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ON A DECOMPOSITION OF NEAR-RINGS

IN A SUBDIRECT SUM OF NEAR-FIELDS

Vu�ci�c Da�si�c

Abstract. We extend some results from [1] on one class of near-rings and we give a
decomposition of near-rings from this class by a subdirect sum of near-�elds.

First we give some basic notations and de�nitions. We recall that a (left zero
symmetric) near-ring is a system (R;+; �) where:

(i) (R;+) is a (not necessarily abelian) group;

(ii) (R; �) is a semigroup;

(iii) x(y + z) = xy + xz for all x; y; z in R;

(iv) 0x = 0 for all x in R, where 0 is the identity of (R;+).

A near-ring R with more than one element is a near-�eld if the set of nonzero
elements of R forms a multiplicative group. An element x in R is said to be
distributive if (y + z)x = yx + zx for all y; z in R. The set of all distributive
elements of R forms a multiplicative semigroup. A distributively generated (d.g.)
near-ring is a near-ring R which is additively generated by some subsemigroup S of
distributive elements of R. Thus if R is distributively generated by S, then every
element r in R can be expressed as a �nite sum r =

P
�si

(s 2 S).

A subgroup B of (R;+) is an R-subgroup (right R-subgroup) if b 2 B and
r 2 R implies br 2 B. A right ideal of R is a subset B such that (B;+) is a normal
subgroup of (R;+) and (x+ b)y � xy 2 B for each b 2 B; x; y 2 R. A subset B of
R is an ideal of R if it is a right ideal and rb 2 B for each r 2 R, b 2 B. A right
ideal Q of R is called completely prime if and only if Q 2 R and ab 2 Q implies
that a 2 Q or b 2 Q.

De�nition 1. We say that a right ideal P of R has a minimal strict extension
if there exists an R-subgroup Q such that P � Q and P � T � Q implies T = Q,
where T is an R-subgroup of R.
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A proper right ideal of R is called strictly maximal if it is maximal as an
R-subgroup. It is evident that every strictly maximal right ideal of R is a right
ideal which has a minimal strict extension. A partial converse is given by

Lemma 1. Let R be a near-ring. Then every completely prime right ideal of

R which has a minimal strict extension is a strictly maximal right ideal of R.

Proof. Let P be completely prime right ideal which has a minimal strict
extension. Thus there is an R-subgroup Q of R such that P � Q. For all a 2 QnP
we have aQ 6� P . Therefore, P � P + aQ � Q and hence Q = P + aQ. For
this we have a = p + ae for suitable p 2 P and e 2 Q. Then for x 2 R, ax =
(p + ae)x � aex + aex and so a(x � ex) = (p + ae)x � aex 2 P since P is a right
ideal. But a 62 P , x� ex 2 P � Q, so x 2 Q and P = Q as required.

A right ideal B of R is modular if and only if there is an element e 2 R with
ex� x 2 B for each x 2 R (e is a left identity modulo B). A right ideal B of R is
called 2-modular if B is modular and R=B is an R-group of type 2.

Lemma 2. If B is a right ideal of a near-ring R and e is a left identity modulo

B, then e+ b for b 2 B is a left identity modulo B, too.

Proof. Since (u+b)v�uv 2 B, then for u = e; v = x we have (e+b)x�ex 2 B,
thus (e+ b)x� x+ x� ex 2 B. But x+ ex 2 B and hence (e+ b)x� x 2 B.

Let A;B be subsets of R. Let us denote by (B : A) the set fx 2 B=Ax � Bg.
We write brie
y (B : q) instead of (B : fqg).

Lemma 3. If P is a strictly maximal right ideal of a near-ring R, then for

q 62 P R = P + qR and (P : q) is a 2-modular right ideal of R.

Proof. The set P + qR is an R-subgroup strictly containing P . But, P is a
strictly maximal right ideal of R and consequently R = P + qR.

Taking q = p + qe for suitable e 2 R, p 2 P we get immediately that q(x �
ex) = gx� qex = (p+ qe)x� qex 2 P for all x 2 R. Hence x � ex 2 (P : Q). We
need to prove yet that (P : q) is a strictly maximal right ideal of R. If r 62 (P : q)
then r 62 P so qrR 6� P . It follows that R = P + qrR and qR � P + qrR. For any
x 2 R, we have qx = p + gry for some p 2 P , y 2 R. Thus x � ry 2 (P : q) and
R = (P : q) + rR. Hence (P : q) is strictly maximal in R.

