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ON THE REPRESENTATION OF S5 ALGEBRAS

AND THEIR AUTOMORPHISM GROUPS

�Zarko Mijajlovi�c

Abstract. This paper deals with the representation theory of Boolean algebras operators
and their automorphism groups. Mainly S5 algebras are considered, and it is shown that these
operators can be represented by relatively complete Boolean subalgebras.

1. Introduction. We shall consider the representation theory of Boolean
algebras with additional closure operators and their automorphism groups. We
shall study mainly S5 closure operators, and it will appear that these operators are
represented by relatively complete Boolean subalgebras introduced by Koppelberg
[4]. First we introduce some terminology and notation.

The pair (B; �) denotes a Boolean algebra (abbreviated by BA)B = (B;+; �;0 ;
0; 1) with an additional unary operation � over B. Sums and products (�nite or
in�nite) of elements xi 2 B, i 2 I , are denoted respectively

P
i xi;

Q
i xi. Occasion-

ally, we use expansions (B; A) or (B; a)a2A, where A � B. If B is generated by the
set A [ fu1; . . . ; ung, then we write B = A(u1; . . . ; un). In such a case we say that
B is a �nitary extension of A. A set f�1; . . . ; �ng of elements of B is a partition of
1 if 1 =

P
i �i, and �i�j = 0 for i 6= j. If B is a �nitary extension of A, then B is

�nitary extension of A by partition of 1. We shall call such extensions normal. All
model-theoretic notions are as in [1].

The following proposition for arbitrary algebras, and more generally for ar-
bitrary models, will be useful later.

Proposition 1.1. 1Æ Let A, B be algebras of the same language L, and let
" : A! B be an onto homomorphism. Then the map

� : Aut (A; ker ")! AutB

de�ned by �(g) = h i� h" = "g, is a homomorphism.
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2Æ If A, B are models of a language L, and " is a strong homomorphism
(cf. [1]), i.e. for all n-ary relation symbols R of L, and a1; . . . ; an 2 A, R

A a1 . . . an
i� RB "a1 . . . "an then 1Æ still holds.

Proof. 1Æ Observe that h is well-de�ned, as for R" = textker ", given g and
x; y 2 A we have R"xy i� R"gxgy. Further more, if ! is an n-aryfunction symbol
of L, then for b1; . . . ; bn 2 B there are a1; . . . ; an 2 A such that

h!Bb1 . . . bn = h!B"a1 . . . "an = h"!Aa1 . . .an = "g!Aa1 . . . an =

= h!B"ga1 . . . "gan = !Bhb1 . . .hbn:

Claim 2Æ can be proved in a similar manner. �

If A � B, by Aut (B=A) we denote the group of automorphisms of B which
�x A pointwise. Therefore Aut (B=A) is the Galois group of B over A.

2. Closure operators. We remind the reader about the following clo-
sure operators over Boolean algebras. A Boolean algebra with a closure operator
(B; �) is:

1Æ a T -algebra if it satis�es the following axioms

0� = 0; x � x�; (x+ y)� = x� + y�;

2Æ an S4-algebra if (B; �) is a T -algebra and � satis�es the axiom x�� = x�,

3Æ an S5-algebra if (B; �) is an S4-algebra and � satis�es the axiom x�Æ = x�,

where Æ is the dual operator, i.e. xÆ = x0� 0.

We have the following slight generalization of a result of Drake [2]:

Proposition 2.1. Let H be a �nite set of homomorphisms of B into B so
that idB 2 H. De�ne an operator � on B in the following way:

(2.1.1) x� =
X
g2H

g(x); x 2 B:

Then: 1Æ (B;� ) is a T-algebra.

2Æ If H is closed under the composition of maps, then (B;� ) is an S4-algebra.

3Æ If H is subgroup of AutB then (B;� ) is an S5-algebra.

The proofs of these facts are straightforward, so they are omitted. We shall
discuss later which operators can be represented in the form (2.1.1). For �nite BA's
this problem was solved by Drake. Now we remark that a re�nemant can be made
in the case of complete BA's. Namely, if B is a k-complete BA and H is a set of
cardinality � k of k-complete endomorphisms, an assertion similar to Proposition
2.1 holds.
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Finally, if H is a subgroup of AutB, then for every x 2 B and g 2 H , if � is
de�ned by (2.1.1), we have

g(x�) =
X
h2H

gh(x) =
X
h2H

h(x) = x�;

so for all x 2 B the following holds: x = x� i� for all g 2 H; g(x) = x.

