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SUMS OF PRODUCTS OF CERTAIN ARTHMETICAL FUNCTIONS

Aleksandar Ivi�c

Abstract. Sharp asymptotic formulae for certain sums of the type
P

n�x f(n)g(n) are

derived, where f is a suitable multiplicative and g a suitable additive function. The proofs
are based on an analytic method which consists of considering the Dirichlet series generated by
f(n)zg(n); z complex.

1. Introduction

To estimate sums of the type
P

n�x f(n)g(n), where f is a multiplicative and
g an additive function, one may use that following general analytic approach. If
z is a complex number, then hz(n) = f(n)zg(n) is a multiplicative function of n.
Thus if a good approximation to

(1.1) F (x; z) =
X
n�x

f(n)zg(n)

may be found by using the methods from the theory of multiplicative functions,
then various arithmetical sums involving f and g may be obtained from (1.1). If
g(n) takes only nonnegative integer values, then F (x; z) is a polynomial in z which
we expect to be well approximated by functions regular for jzj � 1, say. Then
F (x; z) may be integrated, di�erentiated, etc. as a function of z. In particular,

(1.2)
X
n�x

f(n)g(n) =
@F (x; z)

@z

�����
z=1

;

and it remains to evaluate the function on the right-hand side of (1.2). This pro-
cedure may be carried out further to yield, for m � 1 a �xed integer,

(1.3)
X
n�x

f(n)gm(n) =
@

@z

 
z . . .

�
z
@F (x; z)

@z| {z }
m times

�
. . .

!�����
z=1

:
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More generally, one can estimate the sum

(1.4)
X
n�x

f(n)gm1 (n) . . . gmr

r (n) (m1 � 1; . . .mr � 1 integers);

where g1; . . . ; gr are suitable nonnegative, integer-valued additive functions. This
follows by considering the sum

(1.5) F (x; z1; . . . ; zr) =
X
n�x

f(n)z
g1(n)
1 ) . . . zgr(n)r

and applying the technique of (1.3) to each of the complex variables z1; . . . ; zr.

If instead of the sum in (1.4) one wishes to evaluate the sum

(1.6)
X
n�x

� f(n)

gm1

1 (n0 . . . gmr

r (n)
(m1; . . . ;mr � 1 integers);

where
P� denotes summation over those n for which the denorninator in (1.6) is

positive, this may be also achieved via (1.5). First we estimate the portion of the
sum in (1.5) for which g1(n) = 0; . . . ; gr(n) = 0. Then dividing the remaining part
of the sum in (1.5) by z1; . . . ; zr and integrating over each variable from "(x) (> 0)
to 1 (where "(x) is suitably chosen and satis�es limx!0+ "(x) = 0), one arrives at
(1.6) with m1 = � � � = mr = 1. By repeating this procedure one may evaluate also
the general sum (1.6).

It has been already stated that if g(n) is a nonnegative, integer-valued additive
function, then the sum in (1.1) is actually a polynomial in z. Hence equating the
coeÆcients of zq of both sides of (1.1) we are able to evaluate asymptotically the
sum

P
m�x;g(n)=q f(n) for a given integer q � 0, which may be termed as a \local"

problem. This topic will be pursued in x4, while in x2 and x3 we shall derive sharp
asymptotic formulae for various sums of the type (1.4) and (1.6).

2. Sums with the divisor function

The technique described in x1 as, at least in principle, fairly well known (see
[3], [1] and [7, Ch. 14], for more details and references). The pioneering work
in this �eld was done by A. Selberg [8], who was the �rst to estimate sums of
dz(n) (see (2.4)), z

!(n) and z
(n). Using these ideas it is possible to obtain general
results concerning the sums described in x1, but both the formulation and proofs
of such theorems would be technically complicated and not very instructive, and
none seem to have appeared in the literature before. Therefore it seems preferable
to derive sharp asymptotic formulae for some common arithmetical functions, and
to indicate how various other formulae may be derived in many other cases. For
g(n) we shall primarily take !(n) or 
(n), the number of distinct prime factors and
the number of all prime factors of n, respectively. It will be clear from the sequel
that the results may be generalized to other nonnegative, integer-valued additive
functions such that g(p) is a constant for all primes p, and g(n) is in some sense
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of moderate growth. In this section we shall specify f(n) = dk(n), the number of
ways n may be written as a product of k �xed positive integers (d1(n) = 1 for all
n). In general, one de�nes for an arbitrary complex z the multiplicative function,
dz(n), commonly called the generalized divisor function, by the relation