In the following considerations we introduce a condition (D) as follows.

De�nition 2. A near-ring R has a property (D) if for every strictly maximal
right ideal P of R, q 62 P implies qR 6� P .

There is a class of near-rings with property (D). For example, such a class
form all near-rings with identity. Also, all d.g. near-rings with R2 6� P have a
property (D). Namely, if P is a strictly maximal right ideal of a d.g. near-ring R
and q 62 P , then R = (q)R + P , where (q)R is the R-subgroup generated by q. The
elements of the R-subgroup (q)R have the from

P
(�qsi +miq), where si 2 S and
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mi 2 Z (S is a multiplicative subsemigroup of distributive elements). Thus, for
s; t 2 S, m 2 Z we have

(�qs+mq + P )t = �qst+mgt+ Pt = q(�st+mt) + Pt 2 qR+ P

and it follows that R2 � qR + P . Since R2 6� P we have qR 6� P as required,

An ideal P of R (P 6= R) is called strictly prime if A � P or B � P for
any two R-subgroups A and B of R such that AB � P . Call R a strictly prime
near-ring if f0g is a strictly prime ideal.

Proposition 1. If P is a strictly maximal right ideal of u near-ring R with

property (D) such that for x 2 R, Rx � P implies x 2 P , then P is a strictly prime

right ideal of R.

Proof. First we prove that if from Rb � P follows b 2 P , then aRb � P
implies a 2 P or b 2 P . Let aRb � P and a 62 P , then by property (D) aR 2 P ,
i.e. R = P + aR. Hence, every r in R is of the form r = p1 + ar1 for some r1 2 R,
p1 2 P . Thus,

rb = (p1 + ar1)b� ar1b+ ar1b 2 P + aRb � P

But Rb � P implies b 2 P as required. Let for any two R-subgroups A and B of
R, AB � P . Since ARB � AB � P , then for all a 2 A and b 2 B it follows that
aRb � P and that implies a 2 P or b 2 P . Thus A � P or B � P and P is strictly
prime.

Corollary. If R is a near-ring with property (D), then every 2-modular

right ideal of R is strictly prime or R is strictly prime.

Proof. Let P be a 2-modular right ideal of R and let e 2 R be a left identity
modulo P . If Rx � P then from ex � x 2 P it follows that x 2 P . Thus the
conditions of Proposition 1 hold and hence P is a strictly prime right ideal of R.

De�nition 3. An ideal T of a near-ring R is called a factor near-�eld ideal if
and only if R=T is a near-�eld.

According to Theorem 8.3d of [2] for a factor near-�eld ideal T , R=T is a
2-primitive near-ring with a right identity. Thus T is a strictly maximal right ideal
of R. Also, T is a modular right ideal of R, because in R=T there is an identity
�e = e + T (e 2 R). Thus (e + T )(x + T ) � x + T , i.e. ex � x 2 T for all x 2 R.
Therefore, every factor near-�eld ideal is a 2-modular right ideal of R. In fact, for
near-rings with property (D) we have

Proposition 2. Let R be a near-ring with property (D). The 2-modular right

ideal P of R is a factor near �eld ideal if and only if for each left identity e modulo

P, re 2 P (r 2 R) implies rRe � P .

Proof. Suppose re 2 P implies rRe � P for some 2-modular right ideal P of
R where r 2 R and e is a left identity modulo P . We need to show only that P
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is an ideal of R. If P is not an ideal, then rp 62 P for some r 2 R, p 2 P (r 62 P )
and thus R2 6� P . Since rp 62 P it follows by condition (D) that R = P + rpR.
Then re = p1 + rpr1 for some r1 2 R, p1 2 P and so r(e � pr1) = p1 2 P . By
Lemma 2, e1 = e� pr1 is a left identity modulo P and re1 2 P implies rRe1 � P ,
i.e. rRe1R � P . From the Corollary we have rR � P or e1R � P . But rp 62 P so
e1R � P . However P is left modular and e1e� e 2 P implies e 2 P which is false.
Namely if e is a left identity modulo P , then e 2 P i� P = R (Remarks 3.21, [2]).
Hence P is an ideal of R.

The converse is immediate.