3. Relativly complete sets. Let B be BA and A a subset of B. Then the
set A is upward relatively complete in bf B i� every x 2 B there is a largest a 2 A
such that a � x. We denote that bound by xÆ, and we say that the operator Æ is
inducted by A.

A subset A � B is downward relatively complete in B i� for every x 2 B
there is a smallest b 2 A such that x � b. That bound is denoted by x�, and we
say the operator � is induced by A.

Some simple properties of these notions are stated in the following proposi-
tions. The term \relatively complete" is abbreviated by \r.e.".

Proposition 3.1. Let B be a BA, and A subset of B. Then

1Æ If A is upward r.c. in B, and if Æ is induced by A, then 0Æ = 0; xÆ � x,
x � y ! xÆ � yÆ; xÆÆ = xÆ; (8x 2 A) xÆ = x.

If, in addition, A is closed under the operation �, then also (xy)Æ = xÆyÆ.

2Æ If A is downward complete, and if � is induced by A, then 1� = 1; x � x�,
x � y ! x� � y�; x�� = x�; (8x 2 A) x� = x.

3Æ If A is upward r.c., and if Æ is the associated operator, then the set A =
fx0Æ 0 : x 2 Bg is downward r.c.. Thus still holds if the words \upward",
\downward", and the sings Æ;� are interchanged.

Proposition 3.2. Let B be a BA, and let � and Æ be induced operators as in
Proposition 3.1. Then

1Æ If A is upward r.c. in B, and A is closed under �, then A is closed under the
operation +, and (B;� ) is an S4 algebra, and (A;+; �) is a Heyting algebra,

2Æ If A is a r.�. (i.e. upward and downward r.c.) Boolean subalgebra of B, then
(B;� ) is an S5 algebra.

If � is a closure operator of B, then the set A = fx� : x 2 Bg is associated
to (B;� ), and we have

Proposition 3.3. 1Æ If (B;� ) is an S4 algebra, then (A;+; �) is a Heyting
algebra. 2Æ If (B;� ) is an S5 algebra, then A is a r.c. Boolean subalgebra of B.

In fact, these correspondences are 1-1; namely, if an operator is induced by a
r.c. set A, then the set associated with � is A, and vice versa.

Some of the above statements are well known (see e.g. [6]), and the proofs of
the others are simple; so, they are omitted.
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4. S5 algebras. In this section we shall study in more detail S5 algebras
(B;� ) in which B is a �nitary extension of the subalgebra A = fx� : x 2 Bg. First,
we consider an S5 algebra which will appear later as a canonical example of such
a kind of algebras.

Algebra (An; �). Let A be a Boolean algebra, n 2 !, and � is r.c. in An, and
therefore (An; �) is an S5 algebra. Observe that the induced operator � is de�ned
in the following way:

x� = (a; a; . . . ; a); where x = (x1; x2; . . . ; xn); a =
X
i

xi:

Let �1 = (1; 0; . . . ; 0); . . . ; �n+(0; . . . ; 0; 1), and for a 2 A de�ne a = (a; . . . ; a).
Then we have immediately for any x 2 An; x = (x1; . . . ; xn); x =

P
i xi�i.

Therefore, An = �(�1; . . . ; �n) and �1; . . . ; �n is a partition of 1, i.e. An is a
normal extension of �. These algebras are important since all S5 algebras (B; A),
where B is a �nitary extension of A, are generated by them.

Proposition 4.1 An S5 algebra (B; A) is a �nitary extension of A i� (B; A)
is a homomorphic image of (An; �) for some n 2 !.

Proof. Suppose B = A(u1; . . . ; un). We may assume that u1; . . . ; un is a
partition of 1. Then the map � : An ! B de�ned by

�(a) =
X
i

aiui; a = (a1; . . . ; an); a 2 A
n

is a homomorphism of (An; �) onto (B; A). On the other hand, if (B; A)
is a homomorphic image of (An; �) under a homomorphism �, then B =
A(��1; . . . ; ��n). �

The following example shows that there may exist many S5 algebras with the
same Boolean part B. In this example we shall assume the Continuum Hypothesis
(CH).

