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SOME ANALYTIC METHODS WITH APPLICATIONS

TO NUMBER THEORY

Dimitrije Ugrin-�Sparac

Abstract. We study the arithmetical function \exponent (order) of an integer modulo
m" which is here shortly named "period" of m. A method is developed, named \separation of
parameters", that leads to analytic representation of the function period. Though Bessel functions
have dominant role, other special functions are also applicable. The most promising result is
derived by making use of Mukisi�nski's concept of distributions. The developed method, besides
its general nature, makes it possible to study computability of arithmetical function period by
means of analytic procedures.

1. Introduction

Let a and m be relatively prime integers, m > 1. The smallest positive inte-
ger k such that ak � 1( mod m) is called exponent (order) of a modulo m, and is
denoted by k = expm(a). For the sake of simplicity we shall denote this function
by k(a;m), and call it period. Throughout the following discussion a is �xed, and
for the present the most important particular case is a = 2. We shall show that it
is possible to construct analytic interpolation of the function k(a;m). The method
which will yield such analytic expression is named here \separation of parame-
ters". Similar method, just slightly modi�ed, can be applied to several problems of
number theory, such as Diophantine equations etc. The general procedure may be
summarized as follows. Suppose that we have an expansion

exp(ixy) =
1X
n=0

fn(x)gn(y); (1)

and let a properly chosen periodic distribution '(x) with the period 2�=m is ex-
panded in its Fourir series

'(x) =
1X

j=�1

�j exp(�jmxi): (2)
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Next, assume that after multiplying (1) by '(x) exp(�ix) the integration of series
may be done term by term:Z 2�

0

exp(ix(y � 1))'(x)dx =

1X
n=o

angn(y); (3)

where

an =

Z 2�

0

fn(x)'(x) exp(�ix)dx: (4)

It should be noted that we use distributions in the sense of Mikusi�nski, hence
the integral of distributions is in his sense, cf. [1]. Also, it is clear that an depends
on m. Put now y = as; s 2 N, in (3) and assume that series (2) can be substituted
in (3) and integrated term by term. If we use notation

h(s) = as � 1 (5)

we obtain

1X
n=0

angn(a
s) =

Z 2�

0

exp(ixh(s))'(x)dx =

(
2��j if j = h(s)=m 2 Z

0 if m 6 jh(s):
(6)

It is well-known that h(s) is divisible by m if and only if s = uk; u 2 N. In order
to obtain suÆciently fast convergence, multiply (6) by a weighting function 
(s)
and take summation over s 2 N. Particular cases developed in this paper show
that such a function 
 can be found so that the resulting double sum admits change
of order of summation. Performing the described procedure we get

1X
n=0

ancn = 2�

1X
u=1


(uk)�h(uk)=m (7)

where

cn =

1X
s=1


(s)gn(a
s): (8)

Now let us emphasize the following facts. In (7), disregarding obvious dependence
on indices, an depends on m, cn depends on a, whereas the right-hand side depends
on a, m and k. Therefore we can state

Theorem 1. Concerning the arithmetical function k(a;m), (a;m) = 1, the
relation (7) together with (2), (4) and (8) gives an implicit connection among the
parameters a, m and k.

Investigations of numerous particular examples showed that the most impor-
tant role in this method has the choice the distribution '(x). Roughly speaking, the
method is more fruitful when the proper distribution '(x) resembles the ordinary
function less.

Behavior of the function k(a;m) for a = 2 and large m is closely related
to the question of cardinal numbers of Mersenne and Fermat primes. We should
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remind that primes of the form 2p � 1 are called Mersenne, and primes of the

form 22
t

+ 1 ar called Fermat. The method of separation of parameters has been
originally developed in order to derive possible consequences from the following two
propositions.

Proposition 2. If number of Mersenne primes is in�nite, then k(2;m)=log2m
approaches 1 (over numbers greater than 1 ) as m tends to in�nity over Mersenne
primes.