Proposition 3. If P is a strictly maximal right ideal of a near-ring R with

property (D), then the following assertions are equivalent:

(i) P is a factor near �eld ideal;

(ii) P is a completely prime ideal;

(iii) There exists q 2 R for which (P : q) � P and for every left identity e
modulo P , re 2 P (r 2 R) implies rRe � P .

Proof. (i) ) (ii). This is obvious.

(ii) Rightarrow (iii). Let P be a completely prime ideal of R. If x 2 (P : q)
i.e. qx 2 P , then for q 62 P we have x 2 P . Thus (P : q) � P . Let e be a left
identity modulo P , then e 62 P and therefore re 2 P implies r 2 P . Consequently
rRe � P .

(iii)) (i). As a consequence of Lemma 3 it follows that (P : q) is a 2-modular
rigt ideal of R. Since (P : q) � P we have P = (P : q). Also, by the hypothesis
re 2 P implies rRe � P . Using Proposition 2, it follows that P is a factor near-�eld
ideal of R.

Theorem 1. A right ideal P of a near-ring R with property (D) is a factor

near �eld ideal if and only if P is a completely prime right ideal which has a minimal

strict extension.

Proof. Let P be a completely prime right ideal of R which has a minimal
strict extension. By Lemma 1 P is a strictly maximal right ideal of R. Applying
Proposition 3 it follows that P is a factor near-�eld ideal of R.

Conversely, if P is a factor near-�eld ideal of R then P is a 2-modular right
ideal and hence a strictly maximal right ideal of R. It follows that P has a minimal
strict extension. By Proposition 3, P is a completely prime right ideal of R.

Lemma 4. Let B he a nonzero ideal of a near-ring R. If TB is a factor near-

�eld ideal of B, then B 6� (TB : B) and (TB : B) is a factor near �eld ideal of R.

Proof. Since B=TB is a near-�eld, so B2 6� TB. Hence B � (TB : B).

The near-�eld B=TB has an identity. Thus there is e 2 B such that b�be 2 TB
for all b 2 B. Since TB /B/R it follows by Theorem 4.63 of [2] that TB is an ideal of
R. Hence (b�be)x 2 TB for all x 2 R. But bx = (b�be+be)x�bex+bex 2 TB+bex
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and so b(x � ex) 2 TB. Hence B(x � ex) � TB , i.e. x � ex 2 (TB : B) � T .
Consequently, x 2 T + ex � T +B for arbitrary x 2 R, that is R = T + B. Since
TB � B we have TB � B \ T . But TB is a strictly maximal in B, so TB � B \ T .
Now

R

T
=

T +B

T
'

B

T \ B
=

B

TB
where B=TB is a near-�eld. Thus, T is a factor near-�eld ideal of R.

De�nition 4. A near-ring R has a strict property (D) if every nonzero ideal
of R, used as a near-ring, has a property (D).

We say that a near-ring R is a subdirect sum of near-rings Rk if and only if
there exist the ideals Ik of R with

T
Ik = (0) and Rk ' R=Ik as near-rings.

Theorem 2. A near-ring R with a strict property (D) is isomorphic to a

subdirect sum of near �elds if and only if every nonzero ideal of R, used as a near-

ring, contains a completely prime right ideal which has a minimal strict extension.

Proof. If a near-ring R is isomorphic to subdirect sum of near-�elds Rk, then
there exist ideals Tk with

T
Tk = (0) and R=Tk ' Rk. Let B be a nonzero ideal

of R, then there is a near-�eld Tk such that B 6� Tk and hence R � Tk + B. If
TB = Tk \ B, then

B

TB
=

b

Tk \ B
'

Tk +B

Tk
=

R

Tk
' Rk

Thus, TB is a near-�eld ideal of B. Hence TB is a completely prime right ideal of
B which has a minimal strict extension.

Conversely, let every nonzero ideal of a near-ring R with a strict property
(D) contains a completely prime right ideal which has a minimal strict extension.
Assume that the intersection B =

T
Tk of all factor near-�eld ideals Tk of R is a

nonzero ideal of R. By the hypothesis, B contains a completely prime right ideal
TB which has a minimal strict extension. According to Theorem 1, TB is a factor
near-�eld ideal of B. By Lemma 4, (TB : B) � T is a factor near-�eld ideal of R
and thus B � T . But this contradicts to the fact proved in Lemma 4 that B 6� T .
Consequently, B =

T
Tk = (0) and hence R is isomorphic to a subdirect sum of

near-�elds.
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