Let T�; � 2 !1, be a family of almost disjoint in�nite subsets of !, i.e.
� < � < !1 implies jT� \ T�j < !. Furthermore, let B = f0; a; a0; b; b0; c; c0; 1g be
an eight-element BA, and for n 2 T� de�ne S�n = f0; a; a0; 1g and for n 2 T c take
S�n = f0; 1g. Finally, let D be the �lter of co�nite subsets of !, and de�ne reduced
products by

(B; S�) =
Y
D

(B; S�n ):

Then we have:

1Æ
Q

D 2 is a proper subset of S� and S� is a proper subset of B; 2 = f0; 1g;

2Æ B �= S� �=
Q

D 2 for all � 2 !1;

3Æ for all �; � 2 !1; (B; S�) �= (B; S�);
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4Æ if � < � < !1, then S� \ S� =
Q

D 2.

To see that claim 1Æ holds, de�ne the function f by f(i) = c; i 2 !. Then
fD 2 S�. As T� is in�nite, there is a g 2

Q
n S

�
n such that fn 2 ! : g(n) 6= 0; 1g is

in�nite. Then gD 2 S� �
Q

D 2.

Claims 2Æ and 3Æ hold by the saturation property of the �lter of co�nite
subsets of ! under CH, see [1].

Furthermore, suppose � < � < !1 and fD 2 S� \ S� . Then for some
g 2

Q
n S

�
n ; h 2

Q
n S

�
n we have fD = gD; fD = hD. Thus

X = n 2: g(n) = h(n); g(n); h(n) 6= 0; 1 � T� \ T�

i.e. X is �nite, therefore gD; hD 2
Q

D 2, so fD 2
Q

D 2. Observe that the Stone
space of

Q
D 2 is �! � ! (the growth of the discrete topology on !).

Therefore, we constructed !1 di�erent S5 algebras onB, but all these algebras
are isomorphic.

We shall use occasionally the following assertion:

Proposition 4.2. If (B; A) is an S5 algebra, then the induced operator �

satis�es  X
i

aixi

!�

=
X
i

aix
�

i ; a1; . . . ; �n 2 A; x1; . . . ; xn 2 B:

Proof. If � is an S5 operator, then for any x; y 2 B; (x�y)� = x�y�.

Proposition 4.3. Suppose B is a Boolean algebra, and A � B is Boolean
subalgebra of B. Furthermore, let u1; . . . ; un be partition of 1 in B such that B =
A(u1; . . . ; un). Then A is r.c. in B i� for each u1 there is a least �i 2 A such that
ui � �i.

Proof. We see that each x 2 B has the form x =
P

i xi�i for some xi 2 A.
Now, if x =

P
i xiui; xi 2 A, de�ne x

� =
P

i xi�i. Furthermore:

1Æ The map x ! x� is well de�ned: Assume
P

i xiui =
P

i yiui; xi; yi 2 A.
Multiplying both sides of this equation by ui, we obtain xiui = yiui, therefore
ui � xiyi + x0iy

0

i. As xiyi + x0iy
0

i 2 A, by de�nition of �i, we have �i � xiyi + x0iy
0

i,
so xiyi = yi�i. Hence,

P
i xi�i =

P
i yi�i.

2Æ Let a 2 A. Then a�i is the least element in A such that aui � a�i. Indeed,
assume t 2 A. Then we have aui � t i� ui � a0 + t. Since a0 + t 2 A, it follows
that ui � a0 + t i� �i � a0 + t, but �i � a0 + t i� a�i � t, so for all t 2 A, aui � t
i� a�i � t, and this implies claim 2Æ.

3Æ.
P

i xi�i is the least element of A which is greater than x: Let t 2 A be such
that x � t. Then xui � tui, so, since xui = xiui, we have xiui � tui, and therefore
xiui � t. Then by 2Æ, xi�i � t; thus

P
i xi�i � t.
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If B is a �nitary extension of A, then we can �nd conditions under which
(B; A) �= (An; �). These conditions are described in the following proposition:

Proposition 4.4. Let (B; A) be an S5 algebra such that B = A(u1; . . . ; un),
and let � : (An; �)! (B; A) be the homomorphism constructed in Proposition 4.1.
Then the following statements, are equivalent:

1Æ � : (B; A) �= (An; �);

2Æ (8i � n) u�i = 1;

3Æ (8a 2 A)(uia = 0! a = 0); i = 1; . . . ; n:

Proof. (1Æ ! 2Æ) If �I = (1; 0; . . . ; 0); . . . ; �n = (0; . . . ; 0; 1), then ��i = 1 in
(An; �); thus 1 = �(��i ) = �(�i)

� = u�i , i.e. u
�

i = 1.