Proposition 3. If number of Fermat primes is in�nite, then k(2;m)= log2m
approaches 2 (over numbers less than 2) as m tends to in�nity over Fermat primes.

We also mention that obtained analytic expressions for k(a;m) comprise func-
tions suitable for further applications of probabilistic methods.

2. Application of Bessel functions

The number of diverse expansions (1) is in�nite. It is not easy to state general
conditions which must be imposed on the functions fn and gn in order that the
method of separation of parameters will work. Also, particular cases suggest that
there are present unavoidable limitations which make impossible any improvement
of the method by the choice of the expansion (1). The two following expansions were
tested, and may serve as starting point for the method described in the preceding
section. These are:

a) Jacobi expansion, cf. [p. 22, 8]

exp(ixy) =

1X
n=0

"ni
nJn(y)Tn(x); �1 � x � 1;

where "n is Neumann's factor (varepsilon = 1, else " = 2), Tn(x) denotes
Tchebichef polynomials;

b) Generating formula for Laguerre polynomials, cf. [p. 189, (17), 2],

exp(ixy) =

1X
n=0

i�nyn(1� iy)�n�1=2L�1=2n (x):

Probably the best results could be obtained by means of the degenerate form of
Gegenbauer's addition theorem, cf. [p. 368, 8], or [p. 213, 2]; it is sometimes called
Sonin's formula, cf. [p. 64, 2]:

exp(ixy) = 2��(�)

1X
n=0

in(n+ �)y��Jn+�(y)C
�
n(x); (9)

�1 � x � 1. Though formula (9) is applicable for 1=2 � � � 3=2, we shall consider
the particular case � = 1=2, when Gegenbauer's polynomials reduce to Legendre
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polynomials: C
1=2
n (x) = Pn(x). Next, take in (9) y = as�; s 2 N, and replace x

by ��1x� 1 to obtain

exp(ixas) = (�1)a21=2
1X
n=0

bnPn(�
�1x� 1); (10)

where
bn =n (n+ 1=2)a�s=2Jn+1=2(a

s�); (11)

0 � x � 2�. The series in (10) is uniformly convergent with regard to x in [0; 2�].

We shall separately consider the two cases: Case 2.1. ' is a classical bound-
ed function: j'(x)j � M; x 2 R. Case 2.2. ' is constructed by means of Æ-
distribution.

Case 2.l. Relatively simple results can be obtained if one takes for '(x)
periodic Bernoulli or Euler polynomials:�

2�

m

�r
1

r!
Br((mx=2�) + �) or

� �
m

�r 1

r1
Er((mx=�) + �);

where r 2 N; � 2 [0; 1); note that Br(x) resp. Er(x) coincide with Bernoulli resp.
Euler polynomials for x 2 (0; 1). However, the best results are obtained by the
following choice:

'(x) =

1X
s=0

�
�v � 1

s

�
 �+s(x) � (x) =

1

2i�+1
��+11

�!m�
E�(mx=�); (12)

� = 0; 1; 2; . . . From jE�(y)j � �!�1��=2; y 2 (0; 2), we �nd that j'(x) �
�2m(m � 1)���1=4 = M for x 2 (0; 2�). The series (12) is uniformly convergent
with regard to x in (0; 2�). Calculation of the Fourier expansion of the function
'(x) is facilitated by similar expansion of Euler polynomials, cf. [p. 66, 6]. The
result reads:

'(x) = m
X
j2Z

0

(mj + 1)���1 exp(�jmxi); (13)

where m > 1, � � 0 and
P

0

j2Z denotes (through entire text) summation over all

odd integers. Multiplying (10) by '(x) exp(�ix) we obtain the series which is also
uniformly convergent with regard to x in (0; 2�), and therefore it can be integrated
term by term. Thus we getZ 2�

0

'(x) exp(ih(s)x)dx = (�1)a21=2
1X
n=0

anbn; (14)

where

an =

Z 2�

0

Pn(�
�1x� 1)'(x) exp(�ix)dx: (15)