(2.1)

1X
n=1

dz(n)n
�s = �z(s); (Re s > 1);

so that dz(p
a) =

�
a+z�1

a

�
, where a branch of �z(s) in (2.1) is given by

�z(s) = exp(z log �(s)) = exp
�
� z

X
p

1X
j=1

j�1p�js
�

(Re s > 1):

Here and in the sequel �(s) is the Riemann zeta-function, and p denotes prime
numbers. In [2] De Koninck and Mercier investigated certain sums of the form
(1.2) by the method of xbf 1, and they stated a general theorem which implies that

(2.2)
X
n�x

d(n)!(n) = 2x logx log logx+Ax logx+O(x)

holds, where d(n) = d2(n) is the number of divisors function, and A is an explicit
constant (see also [1, Ch. 9]). An asymptotic formula for the sum in (2.2) may
be also easily obtained by an elementary argument. Writing !(n) =

P
pjn 1 and

noting that d(p2n)� 2d(pn) = �d(n) for all primes p and n > 1, we obtainX
n�x

d(n)!(n) = 2
X
pn�x

d(n)�
X

p2n�x

d(n):

Hence using classical estimates for sums of d(n) and 1=p it follows after some
simpli�cation that

(2.3)
X
n�x

d(n)!(n) = 2x logx log logx+Ax log x+Bx log log x+Cx+O
� x

logx

�
with explicit A;B 6= 0 and C. This was pointed out recently in a letter of R.
Sitaramachandrarao to De Konick [9], who kindly informed me of this and indicated
that by an elaboration of the above elementary argument (2.3) could be further
sharpened. Thus (2.2) (and also Th. 8 of [2]) is not correct as it stands, but
should have O(x log logx) instead of only O(x) as the error term. In what follows
I shall use the analytic approach described in xbf 1 to derive a formula which gives
as a special case a considerable sharpening of (2.3), and point out how the error
committed in [2] in deriving (2.2) may be easily removed. All the theorems which
follow are the sharpest ones hitherto.

For our proofs we shall need the asymptotic formula

Dz(x) =
X
n�x

dz(n) = c1(z)x log
z�1 x+ � � �+ cN(z)x log

z�N x+(2.4)

+O(x(log x)Re z�N�1);
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where N � 1 is an arbitrary but �xed integer, for j = 1; . . . ; N we have cj(z) =
Bj(z)=�(z � j + 1) and each Bj(z) is regular for jzj � A (A > 0 is arbitrary but
�xed) so that cj(0) = 0 for j � 1 and cj(1) = 0 for j � 2. This is a result proved
by R.D. Dixon [5], a proof of which may be also found in [1, Ch. 1] or [7, Ch.
14]. Dixon sharpened the result of A. Selberg [8], who proved (2.4) with the error
term O(x(log x)Re z�2). Now consider, for Re s > 1 and jzj � A (A > 1 �xed, the
Dirichlet series

Fk(s; z) =

1X
n=1

dk(n)z
!(n)n�s(2.5)

=
Y
p

�
1 + zkp�s +

�
k + 1

2

�
zp�2s +

�
k + 2

3

�
zp�3s + . . .

�
= �kz(s)Gk(s; z);

where

Gk(s; z) =
1X
n=1

gk(n; z)n
�s =

Y
p

(1� p�s)k
�
1 + kzp�s +

�
k + 1

2

�
zp�2s + . . .

�
:

The Dirichlet series for Gk(s; z) converges absolutely and uniformly for Re s >
1=2 + " (" > 0 �xed) and jzj � A, where it represents a regular function of z.
This follows e.g. by a lemma of H. Delange [3] (see also [1, Ch. 5] for a proof),
which formulated for our purpose states the following: Suppose that up up(s; z)
and �p(s; z) are two sequences of complex functions de�ned on s 2 A; z 2 B, and
suppose that for every prime p there exist constants Up and Vp such that

jupj(s; z) � Up; jup(s; z)� �p(s; z)j � Vp;
X
p

U2
p <1;

X
p

Vp <1:

Then the in�nite product
Q

p(1 + up(s; z)) exp(��p(s; z)) is uniformly convergent
and bounded for s 2 A, z 2 B.

From (2.5) it follows that dk(n)z
!(n) is the convolution of dkz(n) and gk(n; z).