(2Æ ! 3Æ) If a 2 A, then a� = a; therefore, by Proposition 4.2. we have
(aui)

� = auai st = a � 1 = a. Hence, if aui = 0, then (aui)
� = 0, i.e. a = 0.

(3Æ ! 1Æ) We show that � is 1-1. Assume a; b 2 An, and let �a = �b. ThenP
i aiui =

P
i biui; thus, for all i � n aiui = biui, i.e. (a

0

ibi + aib
0

i)ui = 0. Since
a0ibi+ aib

0

i 2 A, using condition 2Æ, we have a0ibi+ aib
0

i = 0 i.e. ai = bi for all i � n.
Therefore a = b.

5. Filters over algebras. Let (B;� ) be an S5 algebra and A an r.c.
subalgebra induced by �, i.e. A = fx� : x 2 Bg. Furthermore, assume D is a
�lter over A, and let FD be the �lter of B induced by D. Then FD = fx 2 B :
9t 2 D (t � x)g. Also, we can de�ne a congruence relation �D over B induced by
D : x �D y i� 9t 2 D tx = ty; x; y 2 B.

If x; y are elements of B such that x �D y, then for some t 2 D; tx = ty; so
tx� = (tx)� = ty�, i.e.

8x; y 2 B x �D y ! x� �D y:

Therefore, �D is a congruence relation of the algebra (B;� ) too, and we can de�ne
in a natural way an S5 operator in the quotient algebra BD = B=FD by (x=F �

D =
x�=FD; x 2 B.

Koppelberg introduced in [4] a relation over B induced by point of the dual
space X of A, i.e. an ultra�lter over A. This relation is rather technical, but it
plays an important role in descriptions of automorphisms of the algebra (B; A).
We found an equivalent description of this relation in therms of the operation �.
We remind the reader that in [4] B is identi�ed with the set of global sections �(S)
of a sheaf S = (S; �;X; �), where S[p2XBp; � : S ! X where �(s) = p i� s 2 Bp,
and � : p ! Bp; p 2 X . Therefore, each b 2 B may be considered as a function
from X to S. Now we review the de�nition of the relation mentioned above:

De�nition 5.1. Let p 2 X . For x; y 2 B; x � y at p i� there is a neighborhood
u of p such that for q 2 u; x(q) = 0 i� y(q) = 0.
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Theorem 5.2. For any p 2 X, and x; y 2 B, the following statements are
equivalent:

1Æ x � y at p;

2Æ x� �p y
�;

3Æ Bp j= x� = y�, where x is a name of x, i.e. a new constant symbol, which is
interpreted in Bp with the element x=Fp.

Proof. In the following, if a 2, then dual(a) denotes the set fp 2 X : a 2 pg.
Then we have the following equivalencies for x; y 2 B and p 2 X . x � y at p$ is
neighborhood u of p such that for all q 2 u,

x(q) = 0 i� y(q) = 0

$(9c 2 p)(8q 3 c)(x=Fq = 0$ y=Fq = 0)

$(9c 2 p)(8q 3 c)((9s 2 q)xs = 0$ (9t 2 q)yt = 0)

$(9c 2 p)(8q 3 c)((9s 2 q)s � x0 $ (9t 2 q)t 2 y0)

$(9c 2 p)(8q 3 c)s � x00 $ (9t 2 q) � y00)

$(9c 2 p)(8q 3 c)(x00 2 q $ y00 2 q)

$(9c 2 p)(8q 3 c)(x� 2 q $ y� 2 q)

$(9c 2 p)(8q 2 dual(c))(q 2 dual(x�)$ q 2 dual(y�))

$(9c 2 p)dual(c) \ dual(x�) = duala(c) \ dual(y�)

$(9c 2 p)dual(cx�) = dual(cy�)

$x� �p y
�:

Therefore, we have at once the equivalence (1Æ $ 2Æ). Since Bp = B=Fp,
then the equivalence (2Æ $ 3Æ) is obvious.

Corollary 5.3. Let x; y 2 B; a 2 A. Then

ax� = ay� $ (8p 2 dual(a))(x � y at p):

Proof. If ax� = ay� and a 2 p 2 X , then by de�nition of the �lter Fp we have
x� �p y

�; thus, by the previous theorem, x � y at p.