Hence janj � 2�M . Since Pn(�
�1x � 1) exp(�ix) and '(x) are square-summable

functions in (0; 2�), we can apply a known theorem (cf. [p. 575, 4]), to obtain

an = m
X
j2Z

0

(mj + 1)���1
Z 2�

0

Pn(�
�1x� 1) exp(�ix(mj + 1))dx:
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The integral is already calculated as Fourier exponential transform, cf. [p. 122,
(1), 3]. Thus we have

an = (�1)m+1i�1m�21=2
X
j2Z

0

(mj + 1)���3=2Jn+1=2(�(mj + 1)); (16)

where m = 2; 3; 4; . . . ; n = 0; 1; 2; . . . ; � = 0; 1; 2; . . . . It is well-known that Bessel
functions whose order is half of an odd integer are expressible in �nite terms by
means of elementary functions (cf. for instance [p. 53, 8] or [p. 78, 2]). This fact
leads to the following method of transformation of sequences. In the �rst place we
introduce the sequence of functions

A2r+1(z) =
rX

s=0

(�1)s
(2r + 2s+ 1)!

(2s)!(2r � 2s+ 1)!
(2z)�2s

B2r(z) =
r�1X
s=0

(�s)s
(2r + 2s+ 1)!

(2s+ 1)!(2r � 2s� 1)!
(2z)�2s�1

(17)

r = 0; 1; 2; . . . , generated by functions Jn+1=2(z). Simpler notation is actived by

Cn(z) =

(
An(z) for odd n

Bn(z) for even n:

Next, given a sequence t�n; n = 0; 1; 2; . . . , we adopt the usual symbolic power
notation putting t�n = t�n. In this way relations (17) can be understood as
transformation of sequence (t�n)n into the sequence Cn(t); n = 0; 1; 2; . . . . Now
we can derive more convenient expression for coeÆcients an given by (16). Let us
introduce the two-parameter sequence

t�n =
X
j2z

0

(mj + 1)�n���2; (18)

n = 0; 1; 2; . . . ; m = 2; 3; 4; . . . ; � = 0; 1; 2; . . . . The absolute convergence of series
makes it possible to bring (16) in the following (symbolic) form

an = (�1)n(n�1)=2in2mCn(�t): (19)

For the weighting function we shall take 
(s) = a��s; � 2 R. Further, we observe
that '(x) and exp(ixh(s)) are square-summable functions, hence (6) is valid in this
case. Now relations (14), (5), (6) and (13) yield

2�m(ak(�+�+1) � 1)�1 = (�1)a21=2
1X
s=1

a��s
1X
n=0

anbn: (20)

At this point we need a property of Bessel functions.

Lema 4. The asymptotic formula

1X
n=0

jJn+1=2(z)j = O(z3=2) (21)
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holds for large z.

Proof. If we put � = � = n+ 1=2 in [p. 150, (1), 8], it reduces to

dn = J2n+1=2(z) =
2

�

Z �=2

0

J2n+1(w)dx

where n = 0; 1; 2; . . . ; w = 2z cosx and we assume that z is positive real variable.
By the threefold application of the recurrence formula

J�(w) = w(J��1(w) + J�+1(w))=(2�) (22)

[p. 45, (1), 8] it follows that

dn =
z3

2(2n+ 1)

Z �=2

0

(
1

n(2n� 1)
J2n�2(w) +

3

(n+ 1)(2n� 1)
J2n(w)+

+
3

n(2n+ 3)
J2n+2(w) +

1

(n+ 1)(2n+ 3)
J2n+4(w)

)
cos3 xdx;

n = 1; 2; . . . . Taking into account the Lommel inequality jJ�(w)j � 1 for � � 0,
w 2 R, [p. 406, (10), 8], we obtain

dn <
z3

(2n� 1)(2n+ 1)(2n+ 3)

Z �=2

0

cos3 xdx:

whence d
1=2
n = z3=2O(n�3=2), n � 1, uniformly with regard to z 2 (0;1). There-

fore
1X
n=0

d1=2n = jJ1=2(z)j+ z3=2
1X
n=1

O(z�3=2);

which leads to the assertion (21).

