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ON A DECOMPOSITION OF NEAR-RINGS
IN A SUBDIRECT SUM OF NEAR-FIELDS

Vucié Dasié

Abstract. We extend some results from [1] on one class of near-rings and we give a
decomposition of near-rings from this class by a subdirect sum of near-fields.

First we give some basic notations and definitions. We recall that a (left zero
symmetric) near-ring is a system (R, +,-) where:

(i) (R,+) is a (not necessarily abelian) group;

(ii) (R,-) is a semigroup;

(iii) z(y + z) = zy + zz for all z,y,z in R;

(iv) 0z = 0 for all z in R, where 0 is the identity of (R, +).

A near-ring R with more than one element is a near-field if the set of nonzero
elements of R forms a multiplicative group. An element z in R is said to be
distributive if (y + z)z = yz + zz for all y,z in R. The set of all distributive
elements of R forms a multiplicative semigroup. A distributively generated (d.g.)
near-ring is a near-ring R which is additively generated by some subsemigroup S of
distributive elements of R. Thus if R is distributively generated by S, then every
element r in R can be expressed as a finite sum r =3, . (s € 5).

A subgroup B of (R,+) is an R-subgroup (right R-subgroup) if b € B and
r € R implies br € B. A right ideal of R is a subset B such that (B, +) is a normal
subgroup of (R,+) and (z + b)y —xy € B for each b € B, z,y € R. A subset B of
R is an ideal of R if it is a right ideal and rb € B for each r € R, b € B. A right
ideal @ of R is called completely prime if and only if ) € R and ab € @ implies
that a € Q or b € Q.

Definition 1. We say that a right ideal P of R has a minimal strict extension
if there exists an R-subgroup @ such that P C @ and P C T C Q implies T' = @,
where 7" is an R-subgroup of R.
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A proper right ideal of R is called strictly maximal if it is maximal as an
R-subgroup. It is evident that every strictly maximal right ideal of R is a right
ideal which has a minimal strict extension. A partial converse is given by

LEMMA 1. Let R be a near-ring. Then every completely prime right ideal of
R which has a minimal strict extension is a strictly mazimal right ideal of R.

Proof. Let P be completely prime right ideal which has a minimal strict
extension. Thus there is an R-subgroup @ of R such that P C Q. Foralla € Q\ P
we have a@Q ¢ P. Therefore, P C P + a) C @ and hence Q = P + a(). For
this we have a = p + ae for suitable p € P and e € (). Then for z € R, ax =
(p + ae)x — aex + aex and so a(z — ex) = (p + ae)x — aex € P since P is a right
ideal. Buta g P,x —ex € PC @, so z € @ and P = @ as required.

A right ideal B of R is modular if and only if there is an element e € R with
er —x € B for each z € R (e is a left identity modulo B). A right ideal B of R is
called 2-modular if B is modular and R/B is an R-group of type 2.

LEMMA 2. If B is a right ideal of a near-ring R and e is a left identity modulo
B, then e + b for b € B is a left identity modulo B, too.

Proof. Since (u+b)v—uv € B, then for u = e, v = x we have (e+b)x—ex € B,
thus (e + b)x —x + z — ex € B. But z + ex € B and hence (e +b)z —x € B.

Let A, B be subsets of R. Let us denote by (B : A) the set {z € B/Az C B}.
We write briefly (B : ¢) instead of (B : {q}).

LEMMA 3. If P is a strictly mazimal right ideal of a near-ring R, then for
q¢ P R=P+qR and (P : q) is a 2-modular right ideal of R.

Proof. The set P + qR is an R-subgroup strictly containing P. But, P is a
strictly maximal right ideal of R and consequently R = P + ¢R.

Taking ¢ = p + ge for suitable e € R, p € P we get immediately that g(x —
er) = gr — gex = (p+ ge)x — gex € P for all z € R. Hence x —ex € (P : Q). We
need to prove yet that (P : q) is a strictly maximal right ideal of R. If r & (P : q)
then r € P so qrR € P. It follows that R = P 4+ qrR and ¢R C P + qrR. For any
x € R, we have gz = p+ gry for some p € P,y € R. Thus z —ry € (P : q) and
R=(P:q)+rR. Hence (P : q) is strictly maximal in R.