Hence using (2.4) we obtainX
n�x

dk(n)z
!(n) =

X
mn�x

gk(n; z)dkz(m) =
X
n�x

gk(n; z)Dkz

�x
n

�
=
X

n�x=2

gk(n; z)Dkz

�x
n

�
+O

� X
x=2<n�x

jgk(n; z)j
�

= x
X

n�x=2

gk(n; z)n
�1

NX
j=1

cj(kz)
�
log

x

n

�kz�j

+O

0
@ X
n�x=2

jgk(n; z)jn
�1
�
log

x

n

�Re kz�N�11A+O(x1=2+"):
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But for each j and M � 1 arbitrary, but �xed, we have

X
n�x=2

gk(n; z)n
�1
�
log

x

n

�kz�j
= logkz�j x

X
n�x=2

�
1�

logn

log x

�Re kz�N�j
gk(n; z)n

�1

= logkz�j
MX
r=0

(�1)r
�
kz � j

r

� X
n�x=2

�
logn

log x

�r
gk(n; z)n

�1 +O((log x)Re kz�M�j�1)

=

MX
r=0

dr;j(z)(logx)
kz�j�r +O((log x)Re kz�M�l�1):

where each dr;j(z) is a regular function for jzj � A. Here we used the fact that, for
C a constant, we have by partial summation

X
n�x=2

gk(n)n
�1 logC n =

1X
n=1

gk(n; z)n
�1 logC n+O(x�1=2+");

since Gk(s; z) is absolutely convergent for Re s � 1=2 + " and jzj � A. Thus from
the preceding discussion we obtain

(2.6)
X
n�x

dk(n)z
!(n) = x

NX
j=1

ek;j(z) log
kz�j x+Rk;N (x; z);

where each ek;j(z) and Rk;N (x; z) are regular functions of z for jzj � A, and

Rk;N (x; z)� x(log x)Re kz�N�1:

Moreover, we have ek;j(0) = 0 for all j � 1 and ek;j(1) = 0 for j � k + 1, since
cj(kz) = Bj(kz)=�(kz � j + 1) (the cj 's are de�ned by (2.4)), the gamma-function
has poles at nonpositive integers, and each ek;j(z) is seen to be a linear combination
of the cj(kz)'s. The formula (2.6) is a generalization of the formula obtained for
k = 1 by Delange [3], who obtained his result by complex integration. The same
could have been done for (2.6) to, but it seemed simpler to use convolution and the
sharp existing formula (2.4) for Dz(x). The idea of our approach is to link directly
this topic to the theory of the Riemann zeta-function.

Now we choose A = 3=2, r = 1= log logx and set s = z + rei�, 0 � � < 2�.
By Cauchy's formula for derivatives of analytic functions we have, for m � 1,

@mRk;N (x; z)

@zm
=

m!

2�i

Z
js�zj=r

Rk;N (x; s)(s � z)�m�1ds

� x(log x)Re kz�N�1r�m
Z 2�

0

d� � x(log x)Re k=�N�1(log logx)m:

Hence for jzj � 1 it follows that uniformly

(2.7) @mRk;N (x; z)=@z
m � x(logx)k�N�1(log logx)m (m = 1; 2; . . . );
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and this bound cannot be improved. It is this step in the proof of (2.2) which was
carried out incorrectly in [2], where for k = 2; m = N = 1 the log log x-factor
in (2.7) was missing. Now we di�erentiate (2.6) with respect to z. This gives, for
jzj � 1,

X
n�x

dk(n)!(n)z
!(n)�1 = x

NX
j=1

(e0k;j(z) + kek;j(z) log logx) log
kz�j x+(2.8)

+
@Rk;N (x; z)

@z
:

Replacing N by N + 1, using (2.7) with m = 1 and recalling that ek;j(1) = 0 for
j � k + 1, we obtain upon setting z = 1 in (2.8) the following

Theorem 1. Let k � 2 be �xed and N be an arbitrary, but �xed integer for
which N > k. Then there exist computable constants ak;j ; bk;j ; ck;j (ak; j 6= 0) such
that

X
n�x

dk(n)!(n) = x

NX
j=1

(ak;j log logx+ bk;j) log
k�j x(2.9)

+ x

NX
j=k+1

ck;j log
k�j x+O(xlogk�N�1x):

In the special case k = 2 this asymptotic expansion yields a considerable sharpening
of (2.3). Proceeding from (2.6) as in (1.3), and using (2.7) with an arbitrary m, we
obtain also

Theorem 2. Let m;N � 1 and k � 2 be �xed integers. Then there exist
polynomials Pk;m;j(t) (j = 1; . . . ; N) of degree m in t with computable coeÆcients
such that

