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INFLATION OF SEMIGROUPS

Stojan Bogdanovi�c and Svetozar Mili�c

Abstract. We introduce the concept of an n-in
ation of a semigroup. In particular, for
n = 1 we obtain the in
ation introduced by Cli�ord [6], and for n = 2 the strong in
ation
introduced by Petrich [10]. We also characterize n-in
ations of unions of groups, of semilattices of
groups of unions of periodic groups, etc. In addition, we describe nilpotent semigroups of arbitrary
nilpotency class.

1. Introduction and preliminaries

Let S and T be two disjoint semigroups and suppose that T has a zero element.
A semigroup V is said to be an (ideal) extension of S by T if it contains S as an
ideal and the Rees factor semigroup V=S is isomorphic to T . If, in addition, there
is a partial homomorphism ' : T n0! S such that for all A;B 2 T n0 and c; d 2 S:

A ÆB =

(
AB; if AB 6= 0 in T

'(A)'(B); if AB = 0 in T

A Æ c = '(A)c; c ÆA = c'(A); c Æ d = rd

we say that extension V is determined by that partial homomorphism, [6].

Let V be an extension of S. Than V is a retract extension if there exists a
homomorphism ' of V onto S and '(x) = x for all x 2 S. In this case we call ' a
retraction. Petrich [9] proved that an extension V of a semigroup S by a semigroup

T with zero is determined by a partial homomorphism if and only if V is a retract

extension of S. Here we give one more characterization of the retract extension.

Proposition 1.1. Let T be a semigroup. With each a 2 T associate a set Ya
such that

(1.1) a 2 Ya; Ya \ Yb = ; if a 6= b:

Let

(1.2) '(a;b) : Ya � Yb ! Yab
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'(a;b)(x; b) = '(a;b)(a; y) = ab for all x 2 Ya and y 2 Yb be functions for which

(1.3) '(ab;c)('(a;b)(x; y); z) = '(a;bc)(x; '(b;c)(y; z))

and de�ne a multiplication � on S =
S

a2T Ya by:

x � y = '(a;b)(x; y) if x 2 Ya; y 2 Yb:

Then (S; �) is a semigroup and S is a retract extension of T. Conversely, every

retract extension S of a semigroup T can be so constructed.

Proof. Suppose that S ful�lls the conditions of the proposition. Let x 2 Ya,
y 2 Yb, z 2 Tc. Then by (1.3) we have

(x � y) � z = '(a;b)(x; y) � z = '(ab;c)('(a;b)(x; y); z)

= '(a;ba)(x; '(b;c)(y; z)) = x � '(b;c)(y; z)

= x � (y � z):

Hence (S; �) is a semigroup. De�ne a mapping ' : S ! T by '(Ya) = a. It is clear
that ' is onto and that '(a) = a for a 2 T . Furthermore, for x 2 Ya, y 2 Yb we
have

'(x � y) = '('(a;b)(x; y)) = ab = '(x)'(y):

Thus ' is a homomorphism and by (1.2) T is an ideal of S. Therefore, S is a retract
extension of T .

Conversely, let S be a retract extension of T . Then there is a homomorphism
' of S onto T such that '(a) = a for all a 2 T . For a 2 T assume that Ya = '�1(a).
Then S =

S
a2T Ya and for the sets Ya (a 2 T ) the condition (1.1) is satis�ed.

For any x; y 2 S there exist a; b 2 T such that x 2 Ya, y 2 Yb, so that
'(x) = a; '(y) = b. From this it follows that

'(xy) = '(x)'(y) = ab 2 Yab

i.e. xy 2 Yab. Hence there exist the functions

'(a;b) : Ya � Yb ! Yab

and it is clear that for these functions (1.3) holds. Since T is an ideal of S we
have (1.2).

