{k=1}^{n} a_{n k}\left(\frac{k}{n}\right)^{\beta} \rightarrow A_{\beta}, n \rightarrow \infty
$$

Then, for every λ such that $1+\lambda A_{\alpha}>0$ and $1+\lambda A_{\beta}>0$, the matrix $B_{\beta}=$ $(I+\lambda A) /\left(1+\lambda A_{b}\right.$ eta) is R_{β}-Mercerian.

One should remark that conditions $1+\lambda A_{\alpha}>0$ and $1+\lambda A_{\beta}>0$ imply one another, depending on the sign of λ.

REFERENCES

[1] W. Beekmann, Mercer-Sätze für abschuittsbeschränkte Matrix-transformationen, Math. Zeit. 97 (1967), 154-157.
[2] J. Karamata, Sur un mode de croissance régulière, Bull. Soc. Math. France 61 (1933), 55-62.
[3] S. Zimering, Some Mercerian theorems for regularly varying sequences, Publ. Inst. Math. (Beograd) 15 (29) (1973), 791-177.
[4] N. Tanović-Miller, A Mercerian theorem for slowly varying sequences, Publ. Inst. Math. (Beograd) 28 (42) (1980), 203-208.
[5] B. Martić, Note on some Mercerian theorems, Publ. Inst. Math. (Beograd) 35 (49) (1984), 83-86
[6] M. Vuillemier, Comportement asymptotique des transformations linéaires des suites, Thèse, Univ. de Genève, 1966.

[^0]: AMS Subject Classification (1980): Primary 40C05.