X
n�x

dk(n)!
m(n) = x

NX
j=1

Pk;m;j(log logx) log
k�j x(2.10)

+O(x(log x)k�N�1(log logx)m):

3. Further applications of the method

Theorems 1 and 2 remain valid if !(n) is replaced by 
(n), as hinted in x2,
and it seems diÆcult to obtain formulas such as (2.10) by elementary methods.
Some caution, however, must be displayed in dealing with 
(n), since this is a
\larger" function than !(n) and the analogue of (2.6) is valid only for jzj � 2� ",
which follows if one considers the analogue of (2.5) for 
(n). The ideas connected
with (1.3) and (1.6) may be combined to deduce from the asymptotic expansion
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of
P

n�x dk(n)z
!(n)w
(n), by successive di�erentiation and integration (the latter

is explained in full detail in [1, Chs. 2 and 5]), an asymptotic formula for the
summatory function of dk(n)!

m(n)
r(n), when m and r are �xed integers (not
necessarily positive!). The details of the analysis are omitted and the result, which
is a generalization of both Theorem 1 and Theorem 2, is the following

Thorem 3. Let k � 2, m, r be �xed integers (not necessarily positive), and
let N � 1 be an arbitrary, �xed integer. Then

X
2�n�x

dk(n)!
m(n)
r(n) =x

NX
j=1

cjLj(x) log
k�j x(3.1)

+O(x(log x)k�N�1(log logx)m+r ;

where for any �xed integer M � 1 there exist computable constants b1;j ; . . . ; bM;j

such that for j = 1; . . . ; N

Lj(x) = (log logx)m+r

(
1 +

b1;j
log logx

+
bM;j

(log logx)M
+O

� 1

(log logx)M+1

�)

if either m � �1 or r � �1, otherwise Lj(x) is a polynomial in log logx of degree
m+ r.

One may obtain the analogues of Theorems 1 { 3 if dk(n) in replaced by some
other common multiplicative functions such as

f(n) = �2(n);
1

4
r(n) =

1

4

X
n=a2+b2

1;

a(n) (the number of nonisomorphic abelian groups with n elements) which corre-
sponds to k = 1 on the right-hand side of (3.1), f(n) = d(n2)(k = 3); f(n) =
d2(n) (k = 4) etc. The analysis is again very similar to the previous case and
therefore the details are omitted.

Another possibility is to take for f(n) a multiplicative function for which f(p)
is not exactly a constant, but f(p) = C+o(1) as p!1 for some C > 0. Examples
such as

f(n) =
�(n)

n
=
X
djn

1

d
; f(n) =

'(n)

n
=
Y
pjn

�
1�

1

p

�

and their unitary analogues ��(n)=n, '�(n)=n immediately come to mind (recall
that ��(pa) = pa + 1 and '�(pa) = pa + 1). For simplicity we shall consider now
f(n) = '(n)=n, but obviously the argument is fairly general. For Re s > 1 and
jzj � A (A > 1 �xed) we have the Dirichlet series representationX

n=1

f(n)z!(n)n�s =
Y
p

 
1 +

�
1�

1

p

�
zp�s +

�
1�

1

p

�
zp�2s + . . .

!

=�z(s)
Y
p

(1� p�s)z

 
1 +

(p� 1)z

ps+1 � p

!
= �z(s)

1X
n=1

g(n; z)n�s = �z(s)G(s; z);



38 Aleksandar Ivi�c

say. Following the discussion that leads to (2.6), it is seen that the Dirichlet series
for G(s; z) is absolutely convergent for Re s � 1=2 + " and jzj � A. Hence by the
method of x2 we obtain (this corresponds to Theorem 1 with k = 1)

(3.2)
X
n�x

f(n)!(n) = x(A log log x+B) + x

NX
j=1

cj log
�j x+O(x log�N�1 x)

with some computable constants A 6= 0; B; c1; . . . ; cN , and N � 1 arbitrary, but
�xed. By partial summation we haveX

n�x

'(n)!(n) = x
X
n�x

f(n)!(n)�

Z x

1

�X
n�t

f(n)!(n))dt;

hence using (3.2) and simplifying we deduce

Theorem 4. If N � 1 is an arbitrary, but �xed integer, then there exist
computable constants C > O;D; d1; . . . ; dN such that

(3.3)
X
n�x

'(n)!(n) = Cx2 log logx+Dx2 + x2
NX
j=1

dj log
�j x+O(x2 log�N�1 x):