Cli�ord [6, p. 98] gave a construction for a special retract extension of a
semigroup, the so-called in
ation of a semigroup. A semigroup S is an in
ation of
a semigroup T if T is a subsemigroupof S and there is a mapping ' of S onto T
such that '(x) = x for x 2 T and xy = '(x)'(y) for x; y 2 S. For further results
concerning in
ation of a semigroup, see [1], [3], [13], [14].

Petrich [10], [11], generalized Cli�ord's result introducing the notion of strong
in
ation.
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Let T be a semigroup. To each a 2 T we associate two sets Xa and Ya having
the following properties:

a 2 Xa; Xa \Xb = Ya \ Yb = ; if a 6= b; Xa \ Yb = ; (a; b 2 T ):

To every pair of elements x 2 Ya; y 2 Yb, we associate an element '(a;b)(x; y) 2 Xab.
Now let Za = Xa [ Yb and de�ne a multiplication � on S =

S
a2T Za by: if

x 2 Za; y 2 Zb, then

x � y =

(
'(a;b)(x; y) if x 2 Ya; y 2 Yb

ab otherwise:

Then S is a retract extension of T and S3 � T . Conversely, every retract extension
S of a semigroup T such that S3 � T can be so constructed. Such a semigroup S is
called a strong in
ation of a semigroup S. In particular for T = 0 nilpotent semi-
groups of nilpotency class � 3 are described, [12, p. 135]. Moreover, a semigroup
S in n-nilpotent if Sn = 0 (n 2 Z+).

In this paper we introduce the notion of an n-in
ation of a semigroup. For
n = 1 we obtain the in
ation and for n = 2 we obtain the strong in
ation of
semigroup. In Theorem 2.1. we describe an n-in
ation of an arbitrary semigroup
by means ot retraction. In section 2, also, a description of a strong n-in
ation
is given (Theorem 2.2.) and nilpotent semigroups of arbitrary nilpotency classes.
In addition, we give characterizations of n-in
ations of some special semigroups:
unions of groups, semilattices of groups, unions of periodic groups and so on.

For unde�ned notions and notations we refer to [4], [6] and [12].

2. n-in
ation of a semigroup

We introduce here the notion of an n-in
ation of a semigroup.

Lemma 2.1. Let T he a semigroup. To each a 2 T we associate a family of

sets Xa
i (i = 1; 2; . . . ; n) such that a 2 Xa

r for some r 2 f1; 2; . . . ; ng and

(2.1) Xs
i \Xb

j = ; if i 6= j;Xa
i \Xb

j = ; if a 6= b:

Let, for nonempty sets Xa
i and Xb

j ,

�
(a;b)
(i;j) : Xa

i �Xb
j !

[
�=i+j

Xab
� if i+ j � n

�
(a;b)
(i;j) (x; y) = ab if i+ j > n(2.2)

�
(a;b)
(i;j) (a; y) = �

(a;b)
(i;j) (x; y) = ab

be functions for which:

(2.3) (8s � i+ j)(8t � j + k)�
(ab;c)
(s;k)

�
�
(a;b)
(i;j) (x; y); z

�
= �

(a;bc)
(i;t)

�
x;�

(b;c)
(j;k)(y; z)

�
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for all a; b; c 2 T , where i+ j � n or j + k � n or i+ t � n or s+ k � n.

Let Ya =
Sn

i=1X
a
i and de�ne a multiplication � on S =

S
a2T Ya by: for

x 2 Ya; y 2 Yb,

x � y = �
(a;b)
(i;j) (x; y) if x 2 Xi; y 2 Xb; 1 � i; j � n

Then (S; �) is a semigroup.