In the following considerations we introduce a condition (D) as follows.

Definition 2. A near-ring R has a property (D) if for every strictly maximal
right ideal P of R, ¢ ¢ P implies ¢R € P.

There is a class of near-rings with property (D). For example, such a class
form all near-rings with identity. Also, all d.g. near-rings with R? ¢ P have a
property (D). Namely, if P is a strictly maximal right ideal of a d.g. near-ring R
and ¢ € P, then R = (q)r + P, where (q)r is the R-subgroup generated by ¢. The
elements of the R-subgroup (¢)R have the from ) (%gs; + m;q), where s; € S and
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m; € Z (S is a multiplicative subsemigroup of distributive elements). Thus, for
s,t € S, m € Z we have

(£gs + mqg + P)t = £qst + mgt + Pt = q(£st + mt) + Pt € ¢qR+ P

and it follows that R? C ¢R + P. Since R? ¢ P we have ¢R ¢ P as required,

An ideal P of R (P # R) is called strictly prime if A C P or B C P for
any two R-subgroups A and B of R such that AB C P. Call R a strictly prime
near-ring if {0} is a strictly prime ideal.

PROPOSITION 1. If P is a strictly maximal right ideal of u near-ring R with
property (D) such that for x € R, Rx: C P implies x € P, then P is a strictly prime
right ideal of R.

Proof. First we prove that if from Rb C P follows b € P, then aRb C P
implies a € P or b € P. Let aRb C P and a ¢ P, then by property (D) aR € P,
i.e. R =P+ aR. Hence, every r in R is of the form r = p; + ar, for some r; € R,
p1 € P. Thus,

rb=(p1 +ar1)b—arib+arib€e P+aRbC P

But Rb C P implies b € P as required. Let for any two R-subgroups A and B of
R, AB C P. Since ARB C AB C P, then for all a € A and b € B it follows that
aRb C P and that implies a € P or b € P. Thus A C P or B C P and P is strictly
prime.

COROLLARY. If R is a mear-ring with property (D), then every 2-modular
right ideal of R is strictly prime or R is strictly prime.

Proof. Let P be a 2-modular right ideal of R and let e € R be a left identity
modulo P. If Rz C P then from ex — x € P it follows that x € P. Thus the
conditions of Proposition 1 hold and hence P is a strictly prime right ideal of R.

Definition 3. An ideal T of a near-ring R is called a factor near-field ideal if
and only if R/T is a near-field.

According to Theorem 8.3d of [2] for a factor near-field ideal T', R/T is a
2-primitive near-ring with a right identity. Thus T is a strictly maximal right ideal
of R. Also, T is a modular right ideal of R, because in R/T there is an identity
e=e¢+T (e € R). Thus (e+T)(x+T)—ax+T,ie. ex—x €T for all z € R.
Therefore, every factor near-field ideal is a 2-modular right ideal of R. In fact, for
near-rings with property (D) we have

PROPOSITION 2. Let R be a near-ring with property (D). The 2-modular right
ideal P of R is a factor near field ideal if and only if for each left identity e modulo
P,re € P (r € R) implies rRe C P.

Proof. Suppose re € P implies rRe C P for some 2-modular right ideal P of
R where r € R and e is a left identity modulo P. We need to show only that P
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is an ideal of R. If P is not an ideal, then rp ¢ P for some r € R, p € P (r ¢ P)
and thus R? ¢ P. Since rp € P it follows by condition (D) that R = P + rpR.
Then re = p; + rpry for some r; € R, py € P and so r(e —pr;) = p1 € P. By
Lemma 2, e; = e — pry is a left identity modulo P and re; € P implies rRe; C P,
i.e. rRe; R C P. From the Corollary we have rR C P or e;R C P. But rp € P so
e1R C P. However P is left modular and e;e — e € P implies e € P which is false.
Namely if e is a left identity modulo P, then e € P iff P = R (Remarks 3.21, [2]).
Hence P is an ideal of R.

The converse is immediate.