The following corollary to Lemma 4 is essential for the development of the
method.

Corollary 5. Let r be nonnegative integer, � and � positive reals. Then for
large z

1X
n=0

(�n+ �)r jJn+1=2(z)j = O(zr+3=2): (23)

Proof is by induction on r, the base is given by (21) and steps are derived by
(22).

We now proceed with changing the order of summation in (20). One suÆcient
condition for that is as follows (cf. for instance [p. 52, 4]). We shall show that inner
series in (20) converges absolutely, and after substitution of that series of absolute
values by convenient upper bound, the remaining series also converges absolutely.
Then the double series in (20) is absolutely convergent, and change of order of
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summation is justi�ed. From (16), with � > �1=2 and �xed in, it is easily seen that
czn is absolutely bounded. Now, by Corollary 5, with r = 1; � = 1; � = 1=2, the
inner sum in (20) is estimated to be O(a2s). Hence the double sum in (20) converges
absolutely if rho > 2. Performing the described procedure, (20) is equivalent to

2�m(ak(�+�+1 � 1)�1 =

1X
n=0

in(n+ 1=2)ancn (24)

where

cn = (�1)a21=2
1X
s=1

a�(�+1=2)sJn+1=2(a
s�): (25)

The transformation that led from (16) to (19) now may be applied again. From
this reason introduce the two-parameter sequence

��n = (an+�+1 � 1)�1; (26)

n = 0; 1; 2; . . . , with the property of symbolic power: ��n = ��n. Then (25) yields

cn = �(�1)n(n+1)=22��1Cn(��): (27)

Finally, (24) by means of (19) and (27) can be brought into the form

(ak(�+nu+1) � 1)�1 = 2��2
1X
n=0

(n+ 1=2)Cn(�t)Cn(��); (28)

from which k is explicitly expressible by elementary functions.

The series in (28) is alternating, with absolute terms not too small. However,
the left-hand side in (28) shows that the sum of the series can be very small, if
a, �, � and k are large. Hence, concerning numerical applications of (28), there is
present the so called loss of accuracy. This e�ect can be reduced by choosing o and
v as small as possible. Numerical evidence shows that exact estimate of the sum in
(21) could be (z=e)1=2. In that case the choice of smaller �, namely � > 1, would be
possible. The choice of smaller � becomes possible, if for ' in (2) we put a proper
distribution. That is only one of goals which we have in mind developing Case 2.2.

The applied transformation of sequences in (19) and (27) is essentially based
on the fact that a and m were integers. Considering the question of interpolation of
the function period, and even a possibility of analytic continuation of this function,
we must observe that (�1)man expressed by (16) has meaning for every real m > 1
and every integer � � 0. Also under these conditions (�1)man is still bounded
with respect to n (proof by employing Lommel's inequality). However, an given
by (19) has meaning for every integer � > 0 and every complex m distinct from
the reciprocal of an odd integer. Expressions (16) and (19) have equal values for
integers m > 1, but need not be equal functions of real m. Examination of the
properties of the coeÆcients an given by (19) and considered as functions of yn in
the complex plane seems to be a very diÆcult problem. We do not know whether
these functions are bounded with respect to n, even if m runs only over reals,
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m > 1. CoeÆcients (�1)acn given by (25) retain meaning if a ranges over reals
greater than 1. In that case series in (24) remains convergent. Thus we have further
possibility for interpolation of the function period.