Proof. Let x; y; z 2 S. Then there exist a; b; c 2 T such that x 2 Ya; y 2
Yb; z 2 Yc i.e. x 2 Xa

i ; y 2 Xb
j ; z 2 Xc

k for some 1 � i; j; k � n. Assume that
i+ j � n and j + k � n. Then

(x � y) � z = �
(a;b)
(i;j) (x; y) � z; �

(a;b)
(i;j) (x; y) 2 Xab

s ; i+ j � s � n

= �
(ab;c)
(s;k)

�
�
(a;b)
(i;j) (x; y); z

�
(x � y) � z = x ��

(b;c)
(j;k)(y; z); �

(b;c)
(j;k)(y; z) 2 Xbc

t ; j + k � t � n

= �
(a;bc)
(i;t)

�
x�

(b;c)
(j;k)(y; z)

�
and by (2.3) we have associativity. In other cases it can be, in a similar way, proved
that the associativity holds. Therefore (S; �) is a semigroup.

De�nition 3.1. The semigroup S constructed in Lemma 2.1. is called an
n-in
ation of a semigroup T.

It is obvious that 1-in
ation is the in
ation, and that 2-in
ation in the strong
in
ation. In those cases the condition (2.3) of Lemma 2.1 it not necessary.

The following theorem gives a characterization of an n-in
ation of semigroups,
which shows that here we have the case of retract extensions.

Theorem 2.1. A semigroup S is an n-in
ation of a semigroup T if and only

if Sn+1 � T and S is a retract extension of T.

Proof. Let S be an n-in
ation of a semigroup T . Then by (2.2) T is an ideal
of S. Assume u 2 Sn+1, i.e. u = s1 � s2 � � � � � sn+1; sr 6= T (r = 1; 2; . . . ; n+ 1).
Let sr 2 Xar

1 where ar 2 T . Then

u = s1 � s2 � � � � � sn+1 = �
(a1;a2)
(1;1) (s1; s2) � s3 � � � � � sn+1

If 2 > n, then �
(a1;a2)
(1;1) (s1; s2) = u1 2 T , so u 2 T .

If 2 � n, then

u = u1 � s3 � � � � � sn+1; u1 2 Xa1a2
t1

; 2 � t � n:

= �
(a1a2;a3)
(1;1) (u1; s3) � s4 � � � � � sn+1

If t1 + 1 > n, then �
(a1a2;a3)
(1;1) (u1; s3) = u2 2 T , so u 2 T .
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If t1 + 1 � n then u = u2 � s3 � � � � � sn+1; u2 2 Xa1a2a3
t2

; 3 � t2 � n.

Continuing this procedure we have that: if tn�2 + 1 > n, then �
(a1...;an�1an)
(tn�2;1)

�

�(un�2; sn) = un�1 2 T , so u 2 T , and if tn�2 + l � n, then u = �
(a1...;anan+1)
(tn;1)

�

�(un�1; sn+1) 2 T , (since n+ 1 > n).

In other cases (r 2 Xar
kr
; 1 < kr � n) we have also that u 2 T . Thus

Sn+1 � T .

De�ne a mapping � : S =
S

a2T Ya ! T by �(Ya) = a. For any x; y 2 S there

exist a; b 2 T such that x 2 Ya; y 2 Yb, i.e. x 2 Xa
i ; y 2 Xb

j , for some 1 � i; j � n.
So

�(x � y) = �
�
�
(a;b)
(i;j) (x; y)

�
; �

(a;b)
(i;j) (x; y) 2 Xab

k � Yab

for some i + j � k � n if i + j � n, and �(x � y) = ab if i + j > n. Now by the
de�nition of � we have �(x � y) = ab = �(x)�(y). It is clear that �(x) = x for all
x 2 T . Therefore, S is a retract extension of T .

Conversely, let n be the smallest positive integer such that Sn+1 � T and let
� be a retraction of S onto T . An arbitrary a 2 T is in one of the following sets
S n S2; S2 nS3; . . . ; Sn�1 n Sn; Sn. For a 2 Sn�r nSn�r+1 for some 0 � r � n� 1
we de�ne the sets: Ya = ��1(a),

Xa
1 = Ya \ (S n S2)

Xa
2 = Ya \ (S2 n S3)

...