Now, suppose 8p 2 dual(a)(x � y at p. Then for p 2 dual(a), x � y at p,
i.e. x� �p y

�. Therefore, for some c 2 p we have x�c = y�c; thus, x�y�+x�0y�0 2 p.
Therefore, x�y� + x�0y�0 belongs to the �lter of A generated by a; hence, x�y� +
x�0y�0 � a i.e. ax� = ay�.

6. Automorphisms of S5 algebras. In this section we shall study auto-
morphisms of S5 algebras. Let (B;� ) be an S5 algebra and A the corresponding
r.c. subalgebra of B. Then we have several groups of automorphisms. These groups
are:

AutB; the group of all automorphisms of B;

Aut (B;� ) = fg 2 AutB : 8x 2 B g(x�) = g(x)�g;

Aut (B; A) = fg 2 AutB : 8x 2 Ag(x) 2 Ag;

Aut (B=A) = fg 2 AutB : 8x 2 Ag(x) = xg; the Galois group of B over A:
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Some simple relations between these groups are described in the following
proposition.

Proposition 6.1. 1Æ Aut (B=A) / Aut (B; A) = Aut (B;� ) � AutB.

2Æ Aut (B=A) = Aut (B; a)a2A.

3Æ g 2 Aut (B=A) i� g 2 Aut (B; A) and g Æ � = �.

Proof. 1Æ First we prove that Aut (B; A) is a normal subgroup of Aut (B; A).
Assume � 2 Aut (B=A), and let � 2 Aut (B=A). Then for a 2 A we have
(��1��)(a) = ��1(�(�(a))) = ��1(�(a)) = a, thus ���� 2 Aut (B=A) .

Now we prove Aut (B; A) = Aut (B;� ). Assume � 2 Aut (B; A), and let
a = x, x 2 B. Then (B; A) j= "a is the least z in A such that x � z" so,
(B; A) j= "�a is the least z in A such that �x � z", i.e. �(a) = �(x)�, and therefore
�(x�) = �(x)�. Hence, we have proved � 2 Aut (B;� ), i.e. Aut (B; A) � Aut (B;� ).

Now assume � 2 Aut (B;� ). If a 2 A, then a� = a, so �(a) = �(a�) = �(a)�.
i.e. �(a) 2 A i� �a 2 A; so, � 2 Aut (B; A), i.e. Aut (B;� ) � Aut (B; A).

2Æ Remember that (B; a)a2A is a simple expansion of the model B by the
individual constans a 2 A.

3Æ Assume � 2 Aut (B;� ) and � Æ � = �. Then for a 2 A we have �(a) =
�(a�) = a� = a, i.e. � 2 Aut (B=A).

In the case of S5 algebras which are �nitary extensions, there is a condition
which admits automorphisms with special properties:

Theorem 6.2. Let A be a r.c. subalgebra of a BA B, and let B =
A(u1; . . . ; un) B = A(�1; . . . ; �n) be two normal extensions of A. Assume that
for all i � n we have u�i = ��i . Then there is a g 2 Aut (B=A) such that g(ui) = �i
for all i � n.

Proof. Consider the map g : B ! B de�ned by

g : x1u1 + � � �+ xnun 7! x1�1 + � � �+ xn�n; x1; . . . ; xn 2 A:

Then g 2 Aut (B=A) and g(ui) = �i: 1 � i � n. To see that, we �rst prove:

(1) For all i � n; u�i = ��i i� for all a 2 A, a � u0i $ a � �0i. This follows from the
following. Assume x 2 A; then

x � u0i $ x � ui
00 $ u�i � x0 $ ��i � x0 $ x � �i

00 $ x � �0i:

On the other hand if (8a 2 A)a � uiprzir$ a � �0i, then, as above (8x 2 A)u�i �
x0 $ ��i � x0; so, u�i = ��i , i.e. (1) holds.

Now we check, for example, that g is well de�ned. Assume x1u1+� � �+xnun =
y1u1+ � � �+ ynun. Then, as fui : i � ng is a partition of 1, we have xiui = yiui for
all i � n; so, xiy

0

i + x0iyi � u0i; thus, xiy
0

i + x0iyi � �0i, i.e. xi�i = yi�i. Hence,

x1�1 + � � �+ xn�n = y1�1 + � � �+ yn�n:
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It is easy to see now that g 2 Aut (B=A); so we omit the rest of the proof.

In the following examples we shall illustrate the last theorem. In all cases,
Sn denotes the set of all permutations of the set f1; 2; . . . ; ng, and fu1; . . . ; ung is
a partition of 1.