In the most important case a = 2, the integer m must be odd, hence factor
(�1)m+1 in (16) may be dropped. Thus the obtained expression for an, interpolated
as the function of real variable m, we denote by (�1)n(n�1)=2in2ma�n(m), whence

a�n(m) = (�1)n(n+1)=2�2�1=2
1X
j2Z

(mj + 1)���3=2Jn+1=2(�(mj + 1)) (29)

where n = 0; 1; 2; . . . ; � = 0; 1; 2; . . . ; m real number greater than 1. We know
that a�n(m); (n = 0; 1; 2; . . . ) are continuous functions of m so that for �xed � and
� the function

D�(m; 2; �; �) = 2��2
1X
n=0

(n+ 1=2)a�n(m)Cn(��)

is also continuous for real m > 1. Denote by S�;�, the set of zeros of this function.
From (6) one concludes that all positive even integers belong to S�;�. Comput-
er calculations show that all remaining zeros are located closely to odd integers
3; 5; 7; . . . cf. [9]. Owing to (24) we can state

Theorem 6. Let � � 0 and � > 2 be �xed, � 2 boldZ; � 2 boldR. The
function

@(m; 2; �; �) = (�+ � + 1)�1 log2(1 +D�(m; 2; �; �)�1) (30)

de�ned for all real m > 1, except for points from S��, represents an interpolation
of the function period k(2;m).

Indeed, for odd integers m > 1 we have @(m; 2; �; �) = k(2;m).

Case 2.2. In order to reduce the lower bound of � by 1, and also to create a
possibility of imposing an in�nite number of conditions on the coeÆcients an given
by (4), we suggest the use of the following distribution

'(x) =

1X
�=0

A� �(x) (31)

 �(x) = �m�1
1X

n=�1

(�1)nÆ(x � �m�1(n+ ��)) (32)

where Æ denotes 6-distribution, (��)� is an arbitrary sequence of real numbers from
the segment [a; b] contained in the interval [0; 2); (A�)� is a sequence of indetermi-
nates which could take complex values. The distribution (32) is periodic, with the
period 2�=m and can be expressed by Euler polynomials

 �(x) = 2�1(E0(2
�1(m��1x� �))�E0(2

�1(m��1x� �� � 1))) (33)
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where E0(x) = E1
0

(x), derivative being distributional. If coeÆcients A� in (31 )
are chosen so that the series converges distributionaly then it represents a periodic
distribution with the period 2�=m. A suÆcient condition for that is

A� = O(��1�") (34)

where " > 0 is arbitrary. In the sequel we assume (34) satis�ed. Series (31) remains
convergent when every term is multiplied by the function exp(jmxi) of the class
C1. Such series of periodic distributions can be integrated term by term within
one period (cf. [p. 59, 4.2.2., 1]) so that we obtain corresponding Fourier expansion

'(x) =
X

j2boldZ

0

�j exp(�jmxi); �j =

1X
�=0

A� exp(j���i): (35)

Owing to (34) we �nd that j�j j <
P

� jA�j. Multiplying the left-hand side of (10)

by '(x) exp(�ix) we obtain distributionally convergent series

L(x) =
X

j2boldZ

0

�j exp(�(jm� h(s))xi) (36)

which represents periodic distribution with the period 2�. We can integrate this
series within one period, to obtain right-hand equality in (6). Next we shall need
a simple lemma from the theory of distributions.

Lemma 7. Let there be given series of functions of class C1: !(x) =P
1

n=0 !n(x) convergent in the interval (a; b), and let distribution f(x) is of or-
der k in the same interval. (Notion order in the sense of [p. 65, 1].) If the seriesP

1

n=0 !
(k)
n (x) uniformly converges in (a; b), then !(x)f(x) =

P
1

n=0 !n(x)f(x) and
the series is distributionally convergent.

Proof of Lemma 7 is simple, and therefore it is omitted here.