Xa
n�r�1 = Ya \ (Sn�r�1 n Sn�r)

Xa
n�r = Ya \ Sn�r

Xa
n�r+1 = Xa

n�r+2 = � � � = Xa
n = ;:

It is clear that the conditions (2.1) hold for every Xa
i and Xb

j (1 � i; j � n).

If a 2 T , then Ya =
Sn

i=1X
a
i and so S =

S
a2T Ya. For x; y 2 S there exist

a; b 2 T such that x 2 Ya; y 2 Yb. So by Proposition 1.1. we have that

(2.4) YaYb � Yab

Let x 2 Xa
i ; y 2 Xb

j ; a 2 Sn�r n Sn�r+1; b 2 Sn�p n Sn�p+1 where 0 � r; p �
n� 1. Then

x 2 Xa
i = Ya\(S

inSi+1) and y 2 Y b
j = Yb(S

jnSj+1; 1 � i � n�r; 1 � j � n�p:

Then xy 2 SiSj = Si+1 and if i+j � n we have that xy 2 \n�=i+1X
ab
� . If i+j > n,

then xy = ab 2 T . For x 2 Xa
i , b 2 T we have that xb = ab; bx = ba. In this way

functions �
(a;b)
(i;j) from Lemma 2.1. are de�ned and the condition (2.3) holds.

De�nition 2.2. If the �rst condition (2.2.) in the construction of an n-in
ation
in replaced by: For 1 � i; j � n let there exists a k 2 fi+ j; i+ j + 1; . . . ; ng and

�
(a;b)
(i;j) : Xa

i �Xb
j ! Xab

k
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then the semigroup (S; �) is called the strong n-in
ation of T .

The following theorem is proved similarly as the previous one.

Theorem 2.2. A semigroup S is a strong n-in
ation of a simigroup T if

and only if S is an n-in
ation of T and the relation determined by the following

partition fS n S2; S2 n S3; . . . ; Sn�1 n Sn; Sng is a congruenre of S.

Example 1. The semigroup S given by the table 1 is a 4-in
ation of T = fa; bg.
Here we have Xa

1 = fd; gg; Xa
2 = ffg; X3 = feg; Xa

4 = fa; cg; Xb
1 = Xb

2 =
Xb
3 = ;; Xb

4 = fbg. S is not strong 4-in
ation of T . Since d � d = a 2 Xa
4 and

g � g = f 2 Xa
2 .

1 a b c d e f g

a a b a a a a a
b b a b b b b b
c a b a a a a a
d a b a a a a a
e a b a a a a c
f a b a a a c e
g a b a a c e f

2 0 a b c d

0 0 0 0 0 0
a 0 0 0 0 0
b 0 0 0 a a
c 0 0 a b b
d 0 0 a b b

Example 2. The semigroup S gives by the table 2 is a strong 3-in
ation of
T = f0g. Here we have X0

1 = fc; dg; X0
2 = fbg; X0

3 = f0; ag.

In particular, if T = f0g then nilopent semigroups of nilpotency class �
n+ 1 are described by the following theorem which is directly proved by means of
Theorem 2.1.

Theorem 2.3. Let Xi; i = 1; 2; . . . ; n be sets, let 0 be a �xcd element such

that 2 Xn; Xi \Xj = ; if i 6= j, and let

�(i;j) : Xi �Xj !
n[

v=i+j

Xv if i+ j � n; �(i;j)(x; y) = 0 if i+ j > n

be functions such that

(8s � i+ j)(8 � j + k)�(s;k)

�
�(i;j)(x; y); z

�
= �(i;t)

�
x�(j;k)(y; z)

�
where i+ j � n or j + k � n or i+ t � n or s+ k � n. De�ne a multiplication �
on S =

Sn

v=1Xv by:

x � y = �(i;j)(x; y) if x 2 Xi; y 2 Xj ; 1 � i; j � n:

Then (S; �) is a semigroup and Sn+1 = 0 and conversely, every nilpotent semigroup

of nilpotency class � n+ 1 can be so constructed.
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3. n-in
ation of a union of groups

In the preceding section we considered n-in
ations of a semigroup T in the
general case. In this sections we give characterization for those cases when T is a
union of groups, a semilattice of groups, and so on.