Example 6.3. Let � 2 Sn and consider an S5 algebra (An; �); An =
�(u1; . . . ; un). Then for all i � n; u�i = 1; hence, there is g 2 Aut (An; �)
such that g(ui) = u�(i).

Example 6.4. Let (B; A); B = A(u1; . . . ; un) be an S5 algebra, and � 2 Sn.
Furthermore, assume that for some p 2 X = dualA, for all i � n; ui � u�(i) at p.
Then there is a g 2 Aut (B=A)such that for i � n; g(ui) �p u�(i).

Proof. Assume ui � u�(i) at p. Then by Theorem 5.2 there is a ci 2 p such
that u�i ci = u�

�(i) = ci. Therefore, for c = c1c2 . . . cn, we have c 2 p and u
�

i c = u�
�(i)c

for all i � n. The set fc0iui + cu�(i) : 1 � i � ng is a partition of 1, and also:

(c0iui + cu�(i))
� = c0u�i + cu��(i) = c0u�i + cu�i = u�i :

By Theorem 6.2 there is g 2 Aut (B=A) such that g(u)i) = c0iu
�

i + cu��(i). Thus,

g(ui)=Fp = (c0iui + cu�(i))=Fp = c0=Fp � ui=Fp + c=Fp � u�(i)=Fp = u�(i)=Fp, as
c 2 p; c0 6= p. Therefore, g(ui) �p u�)i).

This example is related to Lemma 2.3 in [4], and we shall return to it later.

Example 6.5. Let (B; A);B = A(u1; . . . ; un) be an S5 algebra, and assume
fa� : � 2 Sng is a partition of 1 in A such that

8� 2 Sn a�u
�

r = a�u
�

�(r):

Then there is a g 2 Aut (B=A) such that

(6.5.1) g(ur) =
X
�

a�u�(r); 1 � r � n:

Proof. It is easy to see that
�P

� a�u�(r) : 1 � r � n
	
is a partition of 1.

Furthermore:  X
�

a�u�(r)

!�

=
X
�

a�u
�

�(r) =
X
�

a�u
�

r = u�r:

Therefore, by Theorem 6.2 there is a g 2 Aut (B=A) with the required property.

This example is a new proof of Theorem 2.4 (a) in [4]. We note that 6.5.1
holds for an appropriate partition a�; � 2 Sn, of 1 in A.

In the following proposition we state some properties of the Galois group of
B over A.
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Proposition 6.6. Let Xbe the dual space of A. Then:

1Æ for everi p 2 X, every g 2 Aut (B=A) generates a g 2 AutBp;

2Æ Aut (B=A) =
T
p2X

Aut (B;�p);

3Æ for all p 2 X; x; y 2 B and g 2 Aut (B=A) we have gx �p y ! x � y at p.

Proof. 1Æ Let g 2 Aut (B=A) and assume x �p y for some x; y 2 B. Then
there is a t 2 p such that tx = ty; hence

tg(x) = g(tx) = g(ty) = tg(y); i.e. g(x) �p g(y)

and Aut (B=A) � Aut (B;�p). Thus, by Proposition 1.1 there is a homomorphism
� : Aut (B=A)! AutB de�ned by g Ækp = kp Æg, where � : g 7! g, and kpB! Bp

is the natural homomorphism. Observe that �p= ker kp.

2Æ By 1Æ we have Aut (B=A) � Aut (B;�p) for all p 2 X . So, suppose for all
p 2 X; g 2 Aut (B;�p). Let a 2 A, and assume g(a) 6= a. Then there is a p 2 X
such that a 2 p and g(a)0 2 p, or a0 2 p and g(a) 2 p. In the �rst case we have
a �p 1 and g(a) �p 0, and in the second, a �p 0 and g(a) �p 1, a contradiction.
Therefore for all a 2 A; g(a) = a, i.e. g 2 Aut (B=A).

3Æ Assume gx �p y. Then g(x)t = yt for some t 2 p 2 X ; so g(xt)� = (ty)�. As
(ty)� 2 A, we have g((ty)�) = (ty)�, thus g((xt)�) = g((ty)�), and so (tx)� = (ty)�

i.e. x� �p y
�. By Theorem 6.2 it follows that x � y at p.