Obviously (3.3) remains valid (with perhaps di�erent constants) if !(n) is re-
placed by 
(n), and if ' is replaced by �; '�; ��, or more generally, by a suit-
able \polynomial-like" multiplicative function, i.e. by a function for which f(pa)
is a monic polynomial of degree a in p. Multiplicative functions f which are
\larger" than ' or � may be also considered, but they should be �rst appropri-
ately normalized. Consider, for example, the function '2(n)�(n). Then setting
f(n) = '2(n)�(n)n�3 we have f(p) = 1+O(1=p), and a suitable analogue of (3.2)
holds. Partial summation yields then the analogue of (3.3) for '2(n)�(n) with x2

replaced by x4 on the right-hand side of (3.3). Also by the foregoing methods more
general sums than (3.3), such asX

2�n�x

'(n)!m(n)
r(n); (m; r �xed integers)

may be estimated, analogously as in Theorem 3.

A special arithmetic sum was investigated by the author in [6], where it was
shown that

(3.4)
X

1�n�x

 
!(n)� log logn

a(n)

!2

= Ax log logx+O(x)

holds for some constant A > 0 (a(n) is the number of nonisomorphic abelian groups
with n elements). The motivation for this result is the classical formula of P. Tur�an
[7, Ch. 14) that (3.4) holds without a(n), in which case a sharp asymptotic formula
may be obtained by the method of Delange [3, p. 136]. One obtains (3.4) in [6]
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by squaring !(n) � log logn and estimating each ensuing sum separately (since
log logn� log logx+ O(1) for x1=2 < n � x, one may replace log logn by log logx
in (3.4)). Using the technique of Theorem 1 one may considerably sharpen (3.4)
and show that

X
2�n�x

 
!(n)� log logn

a(n)

!2

= Ax log logx+Bx+ x

NX
j=1

Pj(log logx) log
�j x

(3.5)

+O

 
x(log logx)2

(logx)N+1

!

for some computable constants A 6= 0; B, and quadratic functions Pj(j = 1; . . . ; N).
Similar results hold if a(n) is replaced by a multiplicative function f(n) such that
f(p) = 1 + O(p�n) for some � > 0 as p ! 1 and f(n) is in a suitable sense
of moderate growth. An appropriate analogue of (3.5) may be derived if a(n) is
replaced by dk(n); !(n) by 
(n) etc.

4. Local problems

As stated in x1, by a local problem we shall mean estimations of the sums
over n � x for which g(n)� q. The method of 2 allows us to estimate sums of the

form
X

n�x;g(n)=q

f(n) when f(n) = dk(n) (or any of the other multiplicative functions

mentioned in x3, such as �2(n); a(n), etc.), and g(n) is a suitable nonnegative,
integer-valued additive function. In particular, one may derive sharp asymptotic
formulae for the above sum when g(n) = !(n); 
(n) or 
(n)�!(n). In the sequel
we shall suppose that q � 0 is a �xed integer, since the case when q = q(x) is a
function of x is much more diÆcult.

We start from (2.6), noting that the left-hand side is a polynomial in z whose

coeÆcient of zq is exactly
X

n�x;!(n)=q

dk(n). Further we shall use the series expansion

nCx. w (n)=9

logkz�j x = log�j x

1X
r=0

krzr
(log logx)r

r!
;

and we recall that ek;j(0) = 0 for j � 1. Thus �nding the coeÆcient of zq on the
right-hand side of (2.6) we obtain

Theorem 5. Let k, q � 1 be �xed integers, and N � 1 be an arbitrary but
�xed integer. Then there exist polynomials P1(t); . . . ; PN (t) of degree q � 1 in t
whose coeÆcients are computable constants depending on k and g such thatX

n�x;!(n)=q

dk(n) = x

NX
j=1

Pj(log logx) log
�j x(4.1)

+O(x(log x)�N�1(log logx)q�l):



40 Aleksandar Ivi�c

When k = 1 (i.e., d1(n) = 1 for all n) this is a classical result, proved �rst by
Delange [3] (see also [1, Ch. Sj), in this degree of sharpness. It is possible to obtain
similar formulae if dk(n) is replaced by other multiplicative functions f(n). We
formulate only one example:

(4.2)
X

n�x;!(n)=q

�(n) = x2
NX
j=1

Pj(log logx) log
�j x+O(x2(log x)�N�1(log logx)q�1);

where q; N and Pj have a similar meaning as in (4.1). Both (4.1) and (4.2) holds
if !(n) is replaced by 
(n).