Theorem 3.1. The following conditions are equivalent on a semigroup S:

(i) S is an n-in
ation of a union of groups;

(ii) (8x; y 2 S)xSn�1y = x2Sny2;

(iii) Sn+1 is a union of groups and

(8x1; . . . ; xn+1 2 S)(xn+1i 2 Gei ) x1 . . .xn+1 = e1x1x2 . . .xn+1en+1).

Proof. (i))(ii). Let S be an n-in
ation of a union of groups T . Then
Sn+1 = T is an ideal of S and there exists a retraction ' : S ! Sn+1 (Theorem
2.1.). For any x; x2; x3; . . . ; xn; y 2 S there exists e; f 2 E(S) such that '(x) 2 Ge

and '(y) 2 Gf , so

xx2x3 . . .xny = '(x)'(x2)'(x3) . . . y'(xn)'(y)

= '(xn+1)'(x�1)'(x2) . . . y'(xn)'(y
�n)'(yn+1)

2 xn+1Snyn+1 � x2Sny2:

Thus xSn�1y � x2Sny2 � xSn�1y and therefore (ii) holds.

(ii))(iii). Let x; y 2 S. Then

xSn�1y = x2Sny2 = (xn+1)2Sn(yn+1)2

so xn+1 2 xSn�1x = (xn+1)2Sn(xn+1)2, i.e. xn+1 is completely regular (Lemma I,
5.1. [3]). So xn+1 2 Ge for some e 2 E(S). Let u 2 Sn+1. Then

u = s1s1 . . .n+1 2 s1S
n�1sn+1 = sn+11 SnSn+1

n+1 = e1s
n+1
1 SnSn+1

n+1en+1

where sn+11 2 Ge1 , s
n+1
n+1 2 Gen+1, and e1; en+1 2 E(S). Thus u = e1u = uen+1.

This proves that the second condition of (iii) is ful�lled. Now

u = e1u = e1e1 . . . e1u 2 e1S
n�1u = e1S

nu2 2 Sn2

and similarly u 2 u2S. So u 2 u2Su2, i.e. Sn+1 is a union of groups (Lemma I 5.1.
[3]).

(iii))(i). Since Sn+1 is a union of groups we have that every regular element
from S is completely regular, i.e. S is a GV -semigroup. Now by Theorem X.1.1.
[3] (see also [l5]) we have that S is a semilattice Y of semigroups S�, where S�
is a nil-extension of a completely simple semigroup P�(� 2 Y ). It is clear that
Sn+1
� = P�. De�ne a mapping ' : S =

S
�2Y ; S� ! T =

S
�2Y P� by

'� = ' � S� : S� ! P�; '�(x�) = x� = x�e�; if xn+1� 2 Ge� :
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Then '� maps S� onto P� and '(x�) = x� for x� 2 P�. Furthermore

'�(x�)'�(y�) = x�e�y�e� = e�x�y�e� (by Theorem I.4.3. [3]

= e�e� . . . e�x�y� see, also [7])

= e�e� . . . e�x�y� (by the hypothesis)

= e�e� . . . e� . . .x�y�e�� (since S is a semilattice Y and

= e�x�y�e��e�� . . . e�� by the hypothesis)

= x�y�e��e�� . . . e�� (by the hypothesis)

= x�y�e��

= '��(x�y�)

for all x� 2 S�, y� 2 S� . Thus S is an n-in
ation of a semigroup
S

�2Y P�, and
S� is an n-in
ation of P�.

Corollary 3.1. A seimigroup S is an n-in
ation of a completely simple

semigroup if and only if Sn+1 is completely simple and the second condition of (i)
of Theorem 3.1 holds.