If g 2 Aut (B=A) and p 2 X dualA, then by the last proposition, g generates
a g 2 AutBp. As x 2 B is of the form

P
i xiui, such that for all i 2 I , xi 2 p

or x0 2 p or x0i 2 p, it follows that g(x=Fp) =
P

i g(ui)=Fp, Fp is the �lter of B
generated by p. The algebra Bp is �nite, and ui=Fp are atoms of Bp; so, they
are permuted by g, i.e. there is a � 2 Sn such that g(ui=Fp) = u�(i)=Fp, i.e.
g(ui)=Fp = u�(i)=Fp for all i � n. As

u�i =Fp = g(u�i )=Fp = (g(ui)=Fp)
� = (u�(i)=Fp)

� = u��(i)=Fp;

it follows that

u�i �p u
�

�(i); i.e. ui � u�(i) at p for all i � n:

This connection between points of X and elements of Sp in considered in [4],
and there it is stated that � 2 Sn is compatible with p 2 X i� for all 1 � i � n,
ui � u�(i) at p. Furthermore g 2 Aut (B=A) is said to be induced by � 2 Sn at
p 2 X i� for all i � n, g(ui) �p u�(i) (cf. [4, p. 238]). Therefore, by the former
and Example 6.4 we have at once Lemma 2.3 in [4].

Lemma 6.7. � 2 Sn is compatible with p 2 X i� there is a g 2 Aut (B=A)
which is induced by � at p.

As we have seen, S5 algebras (B; A) such that B is a �nitary extension of A,
are generated by algebras (An; �). Now we shall see that Aut (B=A) has a similar
property with respect to Aut (An=�). Namely, we have the following theorem.
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Theorem 6.8. If B = A(ui; . . . ; un) is normal extension of A, then
Aut (B=A) is a homomorphic image of a subgroup of Aut (An=�).

Proof. Let � : Aut (An=�)! (B; A); � � � : � �= A, be the homomorphism
constructed as in Proposition 4.1. For R� = ker � de�ne

G� = Aut (An; �;R�;a)a2A:

Therefore, g 2 G� i� g 2 Aut (A=�), and for all x; y 2 An; R�(x; y)$ R�(gx; gy).
As G� < Aut (A=�), it suÆces to show that Aut (B=A) is a homomorphic image
of G�.

By Proposition 1.1, the map  : g 7! h de�ned by h Æ � = � Æ g; g 2 G�,
is a homomorphism of G� into Aut (B=A). Now we prove that  is onto. Let
h 2 Aut (B=A). By the Representation Theorem 2.4 in [4] (see also the comment
in Example 6.5), there is a partition a�, � 2 Sn, of 1 in A such that

h(ur) =
X

a�u�(r):

For x 2 A let x = (x; . . . ; x); . . . ; �n = (0; . . . ; 0; 1). Then for all � 2
Sn; a��

�

r = a��
�

�(r); hence,by Example 6.5, there is a g 2 Aut (A=�) such that

g(�r) =
P

�2Sn
a�(r). Then we have

h(ur) =
X
�

a�u�(r) =
X
�

a��(��(r)) = �

 X
�

a���(r)

!
= �g(�r);

so  (g) = h, i.e.  is onto.

According to [4], groups which are obtained as bounded Boolean powers of
a group H by a Boolean algebra A, play an important part in the representation
theory of Aut (B=A). We recall that such groups are of the form H(A) = ff : X !
H' is continuosg, where H is given the discrete topology, and X is the Stone space
of A. By Example 2.3 in [4] and Proposition 4.4 we have at once

Proposition 6.9. Aut (An=�) �= Sn(A).

By Theorem 6.8 we then have the following:

Corollary 6.10. If (B; A) is an S5 algebra and B = A(u1; . . . ; un), then
Aut (B=A) is a homomorphic image of a subgroup of Sn(A).

The following proposition improves a part of Proposition 2.7 in [4].

Proposition 6.11. Let G be a �nite group, A a Boolean algebra and
g1; . . . ; gn 2 G(A). Then the subgroup < g1; . . . ; gn > generated by g1; . . . ; gn is
�nite, i.e. �nitely generated subgroups of G(A) are �nite.

Proof. If g 2 G = G(A), then � = fg�1(�) : � 2 Im (g)g is a �nite partition
of X which corresponds to g. Since g is continuous, the elements of the partition
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are clopen; so, there are a1; . . . ; an 2 A such that � = fdual (ai) : i = 1; . . . ; kg.

Therefore, for some �j1; . . . ; �
j
kj
2 G we have gj(p) =

P
i k

j
i (p)�

j
i , where k

j
i are the

characteristic functions of dual (aji ), and 0 � � = 0; 1 � � = �. So, gj(p) = �ji for

p 2 dual (aji ).