We continue our discussion by considering the local problem connected with

(n)� !(n). For Re s > 1 and jzj � A (A > 1 �xed) we have

1X
n=1

dk(n)z

(n)�!(n)n�s =(4.3)

=

 
1 + kp�s +

�
k + 1

2

�
zp�2s +

�
k + 2

3

�
z2p�3s + . . .

!
=

= �k(s)G(s; z);

where

G(s; z) =

1X
n=1

g(n; z)n�s =

=
Y
p

(1� p�s)k

 
1 + kp�s +

�
k + 1

2

�
zp�2s +

�
k + 2

3

�
z2p�3s + . . .

!

is a Dirichlet series which converges absolutely and uniformly for Re s � 1=2 + ",
jzj � A, where it represents a regular function of z. Hence by (4.3) we haveX

n�x

dk(n)z

(n)�!(n) =

X
mn�x

g(n; z)dk(m) =
X
n�x

g(n; z)Dk(x=n):

The estimation of Dk is known in the literature (see [7, Ch. 13], for a detailed
discussion) as general Diriclet divisor problem, and one has

(4.5) Dk(x) =
X
n�x

dk(n) =
n�x

Res �k(s)xss�1+O(x�k+" = xPk�1(logx)+O(x�k+")

for a suitable polynomial Pk�1(t) of degree k � 1 in t and a constant ak which
satis�es (k� 1)=2k � �k � (k� 1)=(k+1) for all k � 2. Inserting (4.5) in (4.4) we
obtain, after some simpli�cation

(4.6)
X
n�x

dk(n)z

(n)�!(n) = x

k�1X
j=0

hj(z) log
j x+R(x; z);
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where, for jzj � A; R(x; z) and each hj(z) are regular functions of z and uniformly

(4.7) R(x; z)� x1=2+" + x�k+":

This formula serves as the analytic basis for the derivation of results involving dk(n)
and 
(n)� !(n). We have

Theorem 6. Let m; q � 0 and k � 1 be �xed integers. Then there exist
computable constants A1;m; . . . ; Ak�1;m and B1;q; . . . ; Bk�l;q, such that

(4.8)
X
n�x

dk(n)(
(n) � !(n))m = x

k�1X
j=0

Aj;m logj x+O(x1=2+" + x�k+")

and

(4.9)
X

n�x;
(n)�!(n)=q

dk(n) = x

k�1X
j=0

Bj;k log
j x+O(x1=2+" + x�k+");

where �k is de�ned by (4.5).

One obtains (4.8) by di�erentiating (4.6) in the manner of (1 .3), while (4.9)
follows by equating the coeÆcients of zq on both sides of (4.6). On may replace
dk(n) in Theorem 6 by various other multiplicative functions on the same lines as
in Theorem 5. Both (4.8) and (4.9) for k = 1 are well-known in the literature. In
fact, the estimation of the sum in (4.9) when k = 1 is known as \R�enyi's problem".
The sharpest known formula for this sum is due to Delange [4] (see also [1, Ch. 5],
for a proof). In this case Delang 'es formula is sharper than (4.9) with k = 1. Since
�2 � 35=108 and �3 � 43=96 is known to hold in (4.5) (all the other known bounds
for �k are not smaller than 1=2; see [7, ch. 13]), one can presumably replace the
error term in (4.9) for k = 2 and k = 3 by a more precise expression, and if the
Lindel�of hypothesis that �(1=2 + it) � jtj" is true, then for all k � 2. This would
follow by suitably adapting the elaborate method of Delange [4] used for k = 1.
We shall not go into this matter here.

In concluding, let it be mentioned that the foregoing methods may be used
to investigate \double' and \multiple" local problems. As an example, we state the
asymptotic expansion

X
n�x;
(n)�!(n)=q

dk(n) = x

NX
j=1

Pj(log logx) log
�j x(4.10)

+O(x(log x)�N�1(log logx)q�1);

where q; k � 1, r � 0 are �xed integers, N � 1 is an arbitrary but �xed integer,
and each Pj(t) is a polynomial in t of degree q � 1 whose coeÆcients depend on
k; q; r. The formula (4.10) follows on comparing the coeÆcients of zqwr on both
sides of the relationX

n�x

dk(n)z
!(n)w
(n)�!(n) = x

NX
j=1

fj(z; w) log
kz�j x+O(x(log x)Re kz�N�1);
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valid for some fj(z; w) (fj(0; w) = 0; j = 1; . . . ; N) which are regular functions of
both z and w for jzj � 3=2, jwj � 3=2 and N � 1 is arbitrary, but �xed.
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