Proof. By the proof of Theorem 3.1.

A subset B of a semigroup S is two-sided (m;n) pure if B\x1 . . .xmSy�1 . . . yn
= x1 . . .xmBy1 . . . yn holds for every x1; . . . ; xm; y1; . . . ; yn 2 S. A semigroup S is
two-sided (m;n)-pure if every bi-ideal of S is a two-sided pure subset of S, [5].

Lemma 3.1. Let S be a semigroup. If Sn+1 is a semilattice of groups, then

the idempotent elements of S are central.

Proof. By the hypothesis we have that S is two-sided (n � k; k)-pure, 1 �
k � n� 1, n � 2 [5, Theorem 1]. So eSe (e 2 E(S)) is a two-sided (n � k; k)-pure
bi-ideal of S. From this it follows that

xe 2 xe . . . e � eSe � e . . . e = eSe \ xe . . . eSe . . . e � eSe

for every x 2 S. Thus xe = eae for some a 2 S and similarly ex = ebe for some
b 2 S. Now we have that

xe = eae = (ee)ae = e(eae) = e(xe) = (ex)e = (ebe)e = eb(ee) = ebe = ex:

Theorem 3.2. The following conditions are equivalent on a semigroup S:

(i) S is an n-in
ation of a semilattice of groups,

(ii) (8x; y 2 S)(xSn+1y = y2Snx),

(iii) Sn+1 is a semilattice of groups.

Proof. (i))(iii) By Theorem 3.1 we have that Sn+1 is a union of groups and
since the indempotents of S are central we have that Sn+1 is a semilattice of groups.
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(iii)Rightarrow(ii). For every x; y 2 S we have that xSn�1y = x2Sny2 �
x2Sn�1y2 � xSn�1y [5, Theorem 1 ] i.e. xSn�1y = x2Sn�1y2 = x2Sny. Thus

xSn�1y = xn+1Smyn+1 = (xn+1)�1(xn+1)2Sn(yn+1)2(yn+1)�1;

since xn+1 2 Ge, y
n+1 2 Gf for some e; f 2 E(S). By Lemma 3.1 we have that the

indempotents of S are central, so

xSn�1y = yn+1(yn+1)�1xn+1Snyn+1(xn+1)�1xn+1

whence xSn�1y = y2Snx.

(ii))(iii). By the hypothesis we have that

xSn�1y = y2Snx � y2Sn�1x = x2Sny2 � xSn�1y

for every x; y 2 S. So the condition (ii) of Theorem 3.1 holds. From this and The-
orem 3.1. we have that Sn+1 is a union of groups. Since S is weakly commutative,
so is Sn+1. Thus Sn+1 is a semilattice of groups [2, Theorem,1.1].

(iii))(i). By Lemma 3.1 the idempotents of S are central. Thus ' : S ! Sn+1

de�ned by '(x) = xe if xn+1 2 Ge is a retraction.

Corollary 3.2. A Semigroup S is an n-in
ation of a group T if and only if

Sn+1 = T .

Proof. Trivial.

Remark. Semigroups from Theorem 3.2 are described in [5] by means ' of
bi-ideals.

Lemma 3.2. Sn+1 is a union of periodic groups if and only if

(8x1; x2; . . . ; xn+1 2 S)(9m 2 Z+)x1x2 . . .xn+1 = (x1x2 . . .xn+1)
m:

Proof. Trivial.

Corollary 3.3. A semigroup S is an n-in
ation of a semilattice if and

only if

(8x1; x2; . . . ; xn+1 2 S)x1x2 . . .xn+1 = (xn+lx2x3 . . .xnx1)
2

Proof. Follows by Theorem 3.2 and Lemma 3.2.