If w(x1; . . . ; xm) is a group-word, then

wG(g1; . . . ; gm) =
X

i1;...;im

ki1 . . . im(p) � wG(�
1
i1
; . . . ; �mim)

where wG(�
1
i1
; . . . ; �mim) is the value of wG(�

1
i1
; . . . ; �mim) in G2, and ki1...im is the

characteristic function of dual (a1i1 �a
2
i2
. . . amim). But since G is �nite, there are only

�nitely many functions ki1...im , and values wG(�
1
i1
; . . . ; amim). Therefore there are

only �nitely many functions of the form wG(g1; . . . ; gm). Thus < g1; . . . ; gm > is
�nite.

By the last theorem and Corollary 6.10 we have (cf. [4, Proposition 2.7]);

Corollary 6.12. Every �nitely generated subgroup of Aut (B=A) is �nite.

It is easy to see that for any Boolean algebraA, S2(A is generated by charac-
teristic functions fa of dual (a); a 2 A, and that all elements of S2(A) are of order
2. Thus, if B = A(u1; u2), then Aut (B=A) is a sum of cyclic groups of order 2.

We shall close this section with a group-representation of the form 2.1.1 of
an S5 operator � in (B;� ) is a �nitary extension of A = fx 2 B : x� = xg.

Theorem 6.13. If (B; A) is an S5 algebra such that B = A(u1; . . . ; un) and
if � is the corresponding S5 operator, then there is a �nite subgroup H < Aut (B=A)
such that for all x 2 B; x� =

P
g2H g(x).

Proof. By Proposition 2.7 i [4] there is a �nite H < Aut (B=A) such that for
every b 2 B � A there is a g 2 H satisfying g(b) 6= b. If g 2 H and x 2 B, then
g(x) � x�, since x � x� and g(x�) = x�. Thus:

(1)
X
g2H

g(x) � x�:

Let y =
P

g2H g(x). Then x � y � x�, since id 2 G. If y < x�, then

y 2 B � A; so, by our assumption on H , there is an h 2 H , such that h(y) 6= y.
But

h(y) = h

0
@X
g2H

g(x)

1
A =

X
g2H

hg(x) =
X
g2H

g(x) = y;

a contradiction. Therefore y = x� i.e. x� =
P

g2H g(x).

In fact, y Proposition 2.7 in [4] we can take the H above to be cyclic.



On the representation od S5 algebras and their automorphism groups 15

7. Some remarks. In this section we make some remarks and note some
problems concerning Boolean algebras with closure operators, whose solution might
be of an interest.

7.1 There are several possible representations of S5 algebras. To list them,
suppose B is a Boolean algebra. Then an S5 algebra over B can be given in the
following ways:

1Æ (B;� ), where � is an S5 operator. Then the class of such algebras is a variety.

2Æ (B; A), where A is a r.c. subalgebra of B. The class of such algebras can be
axiomatized by �rst-order axioms.

3Æ There is a Stone-type representation, discussed by Hansoul in [3].

4Æ S5 algebras can be represented by Hausdor� sheafs, as shown by Koppelberg
(cf. [4, p. 236]).

5Æ If B is a �nitary extension of A, then (B;� ) can be represented by (B; H), where
H is a certain group of automorphism of B.

If categories with appropriate objects and morphisms are formed for each of
the listed representations, it is not diÆcult to see that between these categories
there exist natural equivalencies.

7.2. In the case of the representation 7.1.5 it is interesting to see whether
the assumption that B is a �nitary extension of A, can be lifted (i.e., describe all
S5 algebras for which such a representation holds).

7.3. In [4] it was shown thaat the �rst-order theory of algebras (B; A), where
A is r.c. in B, B is complete, and the inclusion map from A into B is complete,
is decidable. For such an algebra (B; A), the corresponding operator � is complete

(and vice versa, i.e. for any subset S � B,
�P

x2S x
��

=
P

x2S x
�). Therefore, the

�rst-order theory of S5 algebras (B;� ) with completeB and complete � is decidable.
(It would be interesting to see whether the theory of all S5 algebras is decidable.)

As a partial solution, in [5] it was shown that
Q0

1 fragment is decidable.

7.4. It would be interesting to develop a similar analysis for other Boolean
algebras with modal operators; for example, T -algebras, S4-algebras, orG-algebras.

7.5. Develop the model theory of S5 algebras.
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