Now we take the restriction of '(x) to the interval (0; 2�):

'1(x) = �m�1
1X
�=0

Amu
X
L

(�1)rÆ(x� z�(r))

where z�(r) = �m�1(r + ��) and the range of summation L is de�ned by
0 < z�(r) < 2�; r 2 Z, and multiply the right-hand side of ( 10) by '1(x) exp(�ix).
Since all conditions for application of Lemma 7 are ful�lled, we arrive at the dis-
tribution

(�1)a21=2
1X
n=0

bn�n(x) (37)

where bn is given by (11) and

�n(x) = �m�1
1X
�=0

A�

X
L

(�1)rPn(�
�1z�(r) � 1) exp(�iz�(r))Æ(x � z�(r)) (38)
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is distribution on (0; 2�), n = 0; 1; 2; . . . . In the next step we construct the periodic
extension of the distribution (38) over the whole R:

��n(x) = �m�1
1X
�=0

A�

X
L

(�1)rPn(�
�1zmu(r) � 1) exp(�iz�(r))�

�
1X

�=�1

Æ(x� z�(r) + 2��) (39)

and we consider the series

R(x) = (�1)a21=2
1X
�=0

bn�
�

n(x); (40)

which is distributionally convergent on R.

Indeed, there are functions F�;n(x) continuous on R such that the series

Gn(x) =

1X
�=0

A�F�;n(x)

converges locally uniformly on R and G00n(x) = ��n(x). Also the functions Gn(x) are
continuous onR. By the properties of Legendre polynomials and some other reasons
one can show that for every �nite segment a � x � b the esimate F�;n(x) = O(1)
holds uniformly with regard to � and n. It follows that Gn(x) = O(1) for a � x � b
and uniformly with regard to n. Therefore the series

1X
n=0

bnGn(x)

is locally uniformly convergent on R (by the properties of Bessel functions), and
our statement concerning series (40) is proved.

Since periodic distributions L(x), cf. (36), and R(x), cf. (40), are equal on
(0; 2�), and there are neighborhoods of 0 and 2� in which both distributions coin-
cide with 0, we conclude that L(x) = R(x) on R. Integration of this equality within
the period (0; 2�) yields

(�1)a21=2
1X
n=0

anbn =

Z 2�

0

L(x)dx (41 )

where

an =

Z 2�

0

�n(x)dx =
1X
�=0

A�S�;n; (42)

s�;n = �m�1
X
L

(�1)rPn(�
�1z�(r) � 1) exp(�iz�(r)); (43)
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bn is de�ned by (11) and the right-hand side of (41) is given by the right-hand
equality in (6). From (42) and (43) we see that an is bounded with regard to
n, so that further considerations could follow the ideas employed in the Case 2.1.
However, before continuing in this direction, we may apply Poisson-Mordell theorem
[p. 74, 7] or [5] and Fourier transform of Legendre polynomials to modify the
expression (43). After some calculations the result reads

s�;n = �i�n21=2
X
j2Z

0

exp(j��mui)(mj + 1)
�1=2
Jn+1=2(�(mj + 1)): (44)

Similarly as in the Case 2.1. (41) is multiplied by the weighting function a��s and
summation over s 2 N yields

1X
n=0

in(n+ 1=2)ancn = 2�

1X
�=0

A��� (45)

where

�� =

1X
u=1

a��uk exp(h(uk)���i=m); (46)

and cn is given by (25). Substituting by sequence (��)� by (2� ��)� it is possible
to substitute exp(j���i) in (44) and exp(h(uk)���i=m) in (46) by w(j���i) and
w(h(uk)���i=m) respectively, where w stands for sine or cosine function. We are
interested here in the particular case A0 = l, A� = 0 for � = 0, �0 = 1, a = 2, m
odd integer. Then (42) and (44) reduce to

an = ��i�n21=2
X
j2Z

0

(mj + 1)�1=2Jn+1=2(�mj + 1)); (47)

while the right-hand side of (45) is expressible in the �nite form �2�(a�k � 1)�1.
This particular distributional proof showed that the relation (24) together with
(25) and (16) holds also for � = �1.
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