Theorem 3.3. A semigroup S is an n-in
ation of a union of periodic groups

if and only if

(8x1; . . . ; xn+1 2 S)(9m 2 Z+)x1 . . .xn+1 = xm+1
1 x2 . . .xnx

m+1
n+1

Proof. Let S be an n-in
ation of a union of periodic groups. Then xn+1i 2 Ge1

for every x1; . . . ; xn+1 2 S, whence xmi = ei for some m 2 Z+, (since Gei are
periodic groups). Now by Theorem 3.1. we obtain

x1x2 . . .xn+1 = e1x1x2 . . .xn+1 = e1x1x2 . . .xn+1en+1 = xm+1
1 x2 . . .xnx

m+1
n+1 :
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Conversely, it is clear that S is periodic. Assume u 2 Sn+1. Then

u = x1x2 . . .xn+1 = xm+1
1 x2 . . .xnx

m+1
n+1 = xkm+1

1 x2 . . .xnx
km+1
n+1

= e1x
km+1
1 x2 . . .xnx

km+1
n+1 en+1

where xkm1 2 Ge1 , x
km
n+1 2 Gen+1 (k 2 Z+), since S is periodic. Hence, u = e1x =

yen+1 for some x; y 2 S. So

u = e1u = ee1 . . . e1u = e1 . . . e1u
m+1 =m+1 :

Now by Lemma 3.2 we have that Sn+1 is a union of periodic groups. Since u =
e1uen+1, and xn+1i 2 Ge1 ; for every x

n+1
i 2 Sn+1 we have by Theorem 3.1 that the

assertion of the theorem holds.

Corollary 3.3. A semigroup S is an n-in
ation of a semilattice of periodic

groups if and only if

(8x1; . . . ; xn+1 2 S)(9m 2 Z+)x1 . . .xn+1 = xm+1
n+1 x2 . . .xnx

m+1
1 :

Proof. Follows by Theorem 3.2. and 3.3.

Following Nordahl, [8], we say that S is an E �m semigroup if the identity
(xy)m = xmym (m � 2) holds in S.

Theorem 3.4. The following conditions are equivalent on a semigroup S:

(i) S is an n-in
ation of a band;

(i) Sn+1 is a band and S is an E-(n+ 1) semigroup;

(iii) S is a band Y of nilpotent semigroups S� of nilpotency class � n and

Y ' E(S) = Sn+1;

(iv) (8x1; . . .xn+1 2 S)x1x2 . . .xn+1 = x21x2 . . .xnx
2
n+1;

Proof. (i))(ii). Let S be an n-in
ation of a band T . Then by Theorem 2.1
Sn+1 � T , T is an ideal of S and there is a retraction ' : S ! T . It is clear that
Sn+1 = T . Then for every x; y 2 S,

(xy)n+1 = '((xy)n+1) = ('(x)'(y))n+1 = '(x)'(y)

= '(x)n+1'(y)n+1 = '(xn+1)'(yn+1) = xn+1yn+1:

Thus, S is an E-(n+ 1) semigroups.

(ii))(i). Clearly '(x) = xn+1 is a retraction from S onto Sn+1.

(ii))(iii). Since '(x) = xn+1 is a homomorphism from S onto the band Sn+1

we have that ker' is a congruence S. Since x(ker')x2 for every x 2 S we have that
ker' is a band kongruence an the classes mod (ker') are nilpotent semigroups
of nilpotency class � n. Clearly Y ' E(S) = Sn+1.

(iii))(ii). This implication follows immediately.

(i))(iv). This equivalence follows by Theorem 3.3.
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The following corollaries follow easily from the results already prove

Corollary 3.4. The following conditions are equivalent on a semigroup S:

(i) S is an n-in
ation of a semilattice;

(ii) Sn+1 is a semilattice;

(iii) (8x1; . . . ; xn+1 2 S)x1x2 . . .xn+1 = x2n+1x2 . . .xn.

Corollary 3.5. A semigroup S is an n-in
ation of a rectangul band if and

only if

(8x1; . . . ; xn+3 2 S)x1x2 . . .xn+3 = x1x3x4 . . .xn+1xn+3
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