PRroprosITION 3. If P is a strictly mazimal right ideal of a near-ring R with
property (D), then the following assertions are equivalent:

(i) P is a factor near field ideal;
(ii) P is a completely prime ideal;

(iii) There exists ¢ € R for which (P : ¢) C P and for every left identity e
modulo P, re € P (r € R) implies rRe C P.

Proof. (i) = (ii). This is obvious.
(ii) Rightarrow (iii). Let P be a completely prime ideal of R. If z € (P : q)
i.e. gr € P, then for ¢ ¢ P we have x € P. Thus (P : q¢) C P. Let e be a left

identity modulo P, then e ¢ P and therefore re € P implies € P. Consequently
rRe C P.

(iii) = (i). As a consequence of Lemma 3 it follows that (P : ¢) is a 2-modular
rigt ideal of R. Since (P : q) C P we have P = (P : ¢). Also, by the hypothesis
re € P implies rRe C P. Using Proposition 2, it follows that P is a factor near-field
ideal of R.

THEOREM 1. A right ideal P of a near-ring R with property (D) is a factor
near field ideal if and only if P is a completely prime right ideal which has a minimal
strict extension.

Proof. Let P be a completely prime right ideal of R which has a minimal
strict extension. By Lemma 1 P is a strictly maximal right ideal of R. Applying
Proposition 3 it follows that P is a factor near-field ideal of R.

Conversely, if P is a factor near-field ideal of R then P is a 2-modular right
ideal and hence a strictly maximal right ideal of R. It follows that P has a minimal
strict extension. By Proposition 3, P is a completely prime right ideal of R.

LEMMA 4. Let B he a nonzero ideal of a near-ring R. If Ts is a factor near-
field ideal of B, then B Z (T : B) and (T's : B) is a factor near field ideal of R.

Proof. Since B/Tg is a near-field, so B> ¢ Tg. Hence B C (T : B).

The near-field B/Tp has an identity. Thus there is e € B such that b—be € T
for all b € B. Since Tp<B<R it follows by Theorem 4.63 of [2] that T'p is an ideal of
R. Hence (b—be)x € T for all z € R. But bz = (b—be+be)x—bex+bex € T+ bex
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and so b(z —ex) € Tp. Hence B(x —ex) C Tp,ie. x —ex € (ITp : B) = T.
Consequently, z € T + ex C T + B for arbitrary € R, that is R =T + B. Since
Tp C B we have Ty C BNT. But Ty is a strictly maximal in B, so Tg — BNT.
Now

R_T+B B _ B

T T ~TnB Tg
where B/Tp is a near-field. Thus, T is a factor near-field ideal of R.

Definition 4. A near-ring R has a strict property (D) if every nonzero ideal
of R, used as a near-ring, has a property (D).

We say that a near-ring R is a subdirect sum of near-rings Ry, if and only if
there exist the ideals Ij, of R with (I, = (0) and Ry ~ R/I}, as near-rings.

THEOREM 2. A near-ring R with a strict property (D) is isomorphic to a
subdirect sum of near fields if and only if every nonzero ideal of R, used as a near-
ring, contains a completely prime right ideal which has a minimal strict extension.

Proof. If a near-ring R is isomorphic to subdirect sum of near-fields Ry, then
there exist ideals T}, with (T} = (0) and R/Ty ~ Ry. Let B be a nonzero ideal
of R, then there is a near-field T} such that B € T} and hence R — T}, + B. If
T =T, N B, then

E . b - T, + B _ E ~R
Ts  TyNB  Tp, Tp "
Thus, T is a near-field ideal of B. Hence Tp is a completely prime right ideal of
B which has a minimal strict extension.

Conversely, let every nonzero ideal of a near-ring R with a strict property
(D) contains a completely prime right ideal which has a minimal strict extension.
Assume that the intersection B = (T} of all factor near-field ideals T} of R is a
nonzero ideal of R. By the hypothesis, B contains a completely prime right ideal
Tp which has a minimal strict extension. According to Theorem 1, Tz is a factor
near-field ideal of B. By Lemma 4, (Ts : B) = T is a factor near-field ideal of R
and thus B C T. But this contradicts to the fact proved in Lemma 4 that B € T'.
Consequently, B = (1) = (0) and hence R is isomorphic to a subdirect sum of
near-fields.
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